Skip to main content

Pose-Specific 3D Fingerprint Unfolding

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12878))

Included in the following conference series:

  • 1465 Accesses

Abstract

In order to make 3D fingerprints compatible with traditional 2D flat fingerprints, a common practice is to unfold the 3D fingerprint into a 2D rolled fingerprint, which is then matched with the flat fingerprints by traditional 2D fingerprint recognition algorithms. The problem with this method is that there may be large elastic deformation between the unfolded rolled fingerprint and flat fingerprint, which affects the recognition rate. In this paper, we propose a pose-specific 3D fingerprint unfolding algorithm to unfold the 3D fingerprint using the same pose as the flat fingerprint. Our experiments show that the proposed unfolding algorithm improves the compatibility between 3D fingerprint and flat fingerprint and thus leads to higher genuine matching scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

  2. Kumar, A.: Individuality of 3D fingerprints. In: Contactless 3D Fingerprint Identification. ACVPR, pp. 109–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67681-4_8

    Chapter  Google Scholar 

  3. Chen, Y., Parziale, G., Diaz-Santana, E., Jain, A.K.: 3D touchless fingerprints: Compatibility with legacy rolled images. In: Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, pp. 1–6. IEEE (2006)

    Google Scholar 

  4. Zhao, Q., Jain, A., Abramovich, G.: 3D to 2D fingerprints: unrolling and distortion correction. In: International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE (2011)

    Google Scholar 

  5. Labati, R.D., Genovese, A., Piuri, V., Scotti, F.: Quality measurement of unwrapped three-dimensional fingerprints: a neural networks approach. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2012)

    Google Scholar 

  6. Wang, Y., Lau, D.L., Hassebrook, L.G.: Fit-sphere unwrapping and performance analysis of 3D fingerprints. Appl. Opt. 49(4), 592–600 (2010)

    Article  Google Scholar 

  7. Anitha, R., Sesireka, N.: Performance improvisation on 3D converted 2D unraveled fingerprint. IOSR J. Comput. Eng. (IOSR-JCE) 16(6), 50–56 (2014)

    Google Scholar 

  8. Wang, Y., Hassebrook, L.G., Lau, D.L.: Data acquisition and processing of 3-D fingerprints. IEEE Trans. Inf. Forensics Secur. 5(4), 750–760 (2010)

    Article  Google Scholar 

  9. Labati, R.D., Genovese, A., Piuri, V., Scotti, F.: Fast 3-D fingertip reconstruction using a single two-view structured light acquisition. In: IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), pp. 1–8. IEEE (2011)

    Google Scholar 

  10. Dighade, R.R.: Approach to unwrap a 3D fingerprint to a 2D equivalent. University of Maryland, Master Thesis (2012)

    Google Scholar 

  11. Fatehpuria, A., Lau, D.L., Hassebrook, L.G.: Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan. In: Biometric Technology for Human Identification III. Volume 6202, International Society for Optics and Photonics, vol. 62020C (2006)

    Google Scholar 

  12. Shafaei, S., Inanc, T., Hassebrook, L.G.: A new approach to unwrap a 3-D fingerprint to a 2-D rolled equivalent fingerprint. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems (BTAS), pp. 1–5. IEEE (2009)

    Google Scholar 

  13. Bazen, A.M., Gerez, S.H.: Fingerprint matching by thin-plate spline modelling of elastic deformations. Pattern Recogn. 36(8), 1859–1867 (2003)

    Article  Google Scholar 

  14. Ross, A., Shah, S., Shah, J.: Image versus feature mosaicing: a case study in fingerprints. In: Biometric Technology for Human Identification III. Volume 6202, International Society for Optics and Photonics, vol. 620208 (2006)

    Google Scholar 

  15. Cheng, X., Tulyakov, S., Govindaraju, V.: Minutiae-based matching state model for combinations in fingerprint matching system. In: CVPR Workshop on Biometrics, pp. 92–97 (2013)

    Google Scholar 

  16. Si, X., Feng, J., Yuan, B., Zhou, J.: Dense registration of fingerprints. Pattern Recogn. 63, 87–101 (2017)

    Article  Google Scholar 

  17. Cui, Z., Feng, J., Li, S., Lu, J., Zhou, J.: 2-D phase demodulation for deformable fingerprint registration. IEEE Trans. Inf. Forensics Secur. 13(12), 3153–3165 (2018)

    Article  Google Scholar 

  18. Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010)

    Article  Google Scholar 

  19. Neurotechnology Inc., VeriFinger. http://www.neurotechnology.com

  20. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference on Computer Vision (ICCV) (2005)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61976121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, X., Feng, J., Zhou, J. (2021). Pose-Specific 3D Fingerprint Unfolding. In: Feng, J., Zhang, J., Liu, M., Fang, Y. (eds) Biometric Recognition. CCBR 2021. Lecture Notes in Computer Science(), vol 12878. Springer, Cham. https://doi.org/10.1007/978-3-030-86608-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86608-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86607-5

  • Online ISBN: 978-3-030-86608-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics