Skip to main content

Context Aware Generation of Cuneiform Signs

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Abstract

With the advent of deep learning in many research areas, the need for very large datasets is emerging. Especially in more specific domains like cuneiform script, annotated data is scarce and costly to obtain by experts only. Therefore, approaches for automatically generating labeled training data are of high interest. In this paper, we present an approach for generating cuneiform signs in larger images of cuneiform tablets. The proposed method allows to control the class of the generated sample as well as the visual appearance by considering context information from surrounding pixels. We evaluate our method on different numbers of cuneiform tablets for training and examine methods for determining the number of training iterations. Besides generating images of promising visual quality, we are able to improve classification performance by augmenting original data with generated samples. Additionally, we demonstrate that our approach is applicable to other domains as well, like digit generation in house number signs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, E., Moysset, B., Messina, R.: Adversarial generation of handwritten text images conditioned on sequences. In: ICDAR, Sydney, NSW, Australia, pp. 481–486 (2019). https://doi.org/10.1109/ICDAR.2019.00083

  2. Denton, E., Gross, S., Fergus, R.: Semi-supervised learning with context-conditional generative adversarial networks. arXiv preprint arXiv:1611.06430 (2016)

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) NIPS, Montreal, Canada, pp. 2672–2680 (2014)

    Google Scholar 

  4. Gottstein, N.: Ein stringentes Identifikations- und Suchsystem für Keilschriftzeichen. Online (2012). http://www.materiale-textkulturen.de/mtc blog/2012_005_Gottstein.pdf

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, Las Vegas, NV, USA, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Guyon, I., et al.: (eds.) NIPS, Long Beach, CA, USA, pp. 6626–6637 (2017)

    Google Scholar 

  7. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998. Stockholmsmässan, Stockholm (2018)

    Google Scholar 

  8. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4) (2017). https://doi.org/10.1145/3072959.3073659

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)

    Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, Honolulu, HI, USA, pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632

  11. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Distilling content from style for handwrittenword recognition. In: ICFHR, Dortmund, Germany, pp. 139–144 (2020). https://doi.org/10.1109/ICFHR2020.2020.00035

  12. Kang, L., Riba, P., Wang, Y., Rusiñol, M., Fornés, A., Villegas, M.: GANwriting: content-conditioned generation of styled handwritten word images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 273–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_17

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  14. Krishnan, P., Jawahar, C.V.: HWNet v2: an efficient word image representation for handwritten documents. IJDAR 22(4), 387–405 (2019). https://doi.org/10.1007/s10032-019-00336-x

    Article  Google Scholar 

  15. Li, C., Wang, Z., Qi, H.: Fast-converging conditional generative adversarial networks for image synthesis. In: ICIP, Athens, Greece, pp. 2132–2136 (2018). https://doi.org/10.1109/icip.2018.8451161

  16. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Guyon, I., et al. (eds.) NIPS, Long Beach, CA, USA, pp. 700–708 (2017)

    Google Scholar 

  17. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  18. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain (2011)

    Google Scholar 

  19. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML, Sydney, NSW, Australia, pp. 2642–2651 (2017)

    Google Scholar 

  20. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, Las Vegas, NV, USA, pp. 2536–2544 (2016). https://doi.org/10.1109/CVPR.2016.278

  21. Rusakov, E., et al.: Generating cuneiform signs with cycle-consistent adversarial networks. In: Proceedings of International Workshop on Historical Document Imaging and Processing (HIP), Sydney, NSW, Australia, pp. 19–24 (2019). https://doi.org/10.1145/3352631.3352632

  22. Rusakov, E., Somel, T., Fink, G.A., Müller, G.G.W.: Towards query-by-eXpression retrieval of cuneiform signs. In: ICFHR, Dortmund, NRW, Germany, pp. 43–48 (2020). https://doi.org/10.1109/icfhr2020.2020.00019

  23. Streck, M.P.: Großes Fach Altorientalistik: Der Umfang des keilschriftlichen Textkorpus. Mitteilungen der Deutschen Orient-Gesellschaft zu Berlin 142, 35–58 (2010)

    Google Scholar 

  24. Sudholt, S., Fink, G.A.: Attribute CNNs for word spotting in handwritten documents. IJDAR 21(3), 199–218 (2018). https://doi.org/10.1007/s10032-018-0295-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Brandenbusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandenbusch, K., Rusakov, E., Fink, G.A. (2021). Context Aware Generation of Cuneiform Signs. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12821. Springer, Cham. https://doi.org/10.1007/978-3-030-86549-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86549-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86548-1

  • Online ISBN: 978-3-030-86549-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics