Skip to main content

Toward a Security IoT Platform with High Rate Transmission and Low Energy Consumption

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Abstract

The Internet of Things currently is one of the most interesting technology trends. Devices in the IoT network towards mobility and compact in size, so these have a rather weak hardware configuration. One of the essential concern is energy consumption. There are many lightweights, tailor-made protocols for limited processing power and low energy consumption, of which MQTT is the typical protocol. A light and simple protocol like MQTT, however, has many problems such as security risks, reliability in transmission and reception. The current MQTT protocol supports three types of quality-of-service (QoS). The user has to trade-off between the security/privacy of the packet and the system-wide performance (e.g., transmission rate, transmission bandwidth, and energy consumption). In this paper, we present an IoT Platform Proposal to improve the security issues of the MQTT protocol and optimise the communication speed, power consumption, and transmission bandwidth, but this still responds to reliability when transmitting. We also present the effectiveness of our approach by building a prototype system. Besides, we compare our proposal with other related work as well as provide the complete code solution is publicized to engage further reproducibility and improvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://mqtt.org/.

  2. 2.

    https://github.com/thanhlam2110/mqtt-sso-kafka.

  3. 3.

    https://oauth.net/2/.

  4. 4.

    https://Kafka.apache.org/.

  5. 5.

    https://tools.ietf.org/html/rfc4122.

  6. 6.

    https://docs.mongodb.com/manual/reference/operator/aggregation/graphLookup/.

  7. 7.

    https://apereo.github.io/cas/6.3.x/index.html.

  8. 8.

    The project iot.eclipse.org (https://iot.eclipse.org/).

  9. 9.

    https://aws.amazon.com/ec2/pricing/.

  10. 10.

    Wireshark (https://www.wireshark.org/) is a network packet analyzer software (a network packet analyzer) capable of monitoring and monitoring packets in real-time.

  11. 11.

    Apache Jmeter https://jmeter.apache.org/.

References

  1. Alam, T.: A reliable communication framework and its use in internet of things (IoT). CSEIT1835111/Received 10, 450–456 (2018)

    Google Scholar 

  2. Chou, T.: Precision-Principles, Practices and Solutions for the Internet of Things. McGraw-Hill Education, New York (2017)

    Google Scholar 

  3. Karagiannis, V., et al.: A survey on application layer protocols for the internet of things. Trans. IoT Cloud Comput. 3(1), 11–17 (2015)

    Google Scholar 

  4. Niruntasukrat, A., et al.: Authorization mechanism for MQTT-based internet of things. In: 2016 IEEE International Conference on Communications Workshops (ICC), pp. 290–295. IEEE (2016)

    Google Scholar 

  5. Jaikar, S.P., Iyer, K.R.: A survey of messaging protocols for IOT systems. Int. J. Adv. Manag. Technol. Eng. Sci. 8(II), 510–514 (2018)

    Google Scholar 

  6. Çorak, B.H., et al.: Comparative analysis of IoT communication protocols. In: 2018 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE (2018)

    Google Scholar 

  7. Hillar, G.C.: MQTT Essentials-A Lightweight IoT Protocol. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  8. Martı, M., Garcia-Rubio, C., Campo, C.: Performance evaluation of CoAP and MQTT\(\_\)SN in an IoT environment. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 31, no. 1, p. 49 (2019)

    Google Scholar 

  9. Lee, S., et al.: Correlation analysis of MQTT loss and delay according to QoS level. In: The International Conference on Information Networking 2013 (ICOIN), pp. 714–717. IEEE (2013)

    Google Scholar 

  10. Toldinas, J., et al.: MQTT quality of service versus energy consumption. In: 2019 23rd International Conference Electronics, pp. 1–4. IEEE (2019)

    Google Scholar 

  11. Mendez Mena, D., Papapanagiotou, I., Yang, B.: Internet of things: survey on security. Inf. Secur. J. Glob. Perspect. 27(3), 162–182 (2018)

    Article  Google Scholar 

  12. Lundgren, L.: Light-Weight Protocol! Serious Equipment! Critical Implications! In: Defcon 24 (2016)

    Google Scholar 

  13. Anthraper, J.J., Kotak, J.: Security, privacy and forensic concern of MQTT protocol. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India (2019)

    Google Scholar 

  14. Zaidi, N., Kaushik, H., Bablani, D., Bansal, R., Kumar, P.: A study of exposure of IoT devices in India: using Shodan search engine. In: Bhateja, V., Nguyen, B.L., Nguyen, N.G., Satapathy, S.C., Le, D.-N. (eds.) Information Systems Design and Intelligent Applications. AISC, vol. 672, pp. 1044–1053. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7512-4_105

    Chapter  Google Scholar 

  15. Fremantle, P., et al.: Federated identity and access management for the internet of things. In: 2014 International Workshop on Secure Internet of Things, pp. 10–17. IEEE (2014)

    Google Scholar 

  16. Tawalbeh, L., et al.: IoT Privacy and security: challenges and solutions. Appl. Sci. 10(12), 4102 (2020)

    Article  Google Scholar 

  17. Subahi, A., Theodorakopoulos, G.: Detecting IoT user behavior and sensitive information in encrypted IoT-app traffic. Sensors 19(21), 4777 (2019)

    Article  Google Scholar 

  18. Radha, V., Reddy, D.H.: A survey on single sign-on techniques. Procedia Technol. 4, 134–139 (2012)

    Article  Google Scholar 

  19. Fremantle, P., Aziz, B.: Oauthing: privacy-enhancing federation for the internet of things. In: 2016 Cloudification of the Internet of Things (CIoT), pp. 1–6. IEEE (2016)

    Google Scholar 

  20. Nguyen, L., Thanh, T., et al.: Toward a unique IoT network via single sign-on protocol and message queue. In: International Conference on Computer Information Systems and Industrial Management (2021)

    Google Scholar 

  21. Rozik, A.S., Tolba, A.S., El-Dosuky, M.A.: Design and implementation of the sense Egypt platform for real-time analysis of IoT data streams. Adv. Internet Things 6(4), 65–91 (2016)

    Article  Google Scholar 

  22. Hugo, Å., et al.: Bridging MQTT and Kafka to support C-ITS: a feasibility study. In: 2020 21st IEEE International Conference on Mobile Data Management (MDM), pp. 371–376. IEEE (2020)

    Google Scholar 

  23. Roy, D.G., et al.: Application-aware end-to-end delay and message loss estimation in Internet of Things (IoT)-MQTT-SN protocols. Future Gener. Comput. Syst. 89, 300–316 (2018)

    Article  Google Scholar 

  24. Al-Ali, A.-R., et al.: A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 63(4), 426–434 (2017)

    Article  Google Scholar 

  25. Safaei, B., et al.: Reliability side-effects in Internet of Things application layer protocols. In: 2017 2nd International Conference on System Reliability and Safety (ICSRS), pp. 207–212. IEEE (2017)

    Google Scholar 

  26. Thanh, L.N.T., et al.: UIP2SOP: a unique IoT network applying single sign-on and message queue protocol. IJACSA 12(6) (2021)

    Google Scholar 

  27. Son, H.X., Chen, E.: Towards a fine-grained access control mechanism for privacy protection and policy conflict resolution. Int. J. Adv. Comput. Sci. Appl. 10(2), 507–516 (2019)

    Google Scholar 

  28. Duong-Trung, N., et al.: Smart care: integrating blockchain technology into the design of patient-centered healthcare systems. In: International Conference on Cryptography, Security and Privacy, pp. 105–109 (2020)

    Google Scholar 

  29. Duong-Trung, N., et al.: On components of a patient-centered healthcare system using smart contract. In: Proceedings of the International Conference on Cryptography, Security and Privacy, pp. 31–35 (2020)

    Google Scholar 

  30. Le, H.T., et al.: Introducing multi shippers mechanism for decentralized cash on delivery system. Money 10(6) (2019)

    Google Scholar 

  31. Le, N.T.T., et al.: Assuring non-fraudulent transactions in cash on delivery by introducing double smart contracts. IJACSA 10(5), 677–684 (2019)

    Article  Google Scholar 

  32. Hoang, N.M., Son, H.X.: A dynamic solution for finegrained policy conflict resolution. In: The International Conference on Cryptography, Security and Privacy, pp. 116–120 (2019)

    Google Scholar 

  33. Son, H.X., Hoang, N.M.: A novel attribute-based access control system for fine-grained privacy protection. In: The International Conference on Cryptography, Security and Privacy, pp. 76–80 (2019)

    Google Scholar 

  34. Xuan, S.H., et al.: Rew-XAC: an approach to rewriting request for elastic ABAC enforcement with dynamic policies In: International Conference on Advanced Computing and Applications, pp. 25–31. IEEE (2016)

    Google Scholar 

  35. Thi, Q.N.T., Dang, T.K., Van, H.L., Son, H.X.: Using JSON to specify privacy preserving-enabled attribute-based access control policies. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 561–570. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_44

    Chapter  Google Scholar 

  36. Son, H.X., Dang, T.K., Massacci, F.: REW-SMT: a new approach for rewriting XACML request with dynamic big data security policies. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 501–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_40

    Chapter  Google Scholar 

  37. Ha, X.S., et al.: DeM-COD: novel access-control-based cash on delivery mechanism for decentralized marketplace. In: International Conference on Trust, Security and Privacy in Computing and Communications, pp. 71–78. IEEE (2020)

    Google Scholar 

  38. Ha, X.S., Le, T.H., Phan, T.T., Nguyen, H.H.D., Vo, H.K., Duong-Trung, N.: Scrutinizing trust and transparency in cash on delivery systems. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds.) SpaCCS 2020. LNCS, vol. 12382, pp. 214–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68851-6_15

    Chapter  Google Scholar 

  39. Son, H.X., Le, T.H., Quynh, N.T.T., Huy, H.N.D., Duong-Trung, N., Luong, H.H.: Toward a blockchain-based technology in dealing with emergencies in patient-centered healthcare systems. In: Bouzefrane, S., Laurent, M., Boumerdassi, S., Renault, E. (eds.) MSPN 2020. LNCS, vol. 12605, pp. 44–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67550-9_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thanh, L.N.T. et al. (2021). Toward a Security IoT Platform with High Rate Transmission and Low Energy Consumption. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics