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Abstract

We investigate the parameterized complexity of finding subgraphs with
hereditary properties on graphs belonging to a hereditary graph class.
Given a graph G, a non-trivial hereditary property Π and an integer pa-
rameter k, the general problem P (G,Π, k) asks whether there exists k

vertices of G that induce a subgraph satisfying property Π. This prob-
lem, P (G,Π, k) has been proved to be NP-complete by Lewis and Yan-
nakakis. The parameterized complexity of this problem is shown to be
W[1]-complete by Khot and Raman, if Π includes all trivial graphs but
not all complete graphs and vice versa; and is fixed-parameter tractable
(FPT), otherwise. As the problem is W[1]-complete on general graphs
when Π includes all trivial graphs but not all complete graphs and vice
versa, it is natural to further investigate the problem on restricted graph
classes.

Motivated by this line of research, we study the problem on graphs
which also belong to a hereditary graph class and establish a framework
which settles the parameterized complexity of the problem for various
hereditary graph classes. In particular, we show that:

• P (G,Π, k) is solvable in polynomial time when the graph G is co-
bipartite and Π is the property of being planar, bipartite or triangle-
free (or vice-versa).

• P (G,Π, k) is FPT when the graph G is planar, bipartite or triangle-
free and Π is the property of being planar, bipartite or triangle-free,
or graph G is co-bipartite and Π is the property of being co-bipartite.

• P (G,Π, k) is W[1]-complete when the graph G is C4-free, K1,4-free
or a unit disk graph and Π is the property of being either planar or
bipartite.
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1 Introduction

In this paper, we study the parameterized complexity of finding k-vertex induced
subgraphs in a given hereditary class of graphs, within larger graphs belonging
to a different hereditary class of graphs. A prototypical instance of the induced
subgraph problem is the k-clique problem, which asks whether a given graph G
has a clique of size k. Although k-clique is W[1]-complete for general graphs [14],
and NP-complete even when the input graph is constrained to be a multiple-
interval graph, [6], it is fixed-parameter tractable (FPT)1 in this special case [19].
This example, of a W[1]-complete problem for general graphs which becomes
FPT on constrained inputs, motivates us to seek additional examples of this
phenomenon, and more broadly to attempt a classification of induced subgraph
problems which can determine in many cases whether a constrained induced
subgraph problem is tractable or remains hard.

We formalize a graph property as a set Π of the graphs that have the prop-
erty. A property is nontrivial if it is neither empty nor contains all the graphs,
and more strongly it is interesting if infinitely many graphs have the property
and infinitely many graphs do not have the property. A nontrivial graph prop-
erty Π is hereditary if it is closed under taking induced subgraphs. That is, if
Π is hereditary and a graph G belongs to Π, then every induced subgraph of G
also belongs to Π. Given a hereditary property Π, let Π be the complementary
property, the set of graphs which do not belong to Π. The forbidden set FΠ of
Π is the set of graphs that are minimal for Π: they belong to Π, but all of their
proper induced subgraphs belong to Π. For a hereditary property Π, a graph G
belongs to Π if and if G has no induced subgraph in FΠ. Khot and Raman [23]
studied the parameterized complexity of the following unified formulation of
the induced-subgraph problem, without constraints on the input graph: Given
a graph G, an interesting hereditary property Π and a positive integer k, the
problem P (G,Π, k) asks whether there exists an induced subgraph of G of size
k that belongs to Π. They proved a dichotomy theorem for this problem: If Π
includes all trivial graphs (graphs with no edges) but not all complete graphs,
or vice-versa, then the problem is W[1]-complete . However, in all remaining
cases, the problem is FPT.

Our work studies the parameterized complexity of the problem P (G,Π, k),
in cases for which it is W[1]-complete for general graphs, under the constraint
that the input graph G belongs to a hereditary graph class ΠG. (Note that
ΠG should be a different class than Π, for otherwise the problem is trivial:
just return any k-vertex induced subgraph of the input.) Given a graph G,
the interesting hereditary properties ΠG and Π, and an integer k, we denote
our problem by P (G,ΠG,Π, k). The main tool that we use for finding efficient
algorithms for P (G,ΠG,Π, k) is Ramsey’s theorem, which allows us to prove the
existence of either large cliques or large independent sets in arbitrary graphs,
allowing some combinations of input graph size and parameter to be answered
immediately without performing a search. For the cases where we find hardness

1For basic notions in parameterized complexity, see Section 2.



results, we do so by reductions from P (G,ΠG, IS, k) to P (G,ΠG,Π, k), where
IS is the property of being an independent set. We believe our framework has
interest in its own right, as a way to settle a wide class of induced-subgraph
properties while avoiding the need to develop many tedious hardness proofs for
individual problems.

1.1 Our Contributions

We partition interesting hereditary properties into four classes named AA, AS,
SA, and SS as follows. A hereditary property Π belongs to:

• AA, if it includes all complete graphs and all independent sets.

• AS, if it includes all complete graphs but excludes some independent sets.

• SA, if it excludes some complete graphs but includes all independent sets.

• SS, if it excludes some complete graphs as well as some independent sets.

By Ramsey’s theorem, an interesting hereditary property cannot belong to
SS. The interesting cases for the problem P (G,ΠG,Π, k) with respect to Π are
either Π ∈ SA or Π ∈ AS. In the other two cases, when Π ∈ AA or Π ∈ SS the
problem P (G,ΠG,Π, k) is known to be fixed-parameter tractable regardless of
ΠG [23] . We prove the following results related to the problem P (G,ΠG, Π, k),
for these interesting cases:

• If ΠG ∈ AS and Π ∈ SA or vice versa, then the problem P (G,ΠG,Π, k)
is solvable in polynomial time (Theorem 1). Although the exponent of
the polynomial depends in general on Π, some classes ΠG for which sub-
graph isomorphism is in FPT also have polynomial-time algorithms for
P (G,ΠG,Π, k) whose exponent is fixed independently of Π (Theorem 2).
The key insight for these problems is that these assumptions cause ΠG∩Π
to be a finite set, limiting the value of k and making it possible to per-
form a brute-force search for an induced subgraph while remaining within
polynomial time.

A class of problems of this form that have been extensively studied involve
finding cliques in sparse graphs or sparse classes such as planar graphs;
beyond being polynomial for any fixed hereditary sparse AS or class of
graphs, it is FPT for general graphs when parameterized by degeneracy,
a parameter describing the sparsity of the given graph [18]. Another ex-
ample problem of this type that is covered by this result is finding planar
induced subgraphs of co-bipartite graphs; here, Π is the property of be-
ing planar, in SA, and ΠG is the property of being co-bipartite, in AS.
Similarly, this result covers finding a k-vertex bipartite or triangle-free in-
duced subgraph of a co-bipartite graph, or finding a k-vertex co-bipartite
induced subgraph of a planar, bipartite, or triangle-free graph.
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• If both ΠG and Π belong either to AS or both belong to SA, then the
problem P (G,ΠG, Π, k) is in FPT (Theorem 3). The insight that leads to
this result is that large-enough graphs in ΠG necessarily contain k-vertex
cliques (for properties in AS) or independent sets (for properties in SA),
which also belong to Π. Therefore, the only instances for which a more
complicated search is needed are those for which k is large enough relative
to G that the existence of a k-vertex clique or independent set cannot be
guaranteed. For that range of the parameter k, the search complexity is
in FPT.

Problems of this type that have been studied previously include finding
independent sets in sparse graph families, as well as finding planar induced
subgraphs of sparse classes of graphs [4]. Finding a k-vertex graph that
belongs to one of the four classes of forests, planar graphs, bipartite graphs,
or triangle-free graphs, as an induced subgraph of a graph G that belongs
to another of these three classes, belongs to the problems of this type.

• If ΠG ∈ SS, then the problem P (G,ΠG,Π, k) is solvable in polynomial time
(Theorem 4). This case is trivial: there can be only finitely many graphs
in ΠG and we can precompute the answers to each one.

• In the remaining cases, ΠG ∈ AA, while Π belongs to AS or to SA. These
cases include both problems known to be polynomial, such as finding in-
dependent sets in various classes of perfect graphs, problems known to be
FPT, including several other cases of independent sets [13], and problems
known to be hard for parameterized computation, such as finding indepen-
dent sets in unit disk graphs [25]. Therefore, we cannot expect definitive
results that apply to all cases of this form, as we obtained in the previous
cases. Instead, we provide partial results suggesting that in many natural
cases the complexity of P (G,ΠG,Π, k) is controlled by the complexity of
the simpler problem of finding independent sets:

– If ΠG is closed under duplication of vertices (strong products with
complete graphs), and Π contains the graphs n·Kχ(Π) (disjoint unions
of complete graphs with the maximum chromatic number for Π), then
P (G,ΠG,Π, k) is as hard as P (G,ΠG, IS, k) (Theorem 5).

Families ΠG that meet these conditions, for which finding indepen-
dent sets is W[1]-complete, include the property of being a unit disk
graph, the property of being C4-free, and the property of being K1,4-
free. Families Π that meet these conditions include the property of
being either planar or bipartite. Therefore, P (G,ΠG,Π, k) is also
W[1]-complete in these families.

– If ΠG ∈ AA and is closed under joins with disjoint unions of cliques,
and if Π contains all joins of an independent set with a disjoint
union of cliques that have chromatic number at most χ(Π)− 1, then
P (G,ΠG,Π, k) is as hard as P (G,ΠG, IS, k) (Theorem 6).



1.2 Other Related Work

Before the investigation of the parameterized complexity of P (G,Π, k), Lewis
and Yannakakis had studied the dual of this problem, the Node Deletion

problem, for interesting hereditary properties, which is defined as follows: Given
a graph G and an interesting hereditary property Π, find the minimum number
of nodes to delete from G such that the resulting graph belongs to Π. They
proved that the Node Deletion problem is NP-complete [24]. Cai [7] studied
the parameterized version of Node Deletion and proved that the problem
is FPT, parameterized by the number of deleted vertices, for an interesting
hereditary property with a finite forbidden set.

Related to our line of work on the parameterized complexity of hereditary
properties, finding an independent set with the maximum cardinality (MIS) on
a general graph, has been proved to be NP-hard even for planar graphs of degree
at most three [20], unit disk graphs [11], and C4-free graphs [1]. Fellows et al.
proved that finding a k-Independent Set is W[1]-hard for 2-interval graphs while
its complementary problem, k-clique, as mentioned before is FPT for multiple-
interval graphs [19].

2 Preliminaries

Throughout the paper, we consider finite undirected graphs. Given a graph G,
we denote its vertex set and edge set by V (G) and E(G), respectively. For a
vertex v ∈ V (G), we denote the set of all adjacent vertices of v in G by NG(v),
i.e. NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. The degree of a vertex v ∈ V (G)
in G is denoted by degG(v). Given a vertex set S ⊆ V (G), G[S] represents
the subgraph of G induced by S. The chromatic number of a graph G is the
minimum number of colors needed to color the vertices such that no two adjacent
vertices get the same color. The chromatic number of a graph property Π is the
maximum chromatic number of any graph G ∈ Π.

Let Π be a hereditary graph property. If Π ∈ AS or Π ∈ SS, then we
denote the size of the smallest independent set that does not belong to Π by
iΠ. Similarly, if Π ∈ SA or Π ∈ SS, then we denote the number of vertices in
the smallest clique that does not belong to Π by cΠ. We denote the property of
being an independent set (the family of all all independent sets) as IS.

The use of parameterized complexity has been growing remarkably, in recent
decades. What has emerged is a very extensive collection of techniques in diverse
areas on numerous parameters. A problem L is a parameterized problem if
each problem instance of L is associated with a parameter k. For simplicity, we
represent an instance of a parameterized problem L as a pair (I, k) where k is the
parameter associated with input I. Formally, we say that L is fixed-parameter
tractable if any instance (I, k) of L is solvable in time f(k) · |I|O(1), where |I| is
the number of bits required to specify input I and f is a computable function
of k. We remark that this framework also provides methods to show that a
parameterized problem is unlikely to be FPT. The main technique is the one of
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parameterized reductions analogous to those employed in classical complexity,
with the concept of W[1]-hardness replacing NP-hardness. For problems whose
solution is a set (for instance of vertices or edges), the size of this set is a
natural parameter for the study of the parameterized complexity of the problem.
Various problems such as k-vertex cover [5, 9, 8], k-feedback vertex set [10] have
been studied under this definition of natural parameter. There are numerous
examples of other studies not solely parameterized by the size of the solution [29,
2, 17]. In this paper, we study our problems under their natural parameter, the
number of vertices of the subgraph we are seeking. For more information on
parameterized complexity, we refer the reader to [12, 15].

3 Tractability Results

In this section, we identify pairs of hereditary properties ΠG and Π for which the
problem P (G,ΠG,Π, k) is either in P or FPT. Our proofs use Ramsey numbers
which we begin by defining. For any positive integers r and s, there exists a
minimum positive integer R(r, s) such that any graph on at least R(r, s) vertices
contains either a clique of size r or an independent set of size s. It is well-known
that R(r, s) ≤

(

r+s−2
r−1

)

[21]. It will also be convenient in our analysis to have
a notation for the time to test whether a given k-vertex graph (typically, a
subgraph of our given graph G) has property Π; we let tΠ(k) denote this time
complexity.

Theorem 1 If ΠG ∈ AS and Π ∈ SA or vice versa, then the problem P (G,ΠG,
Π, k) is solvable in polynomial time.

Proof: We give a proof for the case when ΠG ∈ AS and Π ∈ SA. The proof for
the other case is symmetric under reversal of the roles of cliques and independent
sets. Recall that every graph on R(cΠ, iΠG

) vertices contains either a clique of
size cΠ, too large to have property Π, or it contains an independent set of size
iΠG

, too large to have property ΠG. Therefore, If k ≥ R(cΠ, iΠG
), it is impossible

for a k-vertex induced subgraph of a graph G in ΠG to also have property Π,
because such a subgraph would either have a large clique (contradicting the
membership of the subgraph in Π) or a large independent set (contradicting the
membership of G in ΠG). Therefore, for such large values of k, an algorithm for
P (G,ΠG, Π, k) can simply answer No without doing any searching.

If k < R(cΠ, iΠG
), then we can use a brute force search to test whether there

exists a k-vertex induced subgraph having property Π. Specifically, we enumer-
ate all k-vertex subsets of the vertices of G, construct the induced subgraph
for each subset, and test whether any of these induced subgraphs belongs to Π.
Given a representation of G for which we can test adjacency in constant time,
the time to construct each subgraph is O(k2), so the total time taken by this
search is

(

n

k

)

(

O(k2) + tΠ(k)
)

≤ nr
(

O(r2) + tΠ(r)
)

,



where r = R(cΠ, iΠG
)− 1. As the right hand side of this time bound is a poly-

nomial of n without any dependence on k, this is a polynomial time algorithm.
Thus, the problem P (G,ΠG,Π, k) is solvable in polynomial time. �

Although polynomial, the time bound of Theorem 1 has an exponent r that
depends on Π and ΠG, and may be large. An alternative approach, which
we outline next, may lead to better algorithms for properties ΠG for which the
induced subgraph isomorphism problem is in FPT, as it is for instance for planar
graphs [16] or more generally for nowhere-dense families of graphs [27].

Theorem 2 If ΠG ∈ AS and Π ∈ SA or vice versa, and induced subgraph iso-
morphism is in FPT in ΠG with time tsgi(n, k) to find k-vertex induced subgraphs
of n-vertex graphs, then the problem P (G,ΠG, Π, k) is solvable in polynomial
time O(tsgi(n, r)), for the same constant r (depending on Π and ΠG but not on
k or G) as in Theorem 1.

Proof: If k > r, we answer No immediately as in Theorem 1. Otherwise, we
generate all k-vertex graphs, test each of them for having property Π, and if
so apply the subgraph isomorphism algorithm for graphs with property ΠG to
G and the generated graph. There are 2O(r2) graphs to generate, testing for
property Π takes time tΠ(r) for each one, and testing for being an induced
subgraph of G takes time tsgi(n, r) for each one, so the time is as stated. �

In particular, these problems can be solved in linear time for planar graphs.

Theorem 3 If both ΠG and Π belong to AS, or if both belong to SA, then the
problem P (G,ΠG, Π, k) is in FPT.

Proof: We give a proof for the case when both ΠG and Π belong to AS. The
proof for the other case is again symmetric under reversal of the roles of cliques
and independent sets. For a graph G ∈ ΠG that is large enough that |V (G)| ≥
R(k, iΠG

), it must be the case that G contains a clique C of size k, for it cannot
contain an independent set of size iΠG

without violating the assumption that it
belongs to ΠG. Because Π is assumed to be in AS, it contains all cliques, so this
k-vertex clique belongs to Π. Therefore, for graphs with this many vertices, it
is safe to answer Yes. There is a small subtlety here, in that we do not know
an efficient method to calculate R(k, iΠG

), and an inefficient method would
unnecessarily increase the dependence of our time bounds on the parameter k.
However, we can use the inequality

R(k, iΠG
) ≤

(

k + iΠG
− 2

k − 1

)

to get a bound on this number that is easier to calculate. Our algorithm can
simply test whether |V | ≥

(

k+iΠG
−2

k−1

)

, and if so we return Yes without doing any
searching.
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Π ∈ SA Π ∈ AS

ΠG ∈ AS

If k < R(cΠ, iΠG
)

check all induced subgraphs
of size k, otherwise return No

If |V (G)| <
(

k+iΠG
−2

k−1

)

check all induced subgraphs
of size k, otherwise return Yes

ΠG ∈ SA

If |V (G)| <
(

k+cΠG
−2

k−1

)

check all induced subgraphs
of size k, otherwise return Yes

If k < R(cΠG
, iΠ)

check all induced subgraphs
of size k, otherwise return No

ΠG ∈ SS |V (G)| < R(cΠG
, iΠG

), precompute all possible inputs

Table 1: Summary of Theorems 1, 3 and 4.

If |V (G)| <
(

k+iΠG
−2

k−1

)

, then constructing and checking all induced subgraphs
of G of size k to detect whether there exists such a subgraph belonging to Π
takes time

(

k + iΠG
− 2

k − 1

)k
(

O(k2) + tΠ(k)
)

,

a time complexity that is bounded by a function of k but independent of n. As
the times for both cases are of the appropriate form, the problem P (G,ΠG,Π, k)
is in FPT. �

The following corollaries can be directly obtained from Theorem 1 and Theorem 3.

Corollary 1 If ΠG is the property of being co-bipartite and Π is the property of
being a forest, planar, bipartite or triangle-free (or vice versa), then the problem
P (G,ΠG,Π, k) is solvable in polynomial time.

Corollary 2 If ΠG and Π are the properties of being planar, bipartite or triangle-
free, then the problem P (G,ΠG,Π, k) is FPT.

For completeness, we state the following (trivial) theorem:

Theorem 4 If ΠG ∈ SS, then the problem P (G,ΠG,Π, k) is solvable in poly-
nomial time.

Proof: We have |V (G)| < R(cΠG
, iΠG

), because otherwise G has either a clique
of size cΠG

or a trivial graph of size iΠG
, a contradiction. Because V (G) is

bounded, there are only finitely many valid inputs to the problem P (G,ΠG,Π, k)
and we can precompute the solutions to each one. �

Table 1 briefly summarizes the results of Theorems 1, 3 and 4.

4 Hardness from strong products

In this section, we prove some hardness results for the problem P (G,ΠG,Π, k),
when ΠG ∈ AA and Π ∈ SA.



4.1 Hardness from strong products with cliques

To formulate the first of these results in full generality, we need some definitions.
The strong product G⊠H is defined as a graph whose vertex set V (G)× V (H)
consists of the ordered pairs of a vertex in G and a vertex in H , with two of
these ordered pairs (u, v) and (u′, v′) adjacent if u and u′ are adjacent or equal,
and v and v′ are adjacent or equal. In particular, the strong product with a
complete graph, G ⊠ Ki, can be thought of as making i copies of each vertex
in G, with two copies of the same vertex always adjacent, and with adjacency
between copies of different vertices remaining the same as in G. We use the
notation n ·Ki to denote the disjoint union of n copies of an i-vertex complete
graph; this is the strong product of an n-vertex independent set with an i-vertex
clique. Given a family of graphs Π, we let χ(Π) denote the maximum chromatic
number (if it exists) of the graphs in Π.

Observation 1 Let G be a graph on n vertices with chromatic number χ(G).
Then, there exists an independent set of G of size at least n/χ(G).

Namely, the large independent set of the observation can be chosen as the
largest color class of any optimal coloring of G.

Theorem 5 Let ΠG ∈ AA be a hereditary property which is closed under strong
products with complete graphs, and let Π ∈ SA be a hereditary property such that,
for all n, the graph n ·Kχ(Π) belongs to Π. Then, the problem P (G,ΠG,Π, k) is
as hard as P (G,ΠG, IS, k).

Proof: We describe a polynomial-time parameterized reduction from instances
of P (G,ΠG, IS, k) to equivalent instance of P (G,ΠG,Π, k

′), where k′ depends
only on k (and not on G). The reduction transforms the graph G of the instance
into a new graph G′ = G⊠Kχ(G), and transforms the parameter k into a new
parameter value k′ = k · χ(G).

As we have assumed that ΠG is closed under strong products with complete
graphs, it follows that G′ ∈ ΠG, so the reduction produces a valid instance
of P (G,ΠG,Π, k

′). To show that this instance is equivalent to the starting
instance, we show that G has an independent set of size k if and only if G′ has
an induced subgraph of size k′ belonging to Π.

(⇒) Let I be an independent set of G of size k, and let X = I ⊠ Kχ(G) be
the subgraph of G′ induced by the set of all copies of vertices in I. Then
|V (X)| = k′ and, as a graph of the form k · Kχ(G), X belongs to Π by
assumption.

(⇐) Let H ∈ Π be an induced subgraph of G′ of size k′. By Observation 1,
it has an independent set I ′ of size k′/χ(G) ≥ k. This independent set
can include at most one copy of each vertex in G, so the set I of vertices
in G whose copies are used in I ′ must also have size ≥ k. Further, I is
independent, for any edge between its vertices would be copied as an edge
in G′, contradicting the assumption that we have an independent set in
G′. Therefore, I is an independent set of size ≥ k in G, as desired.
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�

The families of unit-disk graphs, C4-free graphs, and K1,4-free graphs all
belong to AA, and are closed under strong products with complete graphs.
Finding independent sets is also known to be complete for unit-disk graphs [25,
26], C4-free graphs [3], and K1,4-free graphs [22]. Moreover, the families of
planar graphs and of bipartite graphs both have the property that n·Kχ(Π) ∈ Π.
For instance, in planar graphs, the graph n ·Kχ(Π) consists of n disjoint copies of
K4, a planar graph, and forming disjoint unions preserves planarity. Therefore,
we have the following corollary:

Corollary 3 If ΠG is the property of being (a) unit-disk, (b) C4-free, or (c)
K1,4-free , and Π is the property of being either planar or bipartite, then the
problem P (G,ΠG,Π, k) is W[1]-complete.

4.2 Hardness from joins with cliques

The join of two graphs G+H is a graph formed from the disjoint union of G and
H by adding edges from each vertex of G to each vertex of H . The reduction
that we consider in this section involves the join with a disjoint union of cliques,
G+ t ·Kc. That is, starting from G we add t cliques of size c, with each vertex
in G connected to all vertices in these cliques.

