
On the approximation ratio of LZ-End to LZ77

Takumi Ideue1 Takuya Mieno2,3 Mitsuru Funakoshi2,3

Yuto Nakashima2 Shunsuke Inenaga2,4 Masayuki Takeda2

1 Department of Information Science and Technology,
Kyushu University, Fukuoka, Japan

ideue.takumi.274@s.kyushu-u.ac.jp
2 Department of Informatics, Kyushu University, Fukuoka, Japan
{takuya.mieno,mitsuru.funakoshi,yuto.nakashima,

inenaga,takeda}@inf.kyushu-u.ac.jp
3 Japan Society for the Promotion of Science, Tokyo, Japan

4 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

August 17, 2021

Abstract

A family of Lempel-Ziv factorizations is a well-studied string structure. The LZ-End
factorization is a member of the family that achieved faster extraction of any substrings (Kreft
& Navarro, TCS 2013). One of the interests for LZ-End factorizations is the possible difference
between the size of LZ-End and LZ77 factorizations. They also showed families of strings
where the approximation ratio of the number of LZ-End phrases to the number of LZ77 phrases
asymptotically approaches 2. However, the alphabet size of these strings is unbounded. In this
paper, we analyze the LZ-End factorization of the period-doubling sequence. We also show
that the approximation ratio for the period-doubling sequence asymptotically approaches 2
for the binary alphabet.

1 Introduction

The Lempel-Ziv 77 compression (LZ77) [33] is one of the most successful lossless compression
algorithms to date. On the practical side, LZ77 and its variants have been used as a core of
compression software such as zip, gzip, rar, and compressed formats such as PNG, JPEG, PDF.
In addition to these real world applications, compressed self-indexing structures based on LZ77
have been proposed [10, 11, 12, 24]. An LZ77-based compressed representation of a string allowing
for fast access, rank, and select queries also exists [2].

On the (more) theoretical side, the left-to-right greedy factorization in LZ77, a.k.a. the LZ77-
factorization, has widely been considered for decades. It parses a given input string w into a
sequence p1, . . . , pz of non-empty substrings such that p1 = w[1] and pi for i ≥ 2 is the shortest
prefix of pi · · · pz that does not occur in p1 · · · pi−1. This implies that the prefix pi[1..|pi|−1] occurs
in p1 · · · pi−1, and such an occurrence is called a source of pi

1.
Among many versions of LZ77 (c.f. [9, 13, 20, 21, 22, 29, 34]), this paper focuses on the LZ-End

compressor proposed by Kreft and Navarro [21]. It is also based on a greedy parsing q1, . . . , qz′ of
an input string, with a restriction that for each phrase qi there has to be a source which ends at
the right-end of a phrase in q1, . . . , qi−1. This constraint permits fast substring extraction without
expanding the whole input string. It is known that the LZ-End compression can be computed

1This version of LZ77 is often called non-overlapping LZ77 or LZ77 without self-references, since each phrase
pi never overlaps with any of its sources.

1

ar
X

iv
:2

10
6.

01
17

3v
2

 [
cs

.D
S]

 1
6

A
ug

 2
02

1

in linear time in the input string length [17], or in compressed space with slight slow-down on
compression time [16].

One can regard LZ-End as a mix of LZ77 and LZ78 [34], since in the LZ78 factorization the
source of each phrase has to begin and end at boundaries of previous phrases. Since LZ78 belongs
to the class of grammar compression [6], LZ-End can be seen as a new bridge between grammar
compression and LZ77.

Now, a natural question arises. How good is the compression performance of LZ-End? Practical
evaluation in the literature [21] has revealed that the compression ratio of LZ-End is quite close
to that of LZ77 (at most 20% worse), but very little is understood in theory. As in the literature,
we measure and compare the sizes of LZ-End and LZ77 by the numbers z′ and z of their phrases
in the factorizations, i.e., “z′ versus z”.

Since LZ77 is an optimal greedy unidirectional parsing, z′ ≥ z always holds. Thus we are
concerned with the approximation ratio of LZ-End to LZ77, which is defined by z′/z. Kreft and
Navarro [21] presented a simple family of strings for which z′/z is asymptotically 2 over an alphabet
of size n/3, where n is the length of the string. Kreft and Navarro [21] conjectured that the upper
bound for z′/z is also 2, but to our knowledge no non-trivial upper bound is known.

In this paper, we show that the same lower bound for z′/z can be obtained on a binary alphabet,
thus significantly reducing the number of distinct characters used in the analysis from n/3 to 2. In
particular, we prove that z′/z is asymptotically 2 for the period-doubling sequences, an interesting
family of recursive strings. While the LZ77-factorization of the period-doubling sequences has an
obvious structure (Proposition 10), the LZ-End factorization of the period-doubling sequences has
a non-trivial structure and needs careful analysis (see our extensive discussions in Section 4 for
detail).

Since the LZ77 factorization (without self-references) and the LZ-End factorization for the
unary string an are the same, our result uses a minimum possible number of distinct characters
to achieve such a lower bound for z′/z.

Related work. A famous variant of the LZ77 factorization, which is called the C-factorization [9]
and is denoted by w = c1 · · · cx, differs from the LZ77 in that each phrase ci is either a fresh
character or the longest prefix of ci · · · cx that occurs in c1 · · · ci−1. The size x of the C-factorization
is known to be a lower bound for the size of the smallest grammar which generates only the input
string [30]. A comparison of the LZ77 factorization and the C-factorization was also considered in
the literature [3, 26]. The structure of the C-factorization of the period-doubling sequences was
investigated in [3]. We emphasize that our analysis of the LZ-End factorization of the period-
doubling sequences is independent and is quite different from this existing work [3].

Relative LZ (RLZ) is a practical modification of LZ77 which efficiently compresses a collection
of highly repetitive sequences [22]. In [20] an RLZ-based factorization of a string, called the
ReLZ-factorization, was proposed. The approximation ratio of ReLZ to LZ77 was shown to be
Ω(log n) [20], where n denotes the length of the input string. On the other hand, in practice ReLZ
was larger than LZ77 by at most a factor of two in all the tested cases in [20].

2 Preliminaries

2.1 Strings

Let Σ be the binary alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. The empty string ε is the string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗ \ {ε}. For a string w = xyz, x, y and z are called a prefix, substring, and
suffix of w, respectively. They are called a proper prefix, a proper substring, and a proper suffix of
w if x 6= w, y 6= w, and z 6= w, respectively. Further, we say that w has an internal occurrence of y
if y occurs in w as a proper substring which is neither a prefix nor a suffix. The i-th character of a
string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let
w[i..j] denote the substring of w that begins at position i and ends at position j. For convenience,

2

let w[i..j] = ε when i > j. For any 1 ≤ i ≤ |w|, w[i..|w|] · w[1..i − 1] is called a cyclic rotation of
w. If a cyclic rotation of w is not equal to w, the cyclic rotation is said to be proper. For any
string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2, i.e., wk is the k-times repetition
of w. A string w is said to be primitive if w cannot be written as xk for any x ∈ Σ∗ and k ≥ 2.
Let c be the opposite character of c in a binary alphabet (e.g., a = b, b = a for alphabet {a, b}).
For any non-empty binary string w, ŵ denotes the string w[1..|w| − 1] ·w[|w|]. We sometimes use
b(x) and e(x) as the beginning position and the ending position of a substring x of a given string
w, if the occurrence of x in w is clear from a discussion.

2.2 Lempel-Ziv factorizations

We introduce the Lempel-Ziv 77 and LZ-End factorizations.

Definition 1 (LZ77 [33]2). The Lempel-Ziv 77 factorization (LZ77 factorization for short) of a
string w is the factorization LZ77(w) = p1, . . . , pz of w such that pi[1..|pi| − 1] is the longest prefix
of pi · · · pz which occurs in p1 · · · pi−1. As an exception, the last phrase pz can be a suffix of w
which occurs in p1 · · · pz−1.

Definition 2 (LZ-End [21]). The LZ-End factorization of a string w is the factorization LZend(w) =
q1, . . . , qz′ of w such that qi[1..|qi| − 1] is the longest prefix of qi · · · qz′ which occurs as a suffix of
q1 · · · qj for some j < i. As an exception, the last phrase qz′ can be a suffix of w which occurs as
a suffix of q1 · · · qj for some j < z′.

We refer to each pi and qi as an LZ phrase and LZ-End phrase, respectively. For each phrase,
associated longest substring is called a source of the phrase. z77(w) and zend(w) denote the number
of the LZ phrases and the LZ-End phrases of a string w, respectively. For each 1 ≤ i ≤ zend(w),
LZend(w)[i] denotes the i-th LZ-End phrase of LZend(w). Let LZend(w).last be the last LZ-End
phrase of a string w, i.e., LZend(w).last = LZend(w)[zend(w)]. Fig. 1 shows examples of two factor-
izations.

LZ77(w) = a b a a a b a b a b a a a b a a a b a a a b a b a b a a a b a b

LZend(w) = a b a a a b a b a b a a a b a a a b a a a b a b a b a a a b a b

Figure 1: The upper one shows the LZ77 factorization of w and the lower one shows the LZ-End
factorization of w, where w = abaaabababaaabaaabaaabababaaabab. This w is the fifth period-
doubling sequence S5 which will be defined later.

2.3 Period-doubling sequence

The period-doubling sequence (cf. [1]) is one of the prominent automatic sequences. Let Sk be the
k-th period-doubling sequence for any k ≥ 0. The following two definitions are equivalent:

Definition 3. S0 = a and Sk = φ(Sk−1) for k ≥ 1 where φ is the morphism such that φ(a) =
ab, φ(b) = aa.

Definition 4. S0 = a and Sk = Sk−1 · Ŝk−1 for k ≥ 1.

Let nk be the length of the k-th period-doubling sequence, i.e., nk = 2k.

2This definition of LZ77 is different from the original one [33] (see [21] for more information).

3

3 Properties on period-doubling sequence

The period-doubling sequences have many good combinatorial properties (see cf. [1]). In this
section, we introduce helpful properties for our results on the period-doubling sequences.

Lemma 5. For any k ≥ 0, Sk is primitive.

Proof. If Sk is not primitive, Sk has a period 2i for some i. This implies that Sk[nk/2] = Sk[nk],
which contradicts Definition 4.

Lemma 6 (Proposition 8.1.5 of [25]). If a string w is primitive, ww has no internal occurrence
of w.

Lemma 7. For any k ≥ 2, Sk = AkBkAkAk where Ak = Sk−2 and Bk = Âk. Moreover,
Ak = Ak−1Bk−1 and Bk = Ak−1Ak−1 for any k ≥ 3.

Proof. Straightforward from Definition 3.

Lemma 8. For any k ≥ 2, AkAk, AkBk, and BkAk have no internal occurrence of Ak. Hence
the number of occurrences of Ak in Sk = AkBkAkAk is 3.

Proof. If k = 2, the lemma clearly holds. We assume k ≥ 3. Since Ak = Sk−2, Ak is primitive.

By Lemma 6, AkAk has no internal occurrence of Ak. Since AkBk = ÂkAk, AkBk also has no
internal occurrence of Ak. Similarly, Ak−1Ak−1 and Ak−1Bk−1 have no internal occurrence of
Ak−1. Also, by Lