
ar
X

iv
:2

10
7.

03
17

4v
1

 [
cs

.F
L

]
 7

 J
ul

 2
02

1

Deciding Top-Down Determinism of

Regular Tree Languages

Peter Leupold1 and Sebastian Maneth1

Faculty of Informatics, Universität Bremen, Germany
leupold/maneth@uni-bremen.de

Abstract. It is well known that for a regular tree language it is decid-
able whether or not it can be recognized by a deterministic top-down
tree automaton (DTA). However, the computational complexity of this
problem has not been studied. We show that for a given deterministic
bottom-up tree automaton it can be decided in quadratic time whether
or not its language can be recognized by a DTA. Since there are finite
tree languages that cannot be recognized by DTAs, we also consider finite
unions of DTAs and show that also here, definability within deterministic
bottom-up tree automata is decidable in quadratic time.

Keywords: Deterministic Top-Down Tree Automata · Definability · De-
cision Problems.

1 Introduction

Unlike for strings, where left-to-right and right-to-left deterministic automata
recognize the same class of languages, this is not the case for deterministic tree
automata: deterministic top-down tree automata (DTA) only recognize a strict
subset of the regular tree languages. The most notorious example of a tree lan-
guage that cannot be recognized by DTA is the language {f(a, b), f(b, a)}. Nev-
ertheless, DTA bear some advantages over their bottom-up counterpart: they
can be implemented more efficiently, because a tree is typically represented top-
down and identified by its root node (also, a DTA may reject a given tree earlier
than a bottom-up tree automaton).

Several properties have been defined that characterize DTA within the reg-
ular tree languages. Viragh [16] proves that the regular, “path-closed” tree lan-
guages are exactly the ones that are recognized by DTA. He proves this via the
construction of what he calls the powerset automaton for the path-closure of a
regular language. Gécseg and Steinby use a very similar method in their text-
book [5]. Another approach is Nivat and Podelksi’s homogeneous closure [14].
Also here the tree automaton constructed for the closure has as state set the
powerset of the original state set. In neither case an exact running time has
been investigated.

In our approach, starting from a given deterministic bottom-up tree automa-
ton, we first construct an equivalent minimal automaton. This takes quadratic

http://arxiv.org/abs/2107.03174v1

2 Peter Leupold and Sebastian Maneth

time, following well known methods. We then lift the “subtree exchange prop-
erty” of Nivat and Podelski [14] to such an automaton; essentially it means, that
if certain transitions are present, e.g., f(q1, q2)→ q and f(q2, q1)→ q, then also
other transitions must be present (here, also f(qi, qi) → q for i = 1, 2). This
property characterizes the DTA languages and can be decided in linear time.
Finally, if the decision procedure is affirmative, we show how to construct an
equivalent deterministic top-down tree automaton. The construction replaces so
called “conflux groups” (e.g., the four transitions from above), one at a time by
introducing new states. Care has to be taken, because the removal of one con-
flux group may introduce new copies of other conflux groups. However, after all
original conflux groups are eliminated, the removal of newly introduced conflux
groups does not cause new conflux groups to be introduced. We then generalize
our results to finite unions of deterministic top-down tree languages. We show
that they are characterized by minimal bottom-up tree automata where a fi-
nite number of “violations” to the above exchange property are present. This
finiteness test can be achieved in linear time.

For unranked trees several classes of deterministic top-down tree languages
have been considered. For all of them, the decision whether a given unranked reg-
ular tree language belongs to one of these classes takes exponential time [6,11,9].
This is in sharp contrast to our results. The reason is that the unranked au-
tomata use regular expressions in their rules, and that inclusion needs to be
tested for these expressions.

2 Preliminaries

Trees. For a ranked alphabet Σ we denote by Σk the set of all symbols which
have rank k. Let X = {x1, . . . } be a set of constants called variables; for an
integer n we denote by Xn the set {x1, . . . , xn} of n variables. The set T (Σ,X)
of trees over the ranked alphabet Σ and the set X of variables is the smallest set
defined by:

– Σ0 ⊆ T (Σ,X),
– X ⊆ T (Σ,X), and
– if k ≥ 1, f ∈ Σk and t1, . . . , tk ∈ T (Σ,X), then f(t1, . . . , tk) ∈ T (Σ,X).

We denote by T (Σ) the set of trees in T (Σ,X) which do not contain variables.
For a tree t = f(t1, . . . , tk) ∈ T (Σ,X) we define its set of nodes as

N(t) := {ǫ} ∪ {iu | i ∈ {1, . . . , k}, u ∈ N(ti)}.

Here ǫ denotes the root node. Let t ∈ T (Σ,Xn) and t1, . . . , tn ∈ T (Σ,X). Then
t[x1 ← t1, . . . , xn ← tn] denotes the tree obtained from t by replacing each
occurrence of xi by ti.
Tree Automata and Transducers. A (bottom-up) tree automaton (BA) is
a tuple A = (Q,Σ,Qf , δ) where Q is a finite set of states, Qf ⊆ Q is a set of
final states, and δ is a set of transition rules of the following form:

f(q1, . . . , qk)→ q,

Deciding Top-Down Determinism of Regular Tree Languages 3

where k ≥ 0, f ∈ Σk, and q, q1 , . . . , qk ∈ Q.
A tree automaton is deterministic (DBA) if there are no two rules with the

same left-hand side. By A(t) we denote the unique state that is reached in a
deterministic bottom-up tree automaton by processing the tree t. For a bottom-
up tree automaton A, by Aq we denote the same automaton just with q as the
single final state, that is Qf = {q}.

A top-down tree automaton (TA) is a tuple A = (Q,Σ, I, δ) where Q is a set
of states, I ⊆ Q is a set of initial states, and δ is a set of transition rules of the
following form:

q(f)→ f(q1, . . . , qk),

where k ≥ 0, f ∈ Σk, and q, q1 , . . . , qk ∈ Q. A top-down tree automaton
(Q,Σ, I, δ) is deterministic (DTA) if there is one initial state and there are no
two rules with the same left-hand side.

A run of a BA on a tree t is a mapping β : N(t) → Q which fulfills the
following properties: for all nodes u ∈ N(t), if u of rank k has label f , β(u) = q
and for all i ∈ {1, . . . , k} we have β(ui) = qi, then f(q1, . . . , qk) → q is a
transition in δ. We denote the transition that corresponds to β(u) by τ(β(u)).
Sometimes we will view β as a tree and refer to nodes β(u); here we mean a
relabeling of t where every node u is labeled by β(u).

For a bottom-up tree automaton A the run β recognizes the tree t if β(ǫ) ∈
Qf . A tree is recognized by A if there exists an accepting run for it. The language
recognized by the automaton denoted by L(A) is the set of all trees which are
recognized. A tree language is regular, if it is recognized by some bottom-up tree
automaton.

For an BA A its corresponding TA c(A) is obtained by reading A’s transitions
from right to left and taking A’s final states as initial states. In the same way
for a TA its corresponding BA is defined. The language of a TA B is defined as
L(c(B)).
Syntactic Congruence. A tree C ∈ T (Σ,X1) is called a context, if it contains
exactly one occurrence of the variable x1. Because there is only one fixed variable,
we write C[t] instead of C[x1 ← t]. We denote by C(Σ) the set of all contexts.
For a given tree language L we define the syntactic congruence ≡L on T (Σ) by:
s ≡L t if for all contexts C ∈ C(Σ) we have C[s] ∈ L iff C[t] ∈ L.

In the case of string languages the Myhill-Nerode-Theorem states that a
language is regular if and only if its syntactic congruence is of finite index [12,13].
An analogous result exists for tree languages and was long regarded as folklore;
Kozen explains its history and provides a rigorous proof [8].

A concept closely related to the syntactic congruence is the minimal de-
terministic bottom-up automaton (MDBA). It is defined as follows: Let Q be
the finite set of equivalence classes of ≡L for a language L minus the unique
equivalence class C⊥ of all trees t for which there does not exist any context
C such that C[t] ∈ L. We denote by [t] the equivalence class of a tree t and
define the transition function δ by: δ(f([t1], . . . , [tk]) = [f(t1, . . . , tk)] for all
t1, . . . , tk ∈ T (Σ) \ C⊥ and [f(t1, . . . , tk)] 6= C⊥. With Qf = {[u] | u ∈ L}
the DBA ML := (Q,Σ,Qf , δ) recognizes the tree language L. So the states of

4 Peter Leupold and Sebastian Maneth

the MDBA for a language correspond to the equivalence classes of the syntactic
congruence [3].

Proposition 1 Let L ⊆ T (Σ) and M = (Q,Σ,Qf , δ) be the corresponding
MDBA. Then the following properties hold.

(i) For all q ∈ Q the language L(Mq) is not empty,
(ii) every transition in δ is useful, i.e., it is used in some accepting run,
(iii) for all t ∈ T (Σ) we have |{q ∈ Q | t ∈ L(Mq)}| ≤ 1.

(i) holds because the syntactic congruence does not have empty classes. For every
tree, which is not in the class C⊥ there exists a context C such that C[x1 ← t] ∈ L
by the definition of the equivalence classes, which proves (ii). ML’s determinism
has (iii) as a direct consequence.
Subtree Exchange Property. The class of all languages that are recognized
by DTAs is defined via these automata. However, there are several other char-
acterizations by different means. An early one that later became known as the
path-closed languages was provided by Viragh [16]. The path language π(t) of a
tree t, is defined inductively by:

– if t ∈ Σ0 , then π(t) = t

– if t = f(t1, . . . , tk), then π(t) =
⋃i=k

i=1
{fiw | w ∈ π(ti)}

For a tree language L the path language of L is defined as π(L) =
⋃

t∈L π(t),
the path closure of L is defined as pc(L) = {t | π(t) ⊆ π(L)}. A tree language
is path-closed if pc(L) = L. Viragh proved that the regular, path-closed tree
languages are exactly the ones that are recognized by deterministic top-down
automata. Nivat and Podelski argued that in these languages it must be possible
to exchange certain subtrees [14]. We will extensively use this so-called exchange
property in a formulation by Martens et al.[10].

Definition 2 A regular tree language L fulfills the exchange property if, for
every t ∈ L and every node u ∈ N(t), if t[u ← f(t1, . . . , tk)] ∈ L and also
t[u← f(s1, . . . , sk)] ∈ L, then t[u← f(t1, . . . , ti−1, si, ti+1, . . . , tk)] ∈ L for each
i = 1, . . . , k.

From the references cited above we obtain the following statement.

Proposition 3 A regular tree language fulfills the exchange property if and only
if it is recognized by a deterministic top-down tree automaton.

3 Decidability of Top-Down Determinism

It is well-known that it is decidable for a regular tree language whether or not
it is top-down deterministic. Viragh proved this via the construction of what
he calls the powerset automaton for the path-closure of a regular language; the

Deciding Top-Down Determinism of Regular Tree Languages 5

language is deterministic top-down, if it is equal to the language of the pow-
erset automaton [16]. Gécseg and Steinby used a very similar method in their
textbook [5].

Another approach can be taken via an application of Nivat and Podelksi’s
homogeneous closure [14]. A tree language is homogeneous if, for every t ∈ L
and every node u ∈ N(t), if t[u ← f(t1, t2)] ∈ L, t[u ← f(s1, t2)] ∈ L and
also t[u ← f(t1, s2)] ∈ L, then t[u ← f(s1, s2)] ∈ L. The smallest homogeneous
set containing a tree language is its homogeneous closure. One could construct
the automaton for the language’s homogeneous closure. The original language is
deterministic top-down, if it is equal to its homogeneous closure.

In both approaches the automaton of the respective closure has as state set
the powerset of the original state set. Thus already computing this automaton
takes an exponential amount of time and even space. The second step is in both
cases the decision of the equivalence of two non-deterministic automata, which
is EXPTIME-complete in the size of these automata (Corollary 1.7.9 in [3]). In
neither case the exact running time has been investigated. Also the approach
of Cristau et al. [4] for unranked trees follows similar lines and does not have a
better runtime.

We present a new method for deciding whether a regular tree language is
top-down deterministic which runs in polynomial time.

In corresponding BAs and TAs, non-determinism in one direction corresponds
to different transitions converging to the same right-hand side in the other di-
rection. We now formalize this phenomenon.

Definition 4 Let A be a deterministic, minimal bottom-up tree automaton. A
pair of distinct transitions f(q1,1, . . . , q1,k)→ q and f(q2,1, . . . , q2,k)→ q is called
a conflux. A maximal set of transitions, which pairwise form confluxes (on the
same input symbol f and with same right-hand side q), is called a conflux group.

The subtree exchange property from Definition 2 essentially states that trees
that appear in the same positions can be interchanged. For states in a TA an
analogous property would say that these must be exchangeable on the right-
hand sides of rules; but this is not the case, because despite its determinism the
runs for distinct occurrences of the same subtree can be distinct. However, when
we look at the minimal deterministic bottom-up automaton for a deterministic
top-down tree language, then we can establish a kind of exchange property for
its states.

Lemma 5 Let L be a deterministic top-down tree language and let M be the
minimal deterministic bottom-up automaton recognizing it. If M has a conflux
of the transitions f(q1,1, . . . , q1,k) → q and f(q2,1, . . . , q2,k) → q, then all the
transitions from the set

{f(qi1,1, . . . , qik,k)→ q | i1, . . . , ik ∈ {1, 2}}

are also present in M .

6 Peter Leupold and Sebastian Maneth

Proof. Let ti,1, . . . ti,k be trees such that ti,j ∈ L(Mqi,j) for all j ∈ {1, . . . , k} and
i ∈ {1, 2}. Such trees exist by Proposition 1 (i). It follows from Proposition 1 (ii)
that there exists a context C ∈ C(Σ) such that C[f(ti,1, . . . ti,k)] ∈ L for i ∈
{1, 2}. Because the transitions f(q1,1, . . . , q1,k)→ q and f(q2,1, . . . , q2,k)→ q are
distinct there exists a j ∈ {1, . . . , k} such that q1,j 6= q2,j . By Proposition 1 (iii)
this implies that t1,j 6= t2,j .

The tree t = C[f(t1,1, . . . , t1,j−1, t2,j , t1,j+1, . . . , t1,k)] must be in L by Propo-
sition 3, because L is deterministic top-down. Thus M must apply a transition
of the form f(q1,1, . . . , q1,j−1, q2,j , q1,j+1, . . . , q1,n)→ p for some state p distinct
from q at the node v where f occurs.

The two corresponding subtrees t̂1 = t/v and t̂2 = t̂1[vj ← t2,j] rooted in v
are not syntactically equivalent, because M ’s states correspond to the equiva-
lence classes of the syntactic congruence. Thus there is some context C such that
C[t̂1] ∈ L but C[t̂2] 6∈ L. If there is no such context, then there is one such that
C[t̂1] 6∈ L but C[t̂2] ∈ L, because otherwise the two trees would be syntactically
equivalent; without loss of generality we treat only the former case.

Because L is a deterministic top-down tree language, by the exchange prop-
erty from Proposition 3 the tree C[t̂2] should be in L if C[t̂1] is, since one is
obtained from the other by exchanging t1,j for t2,j or the other way around,
while the context C remains equal. This shows that no context distinguishing
the trees t̂1 and t̂2 can exist, and thus p must actually be equal to q. Abso-
lutely symmetrically we can show that also f(q2,1, . . . , q1,j , . . . , q2,k) → q must
be present in M . The same argument applies to each one of the k positions in
the conflux, which proves the statement. ⊓⊔

Lemma 5 provides us with a necessary condition for a language to be deter-
ministic top-down. We introduce the notion of violation for the case where the
conditions of the lemma are not met.

Definition 6 Let M be a minimal deterministic bottom-up tree automaton. If
there is a pair of transitions f(q1,1, . . . , q1,k)→ q and f(q2,1, . . . , q2,k)→ q in M
which constitute a conflux, but not all the transitions from the set

{f(qi1,1, . . . , qik,k)→ q | i1, . . . , ik ∈ {1, 2}}

are also present in M , then we say that this conflux constitutes a violation.
The transitions that form part of violations, which read the same symbol

and result in the same state on the right-hand side form the corresponding
violating group. For such a transition f(q1,1, . . . , q1,k)→ q its violating group is
{x(p1, . . . , pk)→ p ∈ δ | x = f and p = q)}.

As the symbol, which is read, and the resulting state uniquely identify each
violating group, each transition of a violation belongs to exactly one group.

Now in the terminology of Definition 6 the statement of Proposition 5 says
that the MDBA for a deterministic top-down tree language cannot contain any
violation. Now we show that the absence of violations in the minimal automaton
necessarily means that the language is top-down deterministic.

Deciding Top-Down Determinism of Regular Tree Languages 7

Lemma 7 If the minimal deterministic bottom-up automaton M for a language
L contains no violation, then L is top-down deterministic.

Proof. If M does not contain any conflux, then its corresponding TA is determin-
istic and the statement holds. Otherwise we construct an equivalent automaton
without confluxes. The first step in this construction is the elimination of one
arbitrary conflux group.

So let the set {f(qi,1, . . . , qi,k) → q | i ∈ {1, . . . , ℓ}} be the conflux group,
which we choose to eliminate, where ℓ is the number of transitions in this group.
We construct a new automaton without this conflux group that recognizes the
same language.

– Its set of states is Q ∪ {pj | j ∈ {1, . . . , k}} with one new state for each
position on the left-hand sides of the transitions of the conflux.

– We remove all the transitions of the conflux group.
– Instead we add the single substitute transition f(p1, . . . , pk)→ q.
– Then for every transition λ → qi,j that has one of the states qi,j on its

right hand side we add the transition λ→ pj that has pj instead, while the
left-hand side is identical; we call these copies adapter transitions.

Let M ′ = (Q ∪ {pj | j ∈ {1, . . . , k}}, Σ,Qf , δ
′) be the resulting automaton,

where δ′ is obtained from δ by removing the conflux transitions and adding the
substitution and adapter transitions as described. In what follows we will call
the components of M the original ones.

The idea behind this construction is the following: M ′ essentially does the
same runs as M . Only when M applies a transition of the eliminated conflux
group M ′ applies the substitute transition instead. In order to be able to do
this, M ′ must guess in the previous steps that instead of the original transitions
applied by M it should use the corresponding adapter transitions.

Claim 1 The tree automaton M ′ recognizes the same language as M .

The accepting runs of M and M ′ are in one-to-one correspondence. This is
proved in detail in the appendix.

We have seen how to eliminate one conflux group. Unfortunately, this elimi-
nation does not necessarily reduce the number of conflux groups. If the state q′,
which is on the right-hand side of all rules of a different conflux group, appears
as one of the qi,j in the eliminated conflux group, then a copy of the entire group
with q′ is made in the adapter transitions. Note that also the newly introduced
f(p1, . . . , pk) → q could be a transition with one of the qi,j on its right hand
side if this qi,j is equal to q, see also Example 9. In this case, however, the con-
flux group is not copied, because its transitions are removed before the adapter
transitions are introduced.

So the number of conflux groups can stay the same and even increase.
Nonetheless we start by removing all the original conflux groups in the way
described.

8 Peter Leupold and Sebastian Maneth

Claim 2 After all the original conflux groups are removed, further removals
always decrease the number of conflux groups.

New conflux groups can only be added in the step where the adapter transi-
tions are introduced, because the substitute transition obviously creates no new
conflux group. So all non-original conflux groups consist of adapter transitions
and thus do not have states from the original Q on their right-hand sides. But
these new states never occur on the left-hand side of any transition except their
corresponding substitute transitions, which cannot form part of any conflux.
Consequently they are never copied for new adapter transitions. Therefore only
original conflux groups can be copied and Claim 2 holds.

Summarizing, we do one elimination step for each original conflux group.
After this a number of copies of original conflux groups can have appeared.
During their elimination their number decreases by one in every step. Therefore
this process terminates and we obtain a bottom-up automaton, which does not
have any confluxes and is equivalent to the orignal MDBA. It is not deterministic
anymore, but now its corresponding TA is, because only confluxes result in
nondeterministic choices in the reversal. ⊓⊔

We illustrate the construction in the proof of Lemma 7 with two examples.

Example 8 Consider the language

L = {f(a, f(a, b)), f(a, f(b, a)), f(a, f(a, a)), f(a, f(b, b))}.

It is deterministic top-down, but its MDBA contains a conflux, which is not a
violation. Its transitions are q0(a)→ qa, q0(b)→ qb, f(qa, qb)→ q, f(qb, qa)→ q,
f(qa, qa) → q, f(qb, qb) → q, and f(qa, q) → qf . The four transitions with q on
the right-hand side constitute a conflux but not a violation.

Applying the construction we introduce the new states p1 and p2. The four
transitions of the conflux are replaced by the substitute transition f(p1, p2)→ q.
Further the adapter transitions q0(a)→ p1, q0(b)→ p1, q0(a)→ p2, and q0(b)→
p2 are added. The resulting automaton has the same number of transitions and
two additional states. In this case qb could be deleted, because it can only be
read by the transitions of the conflux; in general original states do not become
obsolete as shown by qa. The recognized language is the same, but on leaves
labeled a there is the non-deterministic choice of going into state qa, p1, or p2,
similarly for leaves labeled by b. ⊓⊔

Example 9 An interesting case for the construction in the proof of Lemma 7
is the occurence of a state on both the left-hand and the right-hand side of a
transition of the conflux. Let f(q′, q) → q be such a transition. When it (along
with the other ones) is removed, it is replaced by f(p1, p2) → q. Then also
f(p1, p2) → p2 is added. If we did the latter step before adding f(p1, p2) → q,
then this recursivity would be lost. So the order in which transitions are added
and removed is essential. ⊓⊔

Deciding Top-Down Determinism of Regular Tree Languages 9

Together, Lemmas 7 and 5 provide us with a characterization of the deter-
ministic top-down tree languages.

Theorem 10 A regular tree language is top-down deterministic if and only if
its minimal deterministic bottom-up automaton contains no violations.

This provides us with a new method to decide whether a regular tree language
L given as a deterministic bottom-up automaton is top-down deterministic:

(i) Compute the minimal deterministic bottom-up tree automaton M for L.
(ii) Find all confluxes in M ’s set of transitions.
(iii) For each conflux check whether it constitutes a violation.

Step (i) can be computed in quadratic time. Carrasco et al. [2] showed in
detail how to minimize a deterministic bottom-up automaton within this time
bound. Minimization algorithms were already known early on, but their runtime
was not analyzed in detail [1,5].

Both Steps (ii) and (iii) are purely syntactical analyses of the set of transi-
tions. To optimize the runtime we can group the strings describing transitions
into classes T (qf) = {(q1, . . . , qk) | f(q1, . . . , qk)→ q ∈ δ} for all states q and all
node labels f in linear time in the style of bucket sort. The different transitions
of a possible conflux group are all in the same class which, on the other hand,
is not longer than the total description of the automaton. Thus linearly many
transitions need to be compared in order to determine whether there is a conflux
and whether it constitutes a violation. Also this takes an amount of time at most
quadratic in the size of the input.

Theorem 11 For a regular tree language given as a DBA it is decidable in
quadratic time whether it is also deterministic top-down.

4 Finite Unions of Deterministic Top-Down Tree

Languages

In the preceding section we have provided a new characterization of the class
of top-down deterministic tree languages. One deficiency of this class is that it
is not closed under basic operations such as set-theoretic union. Moreover, even
simple finite languages such as {f(a, b), f(b, a)} are not included in this class.
To remedy these deficiencies, we consider finite unions of top-down deterministic
tree languages. They contain many common examples for non-top-down deter-
ministic tree languages, but still are characterized by deterministic top-down
tree automata. We denote this class by FU-DT .

In Section 3 we have seen that violations in the minimal deterministic bottom-
up automaton can be used to decide whether a language is deterministic top-
down. Among the automata with violations, some recognize languages that are
still in FU-DT while other ones recognize languages outside this class. We now
explore how an analysis of the occurring violations can be used to determine to
which one of the classes a given language belongs.

10 Peter Leupold and Sebastian Maneth

To this end we use a context-free grammar G(M) to analyze where and how
a given MDBA M uses the transitions of its violations. This violation grammar

– has M ’s state set plus a new start symbol S as its set of non-terminals.
– The terminals are [,] and one distinct violation symbol for each of the vio-

lating groups of M .
– For every transition f(q1, . . . , qk) → q from a violating group ν we add the

production q → ν[q1 · · · qk];
– for all transitions that are not from any violating group we add the pro-

duction q → q1 · · · qk. This implies that for initial states q0 there are rules
q0 → ǫ.

– Finally, there is the transition S → [qf] for each final state qf of M .

For a run β of M we call its corresponding string θ(β) the terminal string that is
generated by G by using the productions corresponding to the transitions used
in β in the corresponding order. The violation tree of β is obtained from θ(β)
as follows: All brackets [] without any other non-terminals between them are
removed from θ(β). A root note is introduced, and then the bracket structure
is translated to a tree in the natural way. For example, a string [η1[]η2[η1[]]]
results in the tree ǫ(η1, η2(η1)). Nodes with symbols of violations are called vio-
lation nodes.

Lemma 12 Let M be an MDBA and let n be the number of transitions that
form part of violations and are applied in the run β of M on a tree t. Then the
corresponding string θ(β) for this run has length 3n+ 2.

Proof. The unique production for the start state adds two terminals, namely [
and]. The only other productions that generate terminals are the ones corre-
sponding to transitions that form part of violations. Each one adds three termi-
nals one of which is a violation symbol. ⊓⊔

So the language L(G(M)) is finite if and only if there is some number n such
that every accepting run of M uses at most n times transitions that form part
of some violation.

Lemma 13 Let M be an MDBA. If M ’s violation grammar G(M) generates
an infinite language, then L is not in FU-DT .

Essentially, every violation symbol represents a choice that cannot be made in
a top-down deterministic way. All of these choices are pairwise independent in
the sense that for each one a new DTA is necessary. So if there is no bound on
their number, no finite union can be found. The technical details can be found
in the appendix.

If the violation grammar’s language is not infinite as in Lemma 13, then we
can construct a family of DTAs that demonstrate that the given language is in
FU-DT .

Lemma 14 Let M be an MDBA. If M ’s violation grammar produces a finite
language, then L is a finite union of deterministic top-down tree languages.

Deciding Top-Down Determinism of Regular Tree Languages 11

Proof. We first treat the case where L(G(M)) is a singleton set. If the vio-
lation tree contains at most one violation node per group, then we decom-
pose the MDBA M as follows: for every possible combination of transitions
from the violating groups that contains exactly one transition from each group
we make one automaton that contains exclusively these transitions from the
respective violating groups. In addition it contains all the other transitions
that do not belong to any violating group. The total number of automata is∏
{|η| | η is a violating group in M}.
These automata do not contain violations any more, because all the existing

ones have been removed and no new transitions have been added. Thus their
corresponding TAs are deterministic top-down automata or can be transformed
as in the proof of Lemma 7 by eliminating all confluxes. Finally, let K be the
union of the languages of all the new automata. K ⊆ L, because every run in one
of the new automata can be done by exactly the same transitions in M ; on the
other hand, also for every run of M there is one new automaton that contains
all the transitions that are used, and thus L ⊆ K and consequently L = K. So
we have decomposed L into a union of deterministic top-down tree languages.

From the proof of Lemma 13 we can see that for every pair (L1, L2) of these
languages there is a pair of trees that show that L1 ∪ L2 can never be part of
a deterministic top-down subset of L. Thus there cannot be any decomposition
with fewer components.

We only sketch how to generalize this construction to several occurrences
of the same violating group in the string and then to L(G(M)) consisting of
several strings. If some violating group ν appears several times in the string s,
at each occurrence of ν a different transition from ν could be used in a run of
M . So instead of choosing one fixed transition from the group, we independently
choose one for each occurrence and with it its position in the tree; we index
the transition with the position of the occurrence in the violation tree. When
the new automaton applies one of these transitions, it remembers its position
and verifies it, while moving up in the input tree. Similarly, occurrences of ν in
distinct strings can be distinguished. Appendix C explains this in more detail.

⊓⊔

The number of automata introduced in the proof of Lemma 14 is exponential
in the number of nodes in the violation grammar’s output language. This might
seem bad at first sight; however, from the proof of Lemma 13 we can see that
for a single tree in the output language this number cannot be improved.

Theorem 15 For a regular tree language given as a DBA M it is decidable in
quadratic time whether or not it belongs to the class FU-DT .

Proof. We proceed as follows:

(i) Construct the minimal deterministic bottom-up automaton M ′ for L.
(ii) Detect all violations in M ′.
(iii) Construct the violation grammar for M ′.
(iv) Decide whether the grammar’s language is finite.

12 Peter Leupold and Sebastian Maneth

Steps (i) and (ii) are just as in the procedure following Theorem 10. The con-
struction of the violation grammar has been described above. Now the question
of Step (iv) is equivalent to our decision problem by Lemmas 13 and 14. For
this decision we first eliminate all deleting rules from the grammar, which can
be done in linear time [7]. With this reduced grammar the finiteness of the lan-
guage can be decided essentially by detecting cycles in the transition graph. This
can be done in time linear in the number of edges and nodes of the graph by
detecting the strongly connected components (SCC) [15]. If in any SCC a rule is
used that produces more than one non-terminal, then the grammar’s language
is infinite, otherwise it is not. Also this check and therefore the entire Step (iv)
can be done in linear time. ⊓⊔

5 Conclusions

The concept of violations in minimal deterministic bottom-up tree automata
allows to decide whether the given language is top-down deterministic, or a
finite union of top-down determinsitic tree languages. In the affirmative cases,
corresponding represenations using those formalism can be constructed, but in
the case of finite unions may be exponential in size.

References

1. Brainerd, W.S.: The minimalization of tree automata. Information and Control
13(5), 484–491 (1968)

2. Carrasco, R.C., Daciuk, J., Forcada, M.L.: An implementation of deterministic tree
automata minimization. In: CIAA. pp. 122–129 (2007)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007), release October, 12th 2007

4. Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees.
In: Liskiewicz, M., Reischuk, R. (eds.) Fundamentals of Computation Theory, 15th
International Symposium, FCT 2005, Lübeck, Germany, August 17-20, 2005, Pro-
ceedings. Lecture Notes in Computer Science, vol. 3623, pp. 68–79. Springer (2005).
https://doi.org/10.1007/11537311_7

5. Gécseg, F., Steinby, M.: Tree Automata. Akadéniai Kiadó, Budapest (1984)
6. Gelade, W., Idziaszek, T., Martens, W., Neven, F., Paredaens, J.: Simplifying XML

schema: Single-type approximations of regular tree languages. J. Comput. Syst. Sci.
79(6), 910–936 (2013)

7. Harrison, M.A., Yehudai, A.: Eliminating null rules in linear time. Comput. J.
24(2), 156–161 (1981)

8. Kozen, D.: On the myhill-nerode theorem theorem for trees. Bull. EATCS 47,
170–173 (1992)

9. Martens, W.: Static Analysis of XML Transformation and Schema Languages.
Ph.D. thesis, Hasselt University (2006)

10. Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata:
past, present, and future. In: Logic and Automata: History and Perspectives. pp.
505–530 (2008)

http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/11537311_7

Deciding Top-Down Determinism of Regular Tree Languages 13

11. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity
of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

12. Myhill, J.: Finite automata and the representation of events. Tech. Rep. 57-264,
WADC (1957)

13. Nerode, A.: Linear automaton transformations. Proceedings of the AMS 9, 541–544
(1958)

14. Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM
J. Comput. 26(1), 39–58 (1997). https://doi.org/10.1137/S0097539789164078

15. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

16. Virágh, J.: Deterministic ascending tree automata I. Acta Cyb. 5(1), 33–42 (1980)

https://doi.org/10.1137/S0097539789164078

14 Peter Leupold and Sebastian Maneth

A Proof of Claim 1 in the Proof of Lemma 7

L(M) ⊆ L(M ′), because every accepting run in M for a tree t has a correspond-
ing accepting run for t in M ′. As described above, any application of a rule
from the removed conflux group can be simulated by the adapter and substitute
transitions. All the other transitions from δ are also present in δ′.

Similarly L(M ′) ⊆ L(M) holds because of a one-to-one correspondence be-
tween accepting runs. We first point out three consequences of the way in which
we construct M ′:

(i) The states from {pj | j ∈ {1, . . . , k}} are read exclusively by the substitute
transition or an adapter copy thereof.

(ii)
⋃

i∈{1,...,ℓ} L(M
′
qi,j

) = L(M ′
pj
), i.e., whenever M ′ reads a tree using an

adapter transition to pj last, it can read the same tree using a original
transition to one of the corresponding qi,j in the last step instead.

(iii) If L(M ′
qij ,j

) ⊆ L(M ′
pj
) for all j ∈ {1, . . . , k} and ij ∈ {1, . . . , ℓ}, then the

transition f(qi1,1, . . . , qik,k)→ q is in δ.

Let β′ be an accepting run for a tree t in M ′. If β′(u) = pi for some node in
t, by (ii) we can find an original state qi,j such that t/u ∈ L(M ′

qi,j
). All the

siblings of u must be mapped to states from {pj | j ∈ {1, . . . , k}}, because
otherwise from (i) we can see that β′ could not continue; more precisely, the
m-th sibling must be mapped to pm for m ∈ {1, . . . , k}, because from (i) we
know that f(p1, . . . , pk) is the right-hand side of all rules that read the new
states. Also for these siblings of u, we can find original states analogous to qi,j ,
for which by (iii) there exists a fitting transition f(qi1,1, . . . , qik,k) → q in δ. In
this way β′ can be changed to become an accepting run of M . ⊓⊔

B Proof of Lemma 13

Let us suppose that there is a number ℓ such that L is the union of ℓ determin-
istic top-down tree languages while L’s violation grammar generates an infinite
language. Because the language is infinite, there is no bound on the length of
its strings. From Lemma 12 we can see that in this case there is no bound on
the number of violation symbols in strings of this language either. Let s be the
violation tree of such a string with more than ℓ violation symbols.

Now let u′ and v′ be two distinct nodes other than the root in s. The violating
group for u′ contains at least two distinct transitions. Let tu and t′u be two trees
that are read by ML using one of these transitions (each of the two a distinct
one) in the last step, i. e., arriving at the root. We take an arbitrary tree t ∈ L
whose run corresponds to s by the violation grammar; u and v are the nodes in t,
which correspond to u′ and v′ in s, respectively. Then t[u← tu] and t[u← t′u] are
both in L, because the accepting run for t in ML can be translated to accepting
runs for these two trees; one of the two trees might actually be equal to t.

However, we know that the two trees can never be in the same deterministic
top-down subset of L: u corresponds to a violating group and in this group at

Deciding Top-Down Determinism of Regular Tree Languages 15

least one transition of the ones that would turn it into a conflux that is not a
violation is missing. Therefore there is a tree t′′u with the following properties:

– t′′u is obtained in the following way: let f(q1, . . . , qk) → q be the missing
transition. In tu, let t1 to tk be the root’s children in numerical order. For
each j ∈ {1, . . . , k}, if tj 6∈ L(Mqj) then we substitute tj by a tree from
L(Mqj).

– t[u← t′′u] is not in L.

So with the missing transition M could read t′′u, but without it this is not possible.
We have already seen in Section 3 that such a tree must exist, because a violating
group always leads to a violation of the exchange property from Definition 2.

For the node v we can find analogous trees tv, t
′
v and t′′v such that t[v ← tv]

and t[v ← t′v] are both in L but can never be in the same deterministic top-down
subset of L, because t[v ← t′′v] would have to be in this set to fulfill the exchange
property. From this we can conclude that the four trees t[u ← tu, v ← tv],
t[u← t′u, v ← tv], t[u← tu, v ← t′v], and t[u← t′u, v ← t′v] can pairwise never be
in the same deterministic top-down subset of L.

If there is a descendancy relation between u and v, then it might not be
possible to conduct the two substitutions simultaneously. Let, without loss of
generality, v be a descendant of u. Then it is important to chose one of the
two trees tu and t′u, say tu in such a way that t[u ← tu] is the original t and
thus contains also v. In this case we obtain the three trees t[u ← tu, v ← tv],
t[u ← tu, v ← t′v], and t[u ← t′u], which can pairwise never be in the same
deterministic top-down subset of L.

From the two violation nodes u′ and v′ we have obtained at least three trees
that can pairwise never be in the same deterministic top-down subset of L.
Because there are more than ℓ nodes labeled by violating groups in s, we can
find more than ℓ (2ℓ if there is no descendancy relation between the u and v,
or if v can be produced by different transitions in the u) trees from L, which
can pairwise not be in the same deterministic top-down subset of L. But this
contradicts our initial assumption that there is a number ℓ such that L is the
union of ℓ deterministic top-down tree languages, and we can conclude that L
is not in FU-DT . ⊓⊔

C Details on the Proof of Lemma 14

We have seen how to construct a family of DTAs that recognize a set of languages
such that their union is L in the case where L(G(M)) is a singleton set, and the
violation tree derived from the string in this set contains at most one violation
node per group. Essentially this was done by deleting all but one transition from
each violating group. This amounts to choosing, which transition from this group
will be applied at the unique position, where it can be applied. If there are more
than one positions, we cannot make this fixed choice for all of them, because in
each position a different transition can be applied. Therefore we introduce one

16 Peter Leupold and Sebastian Maneth

copy of the violating group for each position and check, whether the transitions
are applied only at the respective positions.

Let L(G(M)) be a singleton set, where the tree in this set contains an arbi-
trary number of violation nodes per group. We first modify the MDBA so that
it contains one copy of the respective violating group for each violation node.
Then we can apply the same technique of separating the deterministic parts of
the automaton as above. Let P be the set of positions in the violation tree and
let P (η) be the subset of all the positions labeled with η. We equip the MDBA’s
states with a buffer that is empty, when a leaf is read. Transitions that do not
form part of a violating group produce their right-hand side with empty buffer,
if all the buffers on the left-hand side are empty. If there are positions in the
buffers on the left-hand side, we check whether these are

– all of the same depth and
– in order.

If this is the case, then the state of the right-hand side is produced with the
ordered list of all these positions in its buffer.

For transitions that form part of a violating group η, if all the buffers on
the left-hand side are empty we guess a leaf position from P (η) and put it in
the buffer. If there are positions in the buffers on the left-hand side, again we
check whether they are of the same depth, say d and in order. Further, we check
whether the corresponding parent node u of depth d − 1 in the violation tree
is labeled by η and whether the positions in the buffers represent the complete
list of children of u. Only if all of this is the case, we produce the state on the
right-hand side with only the position of u in its buffer.

The only final state is the original final state with the complete list of posi-
tions on level one of the violation tree in its buffer. This new tree automaton A
recognizes the same tree language as the original MDBA. Every accepting run
of A can be converted to an accepting run of the MDBA by just deleting the
buffer from the states; on the other hand, for every accepting run of the MDBA
there is a series of guesses that fill the buffers in such a way that the final state
is reached.

Example 16 We illustrate the construction with an example: we consider the
tree language which consists of the eight trees

f(f(a, b), f(f(a, b), f(a, b)))

f(f(a, b), f(f(a, b), f(b, a)))

f(f(a, b), f(f(b, a), f(a, b)))

f(f(a, b), f(f(b, a), f(b, a)))

f(f(b, a), f(f(a, b), f(a, b)))

f(f(b, a), f(f(a, b), f(b, a)))

f(f(b, a), f(f(b, a), f(a, b)))

f(f(b, a), f(f(b, a), f(b, a))).

Deciding Top-Down Determinism of Regular Tree Languages 17

So in three positions there is a choice between (a, b) or (b, a) as leaf children.
These result in applications of transitions of the same violating group in three
different positions. That is why the violation tree ǫ(η, η, η) has three occurrences
of η, if this is the corresponding symbol.

In detail, the MDBA has the transitions:

a→ qa, b→ qb, f(qa, qb)→ p, f(qb, qa)→ p, f(p, p)→ p′, f(p, p′)→ qf

where qf is the only final state. f(qa, qb) → p and f(qb, qa) → p constitute the
violating group η, and P (η) = {1, 2, 3}, where all of these positions are leaves.
An accepting run of the new tree automaton is depicted in Figure 1. Note how

f q
[1,2,3]
f

f p[1]

a q
[]
a b q

[]
b

f p′[2,3]

f p[2]

a q
[]
a b q

[]
b

f p[3]

a q
[]
a b q

[]
b

Fig. 1. An accepting run. At the side of each node we see in blue the state reached
after reading this node. The states have the buffer in the brackets in the exponent.

positions of the same level in the violation tree do not necessarily correspond to
positions of the same level in the tree that is recognized. ⊓⊔

The new automaton has one copy of the respective violating group for each
violation node, namely the one with the node’s position in the buffer of the
state on the right-hand side of the transitions. Now we can obtain a family of
top-down deterministic tree languages via the automata that are obtained by
chosing only one transition of each group as above.

If the violation grammar’s language contains several strings, then we con-
struct separate sets of automata for them. Here the decomposition might not be
optimal in the number of automata any more.

Example 17 We generalize Example 16 to show how big the number of DTA
can become with respect to the number of states of the MDBA. Again the
tree language consists of a fixed backbone along which there are choices be-
tween the subtrees f(a, b) and f(b, a) as in Example 16; only the depth can
be greater and is parameterized by the integer m. Figure 2 depicts an example
tree and again in blue the states of the accepting. The MDBA’s state set is
{qa, qb, p, qf , p1, p2, . . . , pm} and has m + 4 elements. The transitions should be
evident from Figure 2 together with Example 16.

18 Peter Leupold and Sebastian Maneth

f qf

f p

a qa b qb

f pm

f p

a qa b qb

...

f p2

f p

a qa b qb

f p1

f p

a qa b qb

f p

a qa b qb

Fig. 2. A family of trees which requires exponentially many elements in its decompo-
sition into deterministic top-down tree languages.

The violation is the same one as in Example 16. So for every use of the state
p two copies of this violation are created. There are m+ 2 nodes with the state
p and consequently the number of tree automata that are created is 2m+2. Each
of these recognizes only one tree. In the same way as in the proof of Lemma 13
we can see that these can pairwise never be in the same deterministic top-down
subset of the language. Thus there cannot be any decomposition with fewer
elements. ⊓⊔

D Details on the Proof of Theorem 15

We look in more detail at Step (iv) of deciding whether the language of the
violation grammar is finite. First off, we point out that the grammar is reduced
in the sense that there are no unreachable and only productive non-terminals.
This is due to the construction and the fact that the underlying MDBA has
no useless or unreachable states; specifically we excluded the sink state in its
definition, which corresponds to the class of trees, which can never be subtrees
of any tree of the language.

After eliminating the deleting rules, i.e. rules with the empty string on the
right-hand side, we construct a graph for the detection of cycles. This graph has
the grammar’s non-terminals as nodes. The directed edges are derived from the
productions. For all chain productions A → B we add the corresponding edge.
For all productions whose right-hand sides have a length greater than one, we
add edges to all the non-terminals that occur on the right-hand side. These edges
are marked so that the algorithm for detecting cycles can recognize them.

If any of these marked edges is used in a strongly connected component, this
means that the corresponding rule can be applied an arbitrary number of times
in a derivation of the grammar. Because every application lengthens the string
and there are no deleting rules, there is no bound on the length of strings that
are generated by the grammar. Consequently the language must be infinite.

	Deciding Top-Down Determinism of Regular Tree Languages