Observation 2 Let G have maximum clique size ω(G), and let t and c be
positive integers. Then the maximum clique size of G+ t ·Kc is ω(G) + c.

Theorem 6 Let ΠG ∈ AA be a hereditary property which is closed under joins
with disjoint unions of cliques, and Π ∈ SA be a hereditary property which
includes all subgraphs I + n · Kχ(Π)−1 for an independent set I and positive
integer n. Then the problem P (G,ΠG,Π, k) is as hard as P (G,ΠG, IS, k).

Proof: We first construct a new graph G′ = G+r ·Kc, where r = R(χ(Π)+1, k)
and c = χ(Π) − 1, and a new parameter value k′ = k + rc. By the assumption
that ΠG is closed under joins with disjoint unions of cliques, G′ ∈ ΠG. Now, we
show that G has an independent set of size k if and only if G′ has an induced
subgraph of size k′ belonging to Π.

(⇒) Let I be an independent set of G of size k. Consider the induced subgraph
I + r · Kc of G′, formed by including all vertices that were added to G.
This subgraph has size k′ = k + rc, and by assumption it belongs to Π.

(⇐) Let H ∈ Π be an induced subgraph of G′ of size k′. The vertices of H can
be partitioned into two sets S1 ⊂ V (G) and S2 ⊂ r · Kc. The following
two cases can occur:

• If S1 is not an independent set, let uv be an edge in S1. Then S2

must have at most c − 1 vertices in each clique of r · Kc, for if it
contained all c vertices of one of these cliques, then these c vertices



together with u and v would form a clique of size χ(Π) + 1, which
is disallowed in Π. Therefore, S2 has at most r(c − 1) vertices, and
to obtain total size k′, S1 must have at least k + r vertices. By the
definition of r and by Ramsey’s theorem, S1 has either a clique of
size χ(Π) + 1 (again, an impossibility) or an independent set of size
k, as desired.

• If S1 is an independent set, we observe that, even if S2 includes all of
the vertices added to G to form G′, it has only rc vertices. Therefore,
to obtain total size k′, S1 must have at least k vertices, and contains
an independent set of size k, as desired.

�

There are many families ΠG that meet the requirements on ΠG in this the-
orem, but do not meet the requirements of Theorem 5: this will be true, for
instance, when the forbidden subgraphs of ΠG do not include disjoint unions of
cliques, and are co-connected (so they cannot be formed by joins, which produce
co-disconnected graphs) but at least one of these graphs contains two adjacent
twin vertices (with the same neighbors other than each other). The requirement
on Π in this theorem is met, for instance, by the family Π of bipartite graphs.
In this case, χ(Π) = 2, so the graphs I +n ·Kχ(Π)−1 are just complete bipartite
graphs, which are of course bipartite.

As an example, finding k-independent sets in K1,3-free graphs (the comple-
ments of claw-free graphs) is known to be NP-complete, from the completeness
of the same problem in triangle-free graphs [28]. Theorem 6 then shows that
finding k-vertex bipartite induced subgraphs of K1,3-free graphs is also NP-
complete. However, we cannot use this method to prove parameterized hardness
for this example, because the k-independent set problem in K1,3-free graphs can
be solved in FPT by applying an FPT algorithm for (k− 1)-independent sets in
triangle-free graphs [13] to the sets of non-neighbors of all vertices.

5 Conclusion

We have further narrowed down the parameterized complexity of the problem
P (G,Π, k) for the case when it is W[1]-complete. In particular, restricting the
input graphG to belong to a hereditary graph class ΠG helps us to settle param-
eterized complexity of numerous graph classes circumventing long and tedious
reduction proofs. It remains an open problem to determine the parameterized
complexity of the problem P (G,ΠG,Π, k) when ΠG ∈ AA without any restric-
tions. It would be also interesting to investigate this problem under other graph
parameters beyond the size of the solution.
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