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Abstract. The availability of the Global Positioning System (GPS) tra-
jectory data is increasing along with the availability of different GPS
receivers and with the increasing use of various mobility services. GPS
trajectory is an important data source which is used in traffic density
detection, transport mode detection, mapping data inferences with the
use of different methods such as image processing and machine learn-
ing methods. While the data size increases, efficient representation of
this type of data is becoming difficult to be used in these methods. A
common approach is the representation of GPS trajectory information
such as average speed, bearing, etc. in raster image form and applying
analysis methods. In this study, we evaluate GPS trajectory data ras-
terization using the spatial join functions of QGIS, PostGIS+QGIS, and
our iterative spatial structured grid aggregation implementation coded
in the Python programming language. Our implementation is also paral-
lelizable, and this parallelization is also included as the fourth method.
According to the results of experiment carried out with an example GPS
trajectory dataset, QGIS method and PostGIS+QGIS method showed
relatively low performance with respect to our method using the met-
ric of total processing time. PostGIS+QGIS method achieved the best
results for spatial join though its total performance decreased quickly
while test area size increases. On the other hand, both of our meth-
ods’ performances decrease directly proportional to GPS point. And our
methods’ performance can be increased proportional to the increase with
the number of processor cores and/or with multiple computing clusters.

Keywords: Rasterization, GPS trajectory, Data aggregation, Spatial
join, Parallelization

1 Introduction

Availability of digital data is increasing with the increase of sensor device con-
nectivity and with the decrease in data storage area costs. The availability of
spatial data, the data that are having spatial components, is also increasing.
Spatial data is collected and stored mostly with the use of Global Positioning
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System (GPS) receivers or other devices that are equipped with GPS units such
as smart phones, navigation devices etc.

Collected GPS data with receivers is also varying. One type of data collected
with GPS devices is called GPS trajectories and it is the collection of consec-
utive GPS locations during the travel time of a moving body [26]. In addition
to GPS locations, additional information such as timestamp, speed, bearing of
the movement, acceleration/deceleration can be recorded with GPS trajectory
and/or can be derived from one another.

GPS trajectories are used in studies focusing on mapping data inference
[1,11,14], traffic density detection [12] and transportation mode detection [3,13].
In these examples from literature GPS trajectories are used as is or represented
in a generalized form such as embedding attributes into predetermined feature
classes or converting GPS trajectories into raster images (Figure 1) that are
representing certain attributes (GPS point frequency, transportation mode) or
their attributes’ aggregation (average speed, maximum speed, average bearing).
After the representation of GPS trajectories with embedding or rasterization,
different data analysis methods can be applied to these derived data.

Fig. 1: A simple GPS trajectory and its rasterization.

In addition, research on GPS trajectories as GPS trajectories being the only
data source, GPS trajectories fusion with satellite or aerial imagery is a new
area [20]. In the context of data fusion of GPS trajectories with satellite imagery,
GPS trajectories are rasterized, and it is important to obtain one to one pixel
match between rasterized GPS trajectories and satellite imagery to carry out
the analysis accurately.

On the other hand, due to the size of GPS trajectory data, the rasterization
process can be time consuming while the data size and work area increases. This
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issue is not limited only to GPS trajectory rasterization or aggregation, similar
research domains such as spatial social media data analysis and other domains
that are dealing with high volume point data.

In this contribution, we address the rasterization of GPS trajectories using
open source Geographic Information System (GIS) tools and an algorithm coded
using the Python programming language. These tools are evaluated according to
their performances with an experiment which has the goal to rasterize multiple
attributes of given GPS trajectories. Evaluation carried out only on the perfor-
mance results of approaches for three tools in the same architecture is presented,
no philosophical discussion is carried out yet.

To the best of our knowledge, this study is the only study comparing multiple
open source tools and algorithms to understand their performance for aggrega-
tion of the big point data to structured grids and their rasterization. There has
been multiple research for general performance comparison of QGIS with respect
to GIS software like ArcGIS [8]. The parallelization is one of the options imple-
mented in this study. There is various research on parallelization for GIS appli-
cations spreading from implementing big data tools into GIS software [6, 7, 25]
to adaption of cluster based, distributed big data tools into GIS domain [5, 21].
Also, there are significant research which discuss CPU and GPU acceleration,
their special applications in GIS and achieved performance improvement [22–24].
Although previous researches may contribute to various future research direc-
tions combined with our research results, these researches neither focus on the
point to structured grid aggregation and rasterization nor provide a performance
comparison with respect to the widely used open source GIS tools.

2 Tools and Rasterization Process Flow

As in raw form, GPS trajectory data is a vector data while the aim of this
research is to represent this data in raster image format. Because of these de-
pendencies, tools that are required should be able to handle both vector and
raster image data. Within the multiple open source GIS tools that are freely
available, QGIS [19] and PostGIS [17] are used for the rasterization of GPS tra-
jectories in this study since they are widely adopted in GIS field thanks to their
robustness and abilities.

In Section 2.1 and 2.2, the rasterization abilities of QGIS and PostGIS will
be examined with respect to given input data (work area boundaries, output
pixel size, GPS trajectory data) and expected output rasterized GPS trajectory
layers (frequency, average speed and maximum speed). In Section 2.3, our imple-
mentation will be explained. Finally, in Section 2.4, the process flow of methods
will be summarized.

2.1 Rasterization with QGIS

As a GIS software, QGIS has different functions, tools and plugins for data
analysis and data conversion. Rasterize (Vector to Raster) is one of these tools
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offered within QGIS. This QGIS tool acts as a user interface, collects the user
inputs and runs gdal_rasterize tool at the background. This tool is able to get
an input data and burn the pixel values that are stored in the preferred attribute
field of input vector data within the predefined outer boundaries. Although QGIS
has the rasterize tool, this tool is only able to rasterize given values but cannot
aggregate multiple values of the same attribute in the given pixels. Though,
it is possible to represent pixels in vector form (structured grid) and achieve
the required aggregation with spatial join tool of QGIS. After the aggregation of
GPS trajectories into the structured grid, it is possible to rasterize the aggregated
attributes into raster image data.

2.2 Rasterization with PostGIS

PostGIS is the spatial database add-on for the PostgreSQL [18] database man-
agement system. PostGIS is able to store and analyze spatial data in vector
and raster image form that is stored in a PostgreSQL database. PostGIS has
ST_AsRaster tool for similar to QGIS which is accepting the input though pro-
ducing only given attribute values. On the other hand, similar to QGIS, it is
possible to aggregate one vector layer into another using Structured Query Lan-
guage (SQL) statements. Even though PostGIS does provide rasterize function-
ality, it is also possible to connect QGIS to PostgreSQL database and rasterize
the output data that is created with PostGIS via QGIS.

2.3 Rasterization with Python

Python is a general-purpose programming language which has many internal
and external libraries such as data science libraries (Pandas) and geospatial
computation (GDAL, pyproj) libraries. With the use of these libraries, it is
possible to analyze GPS trajectories.

To achieve the required raster images, our own Python method was cre-
ated (Algorithm 1). This method gets the GPS points, coordinates of work area
boundary and pixel size as inputs and calculates the raster matrix. Unlike Post-
GIS and QGIS, the Python method makes use of the structured grid definition
(work area boundary and pixel size) of a raster image and carries out the calcu-
lation of outputs without creating a vector grid. The method determines the row
and column of the pixel where each GPS point is contained. Following, it ag-
gregates the required feature values and assigns the output raster image matrix
values according to previously determined rows and columns.

The most computation intensive part of the Algorithm 1 is the for loop
shown between row numbers 5 to 9. Python gives the ability to parallelize with
the use of additional libraries such as Dask [4] and Swifter [2]. Swifter library uses
Dask library at its backend. It is able to provide the processing time information
and provides user the ability to choose parallel or normal computation options
easily. Due to these features Swifter library is used for the experiments of this
study.
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Algorithm 1: Spatial join with Python.
Data: P = {p1, p2, p3, ...., pn} where each pi contains latitude (pi,lat),

longitude(pi,lon), speed (pi,speed).
Output raster image top-left corner coordinate (X,Y ) and pixel
size (px).

Result: Output images Imagecount, Imagespeed−avg, Imagespeed−max

in matrix form.
1 begin

/* Convert input coordinates into projected cartesian
coordinate system. */

2 def transformCoordinates(Plat, Plon):
3 Transform WGS84 to projected WGS84
4 return PX , PY

/* Determining row and column of each GPS point within
the output raster. */

5 foreach pi ∈ P do
6 prow = (pi,X − (pi,X mod px)−X)/px
7 pcolumn = (pi,Y − (pi,Y mod px)− Y )/px
8 pi ←− prow, pcolumn

9 end
/* Aggregate GPS count, average and maximum speed values

with grouping by row and column number. */
10 def aggregateValues(Prow, Pcolumn, Pspeed):
11 P

′

count ←− count of records having same prow, pcolumn where
p ∈ P

12 P
′

speed−avg ←− average of pi,speed having same prow, pcolumn

where p ∈ P

13 P
′

speed−max ←− maximum of pi,speed having same prow, pcolumn

where p ∈ P

14 return P
′

/* Assign pixel values by row and column of output
images. */

15 foreach p
′

i ∈ P
′
do

16 Imagecount[p
′

i,row][p
′

i,column]←− p
′

i,count

17 Imagespeed−avg[p
′

i,row][p
′

i,column]←− p
′

i,speed−avg

18 Imagespeed−max[p
′

i,row][p
′

i,column]←− p
′

i,speed−max

19 end
20 end
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2.4 Summary of Methods

According to the spatial data processing and rasterization abilities of QGIS,
PostGIS and Python the process flow of the four methods was determined as in
the Figure 2.

The QGIS method creates a vector grid and transforms coordinates of GPS
points into the coordinate system of the required output raster image. After cre-
ation of the vector grid and coordinate transformation, these are joined spatially.
Finally, output of the spatial join is rasterized.

Fig. 2: Process flow of the methods; QGIS, PostGIS+QGIS and Python (Python
process flow is identical for both Python and Python (Parallel) methods).

The second method is called PostGIS+QGIS because this method benefits
from both PostGIS and QGIS. This method creates the vector grid with the use
of QGIS. Also, GPS trajectories are required to be imported into PostgreSQL
database which PostGIS is operating on. After import and grid creation, PostGIS
spatially joins both data. In this method, coordinate transformation is carried
out along with the spatial join. Finally, QGIS is used to rasterize the output of
the spatial join.

The algorithm for the Python method is explained in Algorithm 1. This algo-
rithm gets the GPS trajectory data directly using Python libraries and applies
the coordinate transformation. After the transformation, our method calculates
the output raster image matrix without the need of a vector grid and saves the
output raster to the disk.
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3 Setup of the Experiments

The methods defined in Section 2 are evaluated with the use of MTL-Trajet
dataset [10]. This dataset consists of GPS trajectories collected in 2016 around
Montreal, Canada. Raw data contains GPS point locations in the WGS84 Datum
and timestamps. Speed of the moving objects are calculated using time differ-
ence and geodesic distances of consecutive GPS points with Geopy package [9].
These values added as an attribute to the raw GPS trajectory data. Speed value
accuracy is dependent to projection and calculation method, but speed accuracy
is not the main focus of this study. Because of this, achieved speed values are
well enough for performance evaluation of the methods.

In the experiment, the target is to rasterize GPS point "frequency (count)",
"average speed" and "maximum speed" raster images using QGIS, PostGIS+QGIS,
Python and Python (Parallel) methods. In order to understand the dependen-
cies of performance, the experiment is carried out with varying test area size and
GPS point count. Figure 3 shows the test area boundaries and Table 1 summa-
rizes the corresponding GPS count that is used in the experiments. MTL-Trajet
GPS point coverage is wider than the defined test areas. The GPS points that
are outside of the test area are removed from main dataset to focus only on the
performance of methods for given area. Though our Python and Python (Par-
allel) implementations are able to ignore the GPS points which are out of given
area.

Fig. 3: MTL-Trajet dataset and test areas boundaries.

Table 1: GPS trajectory by test area that was used in the experiment.
Test Area Size (km2) Number of GPS points (million)

100 5
225 5, 10, 11
400 5, 10, 15
625 5, 10, 15, 18
900 5, 10, 15, 20
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As explained in Section 1, the aim is to obtain a one to one pixel match with a
given raster image. Usually the raster images that are widely used are provided in
projected coordinate systems. In order to add this constraint to the experimental
setup, unlike GPS trajectory data, test areas are created in projected WGS84
Datum using cartesian coordinates so that the pixel dimensions are defined in
meters. According to this, GPS point coordinates must be transformed into
projected WGS84 from geographic WGS84.

The aim of our research for the rasterization is to represent GPS points in
raster format to use in further analysis with additional satellite imagery. Because
of this, the expected output should be aligned to the satellite imagery pixel
resolution. Similar studies in literature use high resolution satellite images that
are having pixel resolution around 1-5 meters [15, 16, 20]. In order to align with
the literature examples the output raster image pixel size set as 5 meters.

Total processing time (tTotaltime) and spatial join time (tSpatialJoin) are pre-
ferred as the evaluation metric. Since the process flow of each method is different,
their total processing time is also varying.

Total processing time with QGIS method is calculated with

tTotalQGIS = tQGIS
Gridcreation + tQGIS

CoordinateTransform + tQGIS
SpatialJoin + tQGIS

Rasterize (1)

where tQGIS
Gridcreation grid creation time, tQGIS

CoordinateTransform coordinate trans-
formation time, tQGIS

SpatialJoin spatial join time, tQGIS
Rasterize rasterization time with

QGIS.
Total processing time with PostGIS+QGIS method is calculated with

tTotalPostGIS+QGIS = tQGIS
Gridcreation + tPG

SpatialJoin + tQGIS
Rasterize (2)

where tQGIS
Gridcreation grid creation time with QGIS, tPG

SpatialJoin spatial join with
PostGIS, tQGIS

Rasterize rasterization time with QGIS.
Total processing time with Python method is calculated with

tTotalPython = tPy
CoordinateTransform + tPy

SpatialJoin + tPy
Rasterize (3)

where tPy
CoordinateTransform coordinate transformation, tPy

SpatialJoin spatial join
and tPy

Rasterize rasterization using Python.
Experiments are carried out using a standard laptop which has an Intel Core

I7-4600M CPU with four 2.90GHz cores, 16GB RAM and Ubuntu/Linux oper-
ating system. The QGIS and PostgreSQL/PostGIS are used with their default
installation settings. Spatial indexes are used for GPS point and vector grid lay-
ers in PostGIS+QGIS method. In order to avoid delays caused by memory and
processor usage of another software, minimum required software was kept open
while running a method.
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4 Comparisons

Experiments are carried out with the methods defined in Section 2.4 and with the
setup defined in Section 3. Following the experiments, output raster images are
compared with the use of raster calculation. All output raster images subtracted
from remaining output images one by one for given test area. This comparison
aims to determine if the created raster images of each method is identical or
not. If compared raster images are identical, empty raster image expected as the
result of raster image subtraction. According to the comparison of the outputs
of each test area, the subtraction results were empty images which proves that
each method achieved the same raster images as output.

With the use of the output data from the experiments, comparison plots are
created. Figures 4 and Figures 5 show the performance comparison of methods
for each test area. Firstly, as seen in Figure 4a, Python (Parallel) and Python
methods achieve best performance in terms of total processing time and followed
by PostGIS+QGIS method within the 900 km2 test area. On the other hand,
PostGIS+QGIS achieves the best performance for spatial join time measure
(Figure 4b). QGIS method achieves very poor performance for each measure.
Because of this, QGIS method is excluded from plots in the Figures 5.

(a) (b)

Fig. 4: (a) comparison of total processing time and (b) comparison of spatial
join time for 900 km2 test area.

The results for both measures are very similar for the rest of the test areas
(Figure 5). It is also visible that the Python method without parallelization is
slower than PostGIS+QGIS method in small areas though performance increases
with respect to the PostGIS+QGIS method while the test area size increases
(Figure 5c, 5e, 5g). In the spatial join measure, PostGIS+QGIS achieved better
performance followed by the Python (Parallel) method. With the increase of
GPS point count, the difference between Python methods and PostGIS+QGIS
method also increases.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5: Comparison of total processing time and spatial join for each test area
(QGIS method’s results are excluded).
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There are two major reasons for the performance decrease of PostGIS+QGIS
method in total processing time. The first and most important reason is the re-
quirement of a vector grid. As summarized in Table 2, grid creation time is pro-
portional to the test area size and increases as the test area size increases. The
second reason is the importing time of the GPS trajectories to the database.
Unlike the QGIS method and Python methods, GPS trajectories required to
be imported to the database before starting the rest of the process for Post-
GIS+QGIS method. Figure 6 shows that this process is dependent on the GPS
point count and not dependent on test area size.

Table 2: Grid creation time for each test area.
Test Area Size (km2) Time (s)

100 78
225 164
400 299
625 466
900 706

Fig. 6: Time spent for GPS trajectory data to database import for Post-
GIS+QGIS method.

Lastly, method results are compared internally with the performance measure
by test area size when GPS count is kept constant in plots (Figure 7). As per this
comparison, total processing time of the QGIS method increases proportional to
the test area size (Figure 7d). Similar to QGIS method, PostGIS+QGIS method’s
total processing time also increases proportional to test area size though the
increase is steeper compared to the QGIS method. On the other hand, both
Python (Parallel) and Python methods show very few increases when test area
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size increases. Their performances are proportional to GPS point count. Python
(Parallel) method is faster than Python method.

In addition to the experiments defined in Section 3, an additional experi-
ment was also carried out to understand the limitations of these methods. This
experiment was carried out with test area size 22120 km2 and approximately
25 million GPS points around Montreal. Python and Python (Parallel) methods
have been able to process and rasterize this area in 40 and 52 minutes respec-
tively. On the other hand, QGIS and PostGIS+QGIS methods couldn’t process
this larger test area due to grid creation with the current hardware. Since grid
creation time is proportional to test area size for both methods, in the case of a
big test area, grid creation cannot be possible with the use of QGIS and at the
end QGIS crashes.

(a) (b)

(c) (d)

Fig. 7: GPS point count vs. test area size comparison of each method; (a) Python
(Parallel) (b) Python, (c) PostGIS+QGIS, (d) QGIS.

5 Conclusions

This study evaluates the methods for rasterization of GPS trajectories. Eval-
uation is carried out for QGIS, PostGIS+QGIS methods and our Python and
Python (Parallel) implementations. For evaluation, an experiment was carried
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out with varying test area and GPS trajectory size. Total processing time and
spatial join time were adopted as the evaluation metric.

According to the results, the Python (Parallel) method achieves the best
results among the compared methods. The Python method also showed bet-
ter results with respect to QGIS and PostGIS+QGIS methods. PostGIS+QGIS
method achieves the best result for spatial join. QGIS shows the worst perfor-
mance for both of the metrics.

Python and Python (Parallel) methods perform slower than PostGIS+QGIS
method for spatial join metric. This issue is a result of the time for indexing
operation that our implementation spent which is more than the spatial join
operations carried out by PostGIS. Indexing operation only dependent to GPS
point data size but PostGIS+ QGIS method performance is dependent both to
GPS data size and the test are size. Also, when compared to the spent time
for grid creation, this delay caused by indexing is negligible. Moreover, indexing
operation is more robust than grid creation. On the contrary grid creation con-
sumes too much memory and prone to crashes. Although the PostGIS+QGIS
method achieves the best spatial join performance, due to the disadvantage of
grid creation and import time required for GPS points, the total performance
decreased very fast while the test area size increased. Grid creation can be con-
sidered as one-time cost though it is still a disadvantage for the possible cases
of different work areas in different applications domains. Similar to the Post-
GIS+QGIS method, in addition to weak performance of the spatial join, QGIS
also performed worse while the test area size increases.

On the other hand, the Python methods’ performance is proportional to point
count of the GPS trajectories. This feature is proven with additional experiment
which has wider test area. As per results, Python methods can work in large ar-
eas though QGIS and PostGIS+QGIS methods fail to achieve this. Because the
performance is not dependent to test area size and being suitable to paralleliza-
tion, it is possible to increase performance of Python methods’ with distributing
computation into more processor cores and/or computation clusters.

As a conclusion, our implementation performs better than QGIS and Post-
GIS+QGIS methods and can be used for GPS trajectory rasterization. The use
of our implementation is not limited to GPS trajectory rasterization. It is also
possible to use our implementation in similar problems which require rasteriza-
tion and aggregation of big point-based datasets into structured grids such as
spatial social media data analysis. In addition, the integration of our implemen-
tation would increase its usage in other research domains which benefit from
QGIS but requiring better performance. It is possible to integrate our imple-
mentation scripts into QGIS since support Python programming language, but
further research needed to determine if libraries like Swifter are compatible with
QGIS Python environment.

Acknowledgement: This preprint has not undergone peer review (when ap-
plicable) or any post-submission improvements or corrections. The Version of
Record of this article is presented in Computational Science and Its Applica-
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is available online at https://doi.org/10.1007/978-3-030-86653-2_1.
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