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Abstract

We study the computational complexity of computing or approximat-

ing a quasi-proper equilibrium for a given finite extensive form game of

perfect recall. We show that the task of computing a symbolic quasi-

proper equilibrium is PPAD-complete for two-player games. For the case

of zero-sum games we obtain a polynomial time algorithm based on Lin-

ear Programming. For general n-player games we show that computing

an approximation of a quasi-proper equilibrium is FIXPa-complete. To-

wards our results for two-player games we devise a new perturbation of

the strategy space of an extensive form game which in particular gives

a new proof of existence of quasi-proper equilibria for general n-player

games.

1 Introduction

A large amount of research has gone into defining [22, 23, 18, 13, 25] and com-
puting [26, 17, 10, 6, 9, 8] various refinements of Nash equilibria [19]. The
motivation for introducing these refinements has been to eliminate undesirable
equilibria, e.g., those relying on playing dominated strategies.

The quasi-proper equilibrium, introduced by van Damme [25], is one of the
more refined solution concepts for extensive form games. Any quasi-proper equi-
librium is quasi-perfect, and therefore also sequential, and also trembling hand
perfect in the associated normal form game. Beyond being a further refinement
of the quasi-perfect equilibrium [25], it is also conceptually related in that it ad-
dresses a deficiency of the direct translation of a normal form solution concept to
extensive form games. One of the most well known refinements is Selten’s trem-
bling hand perfect equilibrium, originally defined [22] for normal form games,
and the solution concept is usually referred to as normal-form perfect. This can
be translated to extensive form games, by applying the trembling hand defini-
tion to each information set of each player, which yields what is now known
as extensive-form perfect equilibria [23]. However, this translation introduces
undesirable properties, first pointed out by Mertens [16]. Specifically, Mertens
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presents a certain two-player voting game where all extensive-form perfect equi-
libria have weakly dominated strategies in their support. That is, extensive-
form perfection is in general inconsistent with admissibility. Mertens argues
that quasi-perfection is conceptually superior to Selten’s notion of extensive-
form perfection, as it avoids the cause of the problem in Mertens’ example. It
achieves this with a subtle modification of the definition of extensive-form per-
fect equilibria, which in effect allows each player to plan as if they themselves
were unable to make any future mistakes. Further discussion of quasi-perfection
can be found in the survey of Hillas and Kohlberg [11].

One of the most restrictive equilibrium refinements of normal-form games
is that of Myerson’s normal-form proper equilibrum [18], which is a refinement
of Selten’s normal-form perfect equilibrium. Myerson’s definition can similarly
be translated to extensive form, again by applying the definition to each in-
formation set of each player, which yields the extensive-form proper equilibria.
Not surprisingly, all extensive-form proper equilibria are also extensive-form
perfect. Unfortunately, this also means that Merten’s critique applies equally
well to extensive-form proper equilibria. Again, the definition can be subtely
modified to sidestep Merten’s example, which then gives the definition for quasi-
proper-equilibria [25]. It is exactly this solution concept that is the focus of this
paper.

1.1 Contributions

The main novel idea of the paper is a new perturbation of the strategy space
of an extensive form game of perfect recall, in which a Nash equilibrium is an
ε-quasi-proper equilibrium of the original game. This construction works for
any number of players and in particular directly gives a new proof of existence
of quasi-proper equilibria for general n-player games.

From a computational perspective we can, in the important case of two-
player games, exploit the new pertubation in conjunction with the sequence form
of extensive form games [12] to compute a symbolic quasi-proper equilibrium by
solving a Linear Complementarity Problem. This immediately implies PPAD-
membership for the task of computing a symbolic quasi-proper equilibrium.
For the case of zero-sum games a quasi-proper equilibrium can be computed by
solving just a Linear program which in turn gives a polynomial time algorithm.

For games with more than two players there is, from the viewpoint of compu-
tational complexity, no particular advantage in working with the sequence form.
Instead we work directly with behavior strategies and go via so-called δ-almost
ε-quasi-proper equilibrium, which is a relaxation of ε-quasi-proper equilibrium.
We show FIXPa-membership for the task of computing an approximation of
a quasi-proper equilibrium. We leave the question of FIXP-membership as an
open problem similarly to previous results about computing Nash equilibrium
refinements in games with more than two players [4, 3, 9].

Since we work with refinements of Nash equilibrium, PPAD-hardness for
two-player games and FIXPa-hardness for n-player games, with n ≥ 3 follow
directly. This combined with our membership results for PPAD and FIXPa

implies PPAD-completeness and FIXPa-completeness, respectively.
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1.2 Relation to previous work

Any strategic form game may be written as an extensive form game of compara-
ble size, and any quasi-proper equilibrium of the extensive form representation
is a proper equilibrium of the strategic form game. Hence our results fully
generalize previous results for computing [24] or approximating [9] a proper
equilibrium. The generalization is surprisingly clean, in the sense that if a bi-
matrix game is translated into an extensive form game, the strategy constraints
introduced in this paper will end up being identical to those defined in [24] for
the given bimatrix game. This is surprising, since a lot of details have to align
for this structure to survive through a translation to a different game model.
Likewise, if a strategic form game with more than two players is translated into
an extensive form game, the fixed point problem we construct in this paper is
identical to that for strategic form games [9].

The quasi-proper equilibria are a subset of the quasi-perfect equilibria, so
our positive computational results also generalize the previous results for quasi-
perfect equilibria [17]. Again, the generalization is clean; if all choices in the
game are binary, then quasi-perfect and quasi-proper coincide, and the con-
straints introduced in this paper work out to be exactly the same as those for
computing a quasi-perfect equilibrium. The present paper thus manages to
cleanly generalize two different constructions in two different game models.

2 Preliminaries

2.1 Extensive Form Games

A game Γ in extensive form of imperfect information with n players is given as
follows. The structure of Γ is determined by a finite tree T . For a non-leaf node
v, let S(v) denote the set of immediate successor nodes. Let Z denote the set
of leaf nodes of T . In a leaf-node z ∈ Z, player i receives utility ui(z). Non-leaf
nodes are either chance-nodes or decision-nodes belonging to one of the players.
To every chance node v is associated a probability distribution on S(v). The
set Pi of decision-nodes for Player i is partitioned into information sets. Let Hi

denote the information sets of Player i. To every decision node v is associated
a set of |S(v)| actions and these label the edges between v and S(v). Every
decision node belonging to a given information set h shares the same set Ch of
actions. Define mh = |Ch| to be the number of actions of every decision node of
h. The game Γ is of perfect recall if every node v belonging to an information
set h of Player i share the same sequence of actions and information sets of
Player i that are observed on the path from the root of T to v. We shall only
be concerned with games of perfect recall [14].

A local strategy for Player i at information set h ∈ Hi is a probability
distribution bih on Ch assigning a behavior probability to each action in Ch

and in turn induces a probability distribution on S(v) for every v ∈ h. A local
strategy bih for every information set h ∈ Hi defines a behavior strategy bi for
Player i. The behavior strategy bi is fully mixed if bih(c) > 0 for every h ∈ Hi

and every c ∈ Ch. Given a local strategy b′ih denote by bi/b
′
ih the result of

replacing bih by b′ih. In particular if c ∈ Ch we let bi/c prescribe action c with
probability 1 in h. For another behavior strategy b′i and an information set
h for Player i we let bi/hb

′
i denote the behavior strategy that chooses actions
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according to bi until h is reached after which actions are chosen according to
b′i. We shall also write bi/hb

′
i/c = bi/h(b

′
i/c). A behavior strategy profile b =

(b1, . . . , bn) consists of a behavior strategy for each player. Let B be the set of
all behavior strategy profiles of Γ. We let b−i = (b1, . . . , bi−1, bi+1, . . . , bn) and
(b−i; b

′
i) = b/b′i = (b1, . . . , bi−1, b

′
i, bi+1, . . . , bn). Furthermore, for simplicity of

notation, we define b/hb
′
i = b/(bi/hb

′
i), and b/hb

′
i/c = b/(bi/hb

′
i/c).

A behavior strategy profile b = (b1, . . . , bn) gives together with the probabil-
ity distributions of chance-nodes a probability distribution on the set of paths
from the root-node to a leaf-node of T . We let ρb(v) be the probability that v
is reached by this path and for an information set h we let ρb(h) =

∑
v∈h ρb(v)

be the total probability of reaching a node of h. Note that we define ρb(v) for
all nodes v of T . When ρb(h) > 0 we let ρb(v | h) be the conditional probability
that node v is reached given that h is reached. The realization weight ρbi(h) for
Player i of an information set h ∈ Hi is the product of behavior probabilities
given by bi on any path from the root to h. Note that this is well-defined due
to the assumption of perfect recall.

Given a behavior strategy profile b = (b1, . . . , bn), the payoff to Player i is
Ui(b) =

∑
z∈Z ui(z)ρb(z). When ρb(h) > 0 the conditional payoff to Player i

given that h is reached is then Uih(b) =
∑

z∈Z ui(z)ρb(z | h).
Realization weights are also defined on actions, to correspond to Player i’s

weight assigned to the given action:

∀h ∈ Hi, c ∈ Ch : ρbi(c) = ρbi(h)bi(c) (1)

We note that the realization weight of an information set is equal to that of
the most recent action by the same player, or is equal to 1, if no such action
exists.

A realization plan for Player i is a strategy specified by its realization weights
for that player. As shown by Koller et al. [12], the set of valid realization weights
for Player i can be expressed by the following set of linear constraints

∀h ∈ Hi : ρbi(h) =
∑

c∈Ch

ρbi(c) ∧ ∀c ∈ Ch : ρbi(c) ≥ 0 (2)

in the variables ρbi(c) letting ρbi(h) refer to the realization weight of the most
recent action of Player i before reaching information set h or to the constant 1
if h is the first time Player i moves. This formulation is known as the sequence
form [12], and has the advantage that for two-player games, the utility of each
player is bilinear, i.e., linear in the realization weights of each player. As shown
by Koller et al. this allows the equilibria to be characterized by the solutions to
a Linear Complementarity Problem for general sum games, and as solutions to a
Linear Program for zero-sum games. We will build on this insight for computing
quasi-proper equilibria of two-player games.

Given a behavior strategy for a player, the corresponding realization plan
can be derived by multiplying the behavior probability of an action with the
realization weight of its information set. However, it is not always the case that
the reverse is possible. The behavior probability of an action is the ratio of
the realization weight of an action to the realization weight of its information
set, but if any of the preceeding actions by the player have probability 0, the
ratio works out to 0

0 . In the present paper, the restriction on the strategy space
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ensures that no realization weight is zero, until we have retrieved the behavior
probabilities.

A strategy profile b is a Nash equilibrium if for every i and every behavior
strategy profile b′i of Player i we have Ui(b) ≥ Ui(b/b

′
i). Our object of study

is quasi-proper equilibrium defined by van Damme [25] refining the Nash equi-
librium. We first introduce a convenient notation for quantities used in the
definition. Let b be a behavior strategy profile, h an information set of Player i
such that ρb(h) > 0, and c ∈ Ch. We then define

Kh,c
i (b) = max

b′
i

Uih(b/hb
′
i/c) . (3)

When b′i is a pure behavior strategy we say that b/hb
′
i is a h-local purification of

b. We note that Uih(b/hb
′
i/c) always assumes its maximum for a pure behavior

strategy b′i.

Definition 1 (Quasi-proper equilibrium). Given ε > 0, a behavior strategy
profile b is an ε-quasi-proper equilibrium if b is fully mixed and satisfies for
every i, every information set h of Player i, and every c, c′ ∈ Ch, that bih(c) ≤
εbih(c

′) whenever Kh,c
i (b) < Kh,c′

i (b).
A behavior strategy profile b is a quasi-proper equilibrium if and only if it is

a limit point of a sequence of ε-quasi-proper equilibria with ε →+ 0.

We shall also consider a relaxation of quasi-proper equilibrium in analogy to
relaxations of other equilibrium refinements due to Etessami [3].

Definition 2. Given ε > 0 and δ > 0, a behavior strategy profile b is a δ-almost
ε-quasi-proper equilibrium if b is fully mixed and satisfies for every Player i,
every information set h of Player i, and every c, c′ ∈ Ch that bih(c) ≤ εbih(c

′)

whenever Kh,c
i (b) + δ ≤ Kh,c′

i (b).

2.2 Strategic Form Games

A game Γ in strategic form with n players is given as follows. Player i has a set
Si of pure strategies. To a pure strategy profile a = (a1, . . . , an) Player i is given
utility ui(a). A mixed strategy xi for Player i is a probability distribution on
Si. We identify a pure strategy with the mixed strategy that selects the pure
strategy with probability 1. A strategy profile x = (x1, . . . , xn) consists of a
mixed strategy for each player. To a strategy profile x Player i is given utility
Ui(x) =

∑
a∼x ui(a)

∏
j xj(aj). A strategy profile x is fully mixed if xi(ai) > 0

for all i and all ai ∈ Si. We let x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Given a strat-
egy x′

i for Player i we define (x−i;x
′
i) = x/x′

i = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

A strategy profile x is a Nash equilibrium if for every i and every strategy x′
i

of Player i we have Ui(x/x
′
i) ≤ Ui(x). Myerson defined the notion of proper

equilibrium [18] refining the Nash equilibrium.

Definition 3 (Proper equilibrium). Given ε > 0, a strategy profile x is an ε-
proper equilibrium if x is fully mixed and satisfies for every i and every c, c′ ∈ Si

that xi(c) ≤ εxi(c
′) whenever Ui(x−i; c) < Ui(x−i; c

′).
A strategy profile x is a proper equilibrium if and only if it is a limit point

of a sequence of ε-proper equilibria with ε →+ 0.
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For proper equilibrium we also consider a relaxation as suggested by Etes-
sami [3].

Definition 4. Given ε > 0 and δ > 0, a strategy profile x is a δ-almost ε-proper
equilibrium if x is fully mixed and satisfies for every i and every c, c′ ∈ Si that
xi(c) ≤ εxi(c

′) whenever Ui(x−i; c) + δ ≤ Ui(x−i; c
′).

2.3 Complexity Classes

We give here only a brief description of the classes PPAD and FIXP and refer
to Papadimitriou [20] and Etessami and Yannakakis [5] for detailed definitions
and discussion of the two classes.

PPAD is a class of discrete total search problems, whose totality is guar-
anteed based on a parity argument on a directed graph. More formally PPAD
is defined by a canonical complete problem EndOfTheLine. Here a directed
graph is given implicitly by predecessor and successor circuits, and the search
problem is to find a degree 1 node different from a given degree 1 node. We
do not make direct use of the definition of PPAD but instead prove PPAD-
membership indirectly via Lemke’s algorithm [15] for solving a Linear Comple-
mentarity Problem (LCP).

FIXP is the class of real-valued total search problems that can be cast as
Brouwer fixed points of functions represented by {+,−, ∗, /,max,min}-circuits
computing a function mapping a convex polytope described by a set of linear
inequalities to itself. The class FIXPa is the class of discrete total search prob-
lems that reduce in polynomial time to approximate Brouwer fixed points. We
will prove FIXPa membership directly by constructing an appropriate circuit.

3 Two-Player Games

In this section, we prove that computing a single quasi-proper equilibrium of a
two-player game Γ can be done in PPAD, and in the case of zero-sum games, it
can be computed in P. We are using the same overall approach as has been used
for computing quasi-perfect equilibria of extensive form games [17], proper equi-
libria of two-player games [24], and proper equilibria of poly-matrix games [9].

The main idea is to construct a new game Γε, where the strategy space is
slightly restricted for both players, in such a way that equilibria of the new
game are ε-quasi-proper equilibria of the original game. This construction also
provides a new proof of existence for quasi-proper equilibria of n-player games,
since there is nothing in neither the construction nor the proof that requires
the game to have only two players. However, for two players, the strategy
constraints can be enforced using a symbolic infinitesimal ε, which can be part
of the solution output, thereby providing a witness of the quasi-properness of
the computed strategy.

We will first describe the strategy constraints. At a glance, the construction
consists of fitting the strategy constraints for ε-proper equilibria [24] into the
strategy constraints of each of the information sets of the sequence form [12],
discussed in the preliminaries section, equation (2).

The constraints for ε-proper equilibria [24] restricts the strategy space of
each player to be an ε-permutahedron. Before the technical description of this,
we define the necessary generalization of the permutahedron. A permutahedron
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is traditionally over the vector (1, . . . , n), but it generalizes directly to any other
set as well.

Definition 5 (Permutahedron). Let α ∈ R
m with all coordinates being dis-

tinct. A permutation π ∈ Sm acts on α by permuting the coordinates of α,
i.e. (π(α))i = απ(i). We define the permutahedron Perm(α) over α to be the
convex hull of the set {π(α) | π ∈ Sm} of the m! permutations of the coordinates
of α.

A very useful description of the permutahedron is by its 2m − 2 facets.

Proposition 1 (Rado [21]). Suppose α1 > α2 > · · · > αm. Then

Perm(α) =

{
x ∈ R

m

∣∣∣∣
m∑

i=1

xi =

m∑

i=1

αi∧∀S /∈ {∅, [m]} :
∑

c∈S

xc ≥
|S|∑

i=1

αm−i+1

}
.

As each inequality of Proposition 1 define a facet of the permutahedron, any
direct formulation of the permutahedron over n elements requires 2n−2 inequal-
ities. Goemans [7] gave an asymptotically optimal extended formulation for the
permutahedron, using O(n log n) additional constraints and variables. This al-
lows a compact representation, which allows us to use ε-permutahedra [24] as
building blocks for our strategy constraints.

The ε-permutahedron defined in [24] is a permutahedron over the vector
(1, ε, ε2, . . . , εm−1), normalized to sum to 1. We need to generalize this, so that
it can sum to any value ρ, and in a way that does not require normalization.
In the following, we will abuse notation slightly, and use ρ without subscript as
a real number, since it will shortly be replaced by a realization weight for each
specific information set.

Definition 6 (ε-Permutahedron). For real ρ > 0, integers k ≥ 0 and m ≥ 1,
and ε > 0 such that ρ ≥ εk, define the vector pε(ρ, k,m) ∈ R

m by

(pε(ρ, k,m))i =

{
ρ− (εk+1 + · · ·+ εk+m−1) , i = 1

εk+i−1 , i > 1
,

and define the ε-permutahedron Πε(ρ, k,m) = Perm(pε(ρ, k,m)) ⊆ R
m.

We shall be viewing ε as a variable. Note that, by definition, ‖pε(ρ, k,m)‖1 =
ρ.

Lemma 1. Assume 0 < ε ≤ 1/3 and ρ ≥ εk, for a given integer k ≥ 0. Then
for every 1 ≤ i < m we have (pε(ρ, k,m))i ≥ (pε(ρ, k,m))i+1/(2ε).

Proof. The statement clearly holds for i > 1. Next we see that (pε(ρ, k,m))1 =
ρ − εk+1(1 − εm−1)/(1 − ε) ≥ εk − εk+1/(1 − ε) = (1/ε − 1/(1 − ε))εk+1 ≥
εk+1/(2ε) = (pε(ρ, k,m))2/(2ε).

We are now ready to define the perturbed game Γε.

Definition 7 (Strategy constraints). For each player i, and each informa-
tion set h ∈ Hi, let kh =

∑
h′<h mh′ be the sum of the sizes of the action

sets at information sets visited by Player i before reaching information set h.
Now, in the perturbed game Γε, restrict (ρbi(c1), ρbi(c2), . . . , ρbi(cmh

)) to be in
Πε(ρbi(h), kh,mh).
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Notice that the strategy constraints for the first information set a player
visits is identical to the strategy constraints for proper equilibria of bimatrix
games.

The next three lemmas describe several ways we may modify coordinates of
points of Πε(ρ, k,m) while staying within Πε(ρ

′, k,m) for appropriate ρ′. These
are needed for the proof of our main technical result, Proposition 2, below.

Lemma 2. Let 0 < ε < 1/3, ρ ≥ εk, and x ∈ Πε(ρ, k,m). Suppose for distinct
c and c′ we have xc > 2εxc′. Then there exists δ > 0 such that x+ δ(ec′ − ec) ∈
Πε(ρ, k,m) (here as usual ei denotes the i-unit vector).

Proof. By definition of Πε(ρ, k,m) we may write x as a convex combination of
the corner points of Πε(ρ, k,m), x =

∑
π∈Sm

wππ(pε(ρ, k,m)), where wπ ≥ 0
and

∑
π∈Sm

wπ = 1. There must exist a permutation π such that wπ > 0 and

π−1(c) < π−1(c′), since otherwise xc ≤ 2εxc′ by Lemma 1. Let π′ ∈ Sm such
that π′(π−1(c)) = c′, π′(π−1(c′)) = c, and π′(i) = π(i) when π(i) /∈ {c, c′}. We
then have that

x′ = x+ wπ(π
′(pε(ρ, k,m))− π(pε(ρ, k,m))) ∈ Πε(ρ, k,m) .

Note now that π′(pε(ρ, k,m))− π(pε(ρ, k,m)) is equal to

((pε(ρ, k,m))π−1(c) − (pε(ρ, k,m))π−1(c′))(ec′ − ec) .

Since (pε(ρ, k,m))π−1(c) > (pε(ρ, k,m))π−1(c′), the statement follows.

Lemma 3. Let x ∈ Πε(ρ, k,m) where ρ ≥ εk. Then x + δec ∈ Π(ρ + δ, k,m)
for any δ > 0 and c.

Proof. This follows immediately from Proposition 1 since the inequalities defin-
ing the facets of Πε(ρ, k,m) and Πε(ρ+ δ, k,m) are exactly the same.

Lemma 4. Let x ∈ Πε(ρ, k,m) where 0 < ε ≤ 1/2 and ρ > max(εk, 2mεk+1).
Let c be such that xc ≥ xc′ for all c′. Then x − δec ∈ Πε(ρ − δ, k,m) for any
δ ≤ min(ρ− εk, ρ/m− 2εk+1).

Proof. Since δ ≤ ρ− εk we have ρ− δ ≥ εk, thereby satisfying the definition of
Πε(ρ−δ, k,m). By the choice of c we have that xc ≥ ρ/m. Since we also have δ ≤
ρ/m−2εk+1 it follows that xc−δ ≥ 2εk+1. Thus xc−δ ≥ εk+1+· · ·+εk+m−1. It
then follows immediately from Proposition 1 that x−δec ∈ Πε(ρ−δ, k,m), since
any inequality given by S with c ∈ S is trivially satisfied, and any inequality
with c /∈ S is unchanged from Πε(ρ, k,m).

We are now in position to prove correctness of our approach.

Proposition 2. Any Nash equilibrium of Γε is a 2ε-quasi-proper equilibrium of
Γ, for any sufficiently small ε > 0.

Proof. Let b be a Nash equilibrium of Γε. Consider Player i for any i, any
information set h ∈ Hi, and let c, c′ ∈ h be such that bih(c) > 2εbih(c

′). We are

then to show that Kh,c
i (b) ≥ Kh,c′

i (b), when ε > 0 is sufficiently small. Let b′i be

such that Uih(b/hb
′
i/c

′) = Kh,c′

i (b). We may assume that b′i is a pure behavior
strategy thereby making b/b′i a h-local purification. Let Hi,c′ be the set of
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those information sets of Player i that follow after h when taking action c′ in h.
Similarly, letHi,c be the set of those information sets of Player i that follow after
taking action c in h. Note that by perfect recall of Γ we have thatHi,c′∩Hi,c = ∅.
Let b∗i be any pure behavior strategy of Player i choosing c∗h ∈ Ch maximizing

bih(c
∗
h), for all h ∈ Hi. We claim that Uih(b/hb

∗
i /c) ≥ Kh,c′

i (b) for all sufficiently
small ε > 0.

Let xi be the realization plan given by bi, let x
′ be the realization plan given

by bi/hb
′
i/c

′, and let x∗
i be the realization plan given by bi/hb

∗
i /c. We shall next

apply Lemma 2 to h, Lemma 3 to all h′ ∈ Hi,c′ , and Lemma 4 to all h∗ ∈ Hi,c

assigned positive realization weight by bi/hb
∗
i /c, to obtain that for all sufficiently

small ε > 0 there is δ > 0 such that x̃i = xi + δ(x′
i − x∗

i ) is a valid realization
plan of Γε.

Lemma 3 can be applied whenever ε > 0 is sufficiently small, whereas
Lemma 2 in addition makes use of the assumption that bih(c) > 2εbih(c

′). To
apply Lemma 4, we need to prove that the player’s realization weight is suffi-
ciently large for the relevant information sets, specifically ρh′ > εkh′ for each
relevant information set h′. Since b∗i is pure, Player i’s realization weight, ρh′

for each information set h′ in Hi,c is either 0 or ρc. Since bih(c) > 2εbih(c
′), we

have that ρc > εkh+|Ch|−1 ≥ εkh′ as needed.
Thus, consider ε > 0 and δ > 0 such that x̃i is a valid realization plan and

let b̃i be the corresponding behavior strategy. Since b is a Nash equilibrium we
have Ui(b/ b̃i) ≤ Ui(b). But Ui(b/ b̃i) = Ui(b) + δ(Ui(b/hb

′
i/c

′) − Ui(b/hb
∗
i /c)).

It follows that δ(Ui(b/hb
′
i/c

′) − Ui(b/hb
∗
i /c)) ≤ 0, and since δ > 0 we have

Ui(b/hb
∗
i /c) ≥ Ui(b/hb

′
i/c

′). Equivalently, Uih(b/hb
∗
i /c) ≥ Uih(b/hb

′
i/c

′), which
was to be proved. Since i and h ∈ Hi were arbitrary, it follows that b is a
2ε-quasi-proper equilibrium in Γ, for any sufficient small ε > 0.

Theorem 1. A symbolic ε-quasi-proper equilibrium for a given two-player ex-
tensive form game with perfect recall can be computed by applying Lemke’s al-
gorithm to an LCP of polynomial size, and can be computed in PPAD.

Proof. Given an extensive form game Γ, construct the game Γε. The strat-
egy constraints (Definition 7) are all expressed directly in terms of the real-
ization weights of each player. Using Goemans’ [7] extended formulation, the
strategy constraints require only O(

∑
h |Ch| log |Ch|) additional constraints and

variables, which is linearithmic in the size of the game. Furthermore, all occur-
rences of ε are on the right-hand side of the linear constraints. These constraints
fully replace the strategy constraints of the sequence form [12]. In the sequence
form, there is a single equality per information set, ensuring conservation of the
realization weight. In our case, this conservation is ensured by the permutahe-
dron constraint for each information set.

In the case of two-player games, the equilibria can be captured by an LCP of
polynomial size, which can be solved using Lemke’s algorithm [15], if the strategy
constraints are sufficiently well behaved. Since the added strategy constraints
is a collection of constraints derived from Goemans’ extended formulation, the
proof that the constraints are well behaved is identical to the proofs of [24,
Theorem 5.1 and 5.4], which we will therefore omit here. Following the approach
of [17] the solution to the LCP can be made to contain the symbolic ε, with the
probabilities of the strategies being formal polynomials in the variable ε.

By Proposition 2, equilibria of Γε are ε-quasi-proper equilibria of Γ. All
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realization weights of the computed realization plans are formal polynomials in ε.
Finally, from this we may express the ε-quasi-proper equilibrium in behavior
strategies, where all probabilities are rational functions in ε.

Having computed a symbolic ε-quasi-proper equilibrium for Γ it is easy to
compute the limit for ε → 0, thereby giving a quasi-proper equilibrium of Γ. It
is crucial here that we first convert into behavior strategies before computing
the limit. In the case of zero-sum games, the same construction can be used
to construct a linear program of polynomial size, whose solution would pro-
vide quasi-proper equilibria of the given game. This is again analogous to the
approach of [17] and further details are hence omitted.

Theorem 2. A symbolic ε-quasi-proper equilibrium for a given two-player ex-
tensive form zero-sum game with perfect recall can be computed in polynomial
time.

4 Multi-Player Games

In this section we show that approximating a quasi-proper equilibrium for a
finite extensive-form game Γ with n ≥ 3 players is FIXPa-complete. As for two-
player games, by Proposition 2 an ε-quasi-proper equilibrium for Γ could be
obtained by computing an equilibrium of the perturbed game Γε. But for more
than two players we do not know how to make efficient use of this connection.
Indeed, from the viewpoint of computational complexity there is no advantage
in doing so. Our construction instead works by directly combining the approach
and ideas of the proof of FIXPa-completeness for quasi-perfect equilibrium in
extensive form games by Etessami [3] and of the proof of FIXPa-completeness
for proper equilibrium in strategic form games by Hansen and Lund [9]. We
explain below how these are modified and combined to obtain the result. The
approach obtains FIXPa membership, leaving FIXP-membership as an open
problem. A quasi-proper equilibrium is defined as a limit point of a sequence of
ε-quasi-proper equilibria, whose existence was obtained by the Kakutani fixed
point theorem by Myerson [18]. This limit point operation in itself poses a
challenge for FIXP membership. The use of the Kakutani fixed point theorem
presents a further challenge. However, as we show below analougous to the case
of proper equilibria [9], these may be approximated by δ-almost ε-quasi-proper
equilibria, which in turn can be expressed as a set of Brouwer fixed points. In
fact we show that the corresponding search problem is in FIXP.

To see how to adapt the result of Hansen and Lund [9] for strategic form
games to the setting of extensive form games, it is helpful to compare the def-
initions of ε-proper equilibrium and δ-almost ε-proper equilibrium in strategic
form games to the corresponding definitions of ε-quasi-proper equilibrium and
δ-almost ε-proper equilibrium in extensive form games.

In a strategic form game, Player i is concerned with the payoffs Ui(x−i, c),
which we may think of as valuations of all pure strategies c ∈ Si. The re-
lationship between these valuations in turn place constraints on the strategy
xi chosen by Player i in an ε-proper equilibrium or a δ-almost ε-proper equi-
librium. In an extensive form game, Player i is in a given information set h
considering the payoffs Kh,c

i , which we may similarly think of as valuations of
all actions c ∈ Ch. The relationship between these valuations place constraints
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on the local strategy bih chosen by Player i in a ε-quasi-proper equilibrium or
a δ-almost ε-proper equilibrium. These constraints are completely analogous
to those placed on the strategies in strategic form games. This fact will allow
us to adapt the constructions of Hansen and Lund by essentially just changing
the way the valuations are computed. Etessami [3] observed that these may
be computed using dynamic programming and gave a construction of formulas
computing them.

Lemma 5 (cf. [3, Lemma 7]). Given an extensive form game of perfect recall Γ,
a player i, an information set h of Player i, and c ∈ Ch there is a polynomial size
{+,−, ∗, /,max}-formula V h,c

i computable in polynomial time satisfying that for

any fully mixed behavior strategy profile b it holds that V h,c
i (b) = Kh,c

i (b).

We now state our result for multi-player games.

Theorem 3. Given as input a finite extensive form game of perfect recall Γ with
n players and a rational γ > 0, the problem of computing a behavior strategy
profile b′ such that there is a quasi-proper equilibrium b of Γ with ‖b′− b‖∞ < γ
is FIXPa-complete.

Before presenting the proof of Theorem 3 we describe the changes needed
to adapt the results of Hansen and Lund [9] to extensive-form games in more
details.

The first step of the construction is to establish that to compute an approxi-
mation to a quasi-proper equilibrium it is sufficient to compute (an approxima-
tion to) an ε-quasi-proper equilibrium, for a sufficiently small ε > 0, and further
to compute an approximation to an ε-quasi-proper equilibrium it is sufficient to
compute a δ-almost ε-quasi-proper equilibrium, for a sufficiently small δ > 0.
Both statements are obtained by invoking the “almost implies near” paradigm
of Anderson [1]. The first statement generalizes essentially verbatim from the
case of proper equilibrium in strategic form games [9, Lemma 4.2] and we omit
the proof.

Lemma 6. For any fixed extensive form game of perfect recall Γ, and any γ > 0,
there is an ε > 0 so that any ε-quasi-proper equilibrium of Γ has ℓ∞-distance at
most γ to some quasi-proper equilibrium of Γ.

We now define a perturbed version of Γ, restricting the domain of local be-
havior strategies. For ε > 0 and a positive integer m define ηm(ε) = εm/m.
The η-perturbed game Γη restricts a local behavior strategy in every informa-
tion set h to use behavior probabilities at least ηmh

(ε). Let Bη be the set of such
restricted behavior strategy profiles of Γ. The proof of the second statement
following below very closely follows that of [9, Lemma 4.3]. For completeness
we give the proof.

Lemma 7. For any fixed extensive form game of perfect recall Γ, any ε > 0
and any γ > 0, there is a δ > 0 so that any δ-almost ε-quasi-proper equilibrium
of Γ in Bη has ℓ∞-distance at most γ to some ε-quasi-proper equilibrium of Γ
in Bη.

Proof. Suppose to the contrary there is a game Γ, ε > 0, and γ > 0 so that for
all δ > 0 there is a δ-almost ε-quasi-proper equilibrium bδ of Γ in Bη so that
there is no ε-quasi-proper equilibrium in Bη in a γ-neighborhood (with respect
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to the ℓ∞ norm) of bδ. Consider the sequence (b1/n)n∈N. Since this is a sequence
in a compact space, by the Bolzano-Weierstrass Theorem it has a convergent
subsequence (b1/nr

)r∈N. Let b∗ = limr→∞ b1/nr
. We now claim that b∗ is an

ε-quasi-proper equilibrium, which will contradict the statement that there is no
ε-quasi-proper equilibrium in a γ-neighborhood of any of the behavior strategy
profiles b1/n.

First, since b1/nr
∈ Bη for all nr we also have b∗ ∈ Bη. In particular, b∗ is

fully mixed. The functions Kh,c
i are well defined on Bη. Define ν > 0 by

ν = min
i,h,c,c′

{
Kh,c′

i (b∗)−Kh,c
i (b∗) | Kh,c

i (b∗) < Kh,c′

i (b∗)
}

.

By continuity of the functions Kh,c
i we have limr→∞Kh,c

i (b1/nr
) = Kh,c

i (b∗), for

all i, h, and c. Thus letN be an integer such that
∣∣∣Kh,c

i (b1/nr
)−Kh,c

i (b∗)
∣∣∣ ≤ ν/3

and such that 1/nr ≤ ν/3, for all i,h,c, and r ≥ N .
Consider now an information set h of Player i and c, c′ ∈ Ch such that

Kh,c
i (b∗) < Kh,c′

i (b∗). By construction, for any r ≥ N we also haveKh,c
i (b1/nr

)+

1/nr ≤ Kh,c′

i (b1/nr
). Since b1/nr

is a (1/nr)-almost ε-quasi-proper equilibrium
it follows that (b1/nr

)ih(c) ≤ ε(b1/nr
)ih(c

′). Taking the limit r → ∞ we also
have b∗ih(c) ≤ b∗ih(c

′), which shows that b∗ is an ε-quasi-proper equilibrium.

The second step is to show that given Γ, δ > 0, and ε > 0, the task of
computing a δ-almost ε-quasi-proper equilibrium of Γ belongs to FIXP. We
outline the details of this below, using a slightly different notation compared
to [9].

Definition 8 (cf. [9, Definition 4.4]). Let v ∈ R
m, x ∈ R

m
+ , δ > 0, and ε > 0.

We say that x satisfies the δ-almost ε-proper property with respect to valuation
v if and only if xc ≤ εxc′ whenever vc + δ ≤ vc′ , for all c, c′.

Hansen and Lund [9, Definition 4.6] define a function Pm,δ,ε : R
m
+×R

m → R
m
+

as a main ingredient of computing δ-almost ε-proper equilibrium. This is given
by

(Pm,δ,ε(x, v))c = min
c′

{Selδ(xc, εxc′ , vc′ − vc)} ,

where

Selδ(x, y, z) =





x if z ≤ 0

(1 − z/δ)x+ (z/δ)y if 0 ≤ z ≤ δ

y if δ ≤ z

is the the δ-approximate selection function, for δ > 0.
The function function Pm,δ,ε then induces an operator P v

m,δ,ε : R
m
+ → R

m
+ by

letting P v
m,δ,ε(x) = Pm,δ,ε(x, v). Define ∆m = {y ∈ R

m | ‖y‖1 = 1; ∀j : yj ≥ 0}
and for η > 0 define ∆η

m = {y ∈ R
m | ‖y‖1 = 1; ∀j : yj ≥ η}. We may identify

the points of ∆m and ∆η
m with probability distributions on a set of m elements.

Let τm ∈ ∆m be the uniform distribution on m elements. Note that τm ∈ ∆
1/m
m .

We need the following properties of P v
m,δ,ε proved by Hansen and Lund. We let

(P v
m,δ,ε)

◦j denote the j-th iteration of the operator P v
m,δ,ε.

Lemma 8 (cf. [9, Lemma 4.10]). If x ∈ R
m
+ is a fixed point of P v

m,δ,ε then x
satisfies the δ-almost ε-proper property with respect to v.
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Proposition 3 (cf. [9, Lemma 4.11 and Proposition 4.15]). Suppose ε ≤ 1/m.
Then (P v

m,δ,ε)
◦j(τm) in contained in ∆ηm

m and satisfy the δ-almost
√
ε-proper

property with respect to v for all j ≥ 2m2.

We now have everything needed for defining the fixed point problem. We
define a function Fε,δ : Bη(ε2) → Bη(ε2) as follows. For b ∈ Bη(ε2), define
the following for every i and every information set h of Player i: First we let
vih ∈ Rmh

be given by (vih)c = V h,c
i (b). We then let yih = (P vih

mh,δ,ε
)◦2m

2
h(τmh

)
and b′ih = yih/‖yih‖1. Finally define Fε,δ(b) = b′.

Proposition 4. Let δ > 0 and 0 < ε < 1. Then every fixed point b ∈ Bη(ε2) of
Fε,δ is a δ-almost ε-quasi-proper equilibrium of Γ.

Proof. Suppose that b ∈ Bη(ε2) is a fixed point of Fε,δ. For every i and every
information set h of Player i follows that bih = yih/‖yih‖1. By Proposition 3
yih satisfies the δ-almost ε-proper property with respect to valuation vih. This
implies that bih satisfies the δ-almost ε-proper property with respect to valuation
vih as well. Since this holds for all i and h, we can conclude that b is a δ-almost
ε-quasi-proper equilibrium.

By Lemma 5 the valuations vih may be computed by a polynomial size
{+,−, ∗, /,max}-formula. Likewise, as seen from their definition, the functions
Pm,δ,ε may be computed by polynomial size {+,−, ∗, /,max,min}-formulas. All
these formulas may furthermore be constructed in polynomial time. The func-
tion Fε,δ is given by combining polynomially many such formulas into a circuit.
In conclusion we obtain the following result, analogously to [9, Theorem 4.17].

Theorem 4. There exists a function Fε,δ : Bη(ε2) → Bη(ε2) that is given by
a {+,−, ∗, /,max,min}-circuit computable in polynomial time from Γ, with the
circuit having inputs b, ε > 0, and δ > 0, such that for all fixed 0 < ε < 1 and
δ > 0, every fixed point of Fε,δ is a δ-almost ε-quasi-proper equilibrium of Γ. In
particular, the problem of computing a δ-almost ε-quasi-proper equilibrium of a
finite extensive form game of perfect recall Γ is in FIXP.

The third step is to quantify how small ε > 0 and δ > 0 need to be in order to
guarantee that Lemma 6 and Lemma 7 apply. Such bounds can be obtained in a
completely generic way using the general machinery of real algebraic geometry,
cf. Basu, Pollack, and Roy [2], and was applied for the same purpose in previous
works [4, 3, 9]. The approach involves formalizing the statements of Lemma 6
and Lemma 7 in the first order theory of the reals. More precisely, doing this
for Lemma 6 results in a formula depending on Γ and γ with a free variable ε.
This formula is built from the definition of a ε-quasi-proper equilibrium as well
as the formula of Lemma 5. Applying quantifier elimination to that formula and
employing known bounds on the result of this we obtain the following statement,
analogously to [9, Lemma 4.18].

Lemma 9. There exists a polynomial q1 such that for any finite extensive form

game Γ of perfect recall and any 0 < γ < 1/2, whenever 0 < ε < γ2q1(|Γ|)

any
ε-quasi-proper equilibrium of Γ has L∞-distance at most γ to some quasi-proper
equilibrium of Γ.
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Similarly for Lemma 7 we construct a formula depending on Γ, γ, and ε
with a free variable δ. Again applying quantifier elimination to that formula
and employing known bounds on the result of this we obtain the following
statement, analogously to [9, Lemma 4.19].

Lemma 10. There exists a polynomial q2 such that for any finite extensive
form game Γ of perfect recall, any 0 < γ < 1/2, and any ε > 0, whenever 0 <

min(δ, ε)2
q2(|Γ|)

any δ-almost ε-quasi-proper equilibrium of Γ has L∞-distance at
most γ to some ε-quasi-proper equilibrium of Γ.

We can now complete the proof of Theorem 3. As done for the case of
approximating proper equilibrium [9], the idea is to construct two virtual in-
finitesimals δ ≪ ε, given Γ and γ > 0, by means of repeated squaring, according
to Lemma 9 and Lemma 10.

Proof of Theorem 3. Given an extensive form game of perfect recall Γ and a
rational γ > 0 we shall in polynomial time construct a {+,−, ∗, /,max,min}-
circuit C computing a function F : B → B such that any fixed point of F is
γ-close to a quasi-proper equilibrium of Γ. This is sufficient to establish FIXPa-
membership.

The circuit C will first compute ε > 0 satisfying the condition of Lemma 9
by repeated squaring of γ/2 exactly q1(|Γ|) times. Then C computes δ > 0
satisfying the condition of Lemma 10 by repeated squaring of min(γ/2, ε) exactly

q2(|Γ|) times. Next we need to restrict the input to Bη(ε2) before we can apply
the function Fε,δ of Theorem 4. For this we need to map the input x ∈ B

into Bη(ε2) by a mapping that is the identity function on Bη(ε2). One way
to achieve this (cf. [9]) is to compute for every i and h a number tih such
that

∑
c∈Ch

max(bih(c) − tih, ηmh
(ε2)) = 1 using a sorting network as done

by Etessami and Yannakakis [5] and then map each bih(c) to max(bih(c) −
tih, ηmh

(ε2)). Finally Fε,δ is applied to the output of this together with the
constructed ε and δ. By Theorem 4 any fixed-point of F is then a δ-almost
ε-quasi-proper equilibrium of Γ. By Lemma 9 this is γ/2-close to a ε-quasi-
proper equilibrium which in turn by Lemma 10 is γ/2-close to a quasi-proper
equilibrium of Γ. The proof is then concluded by the triangle inequality.
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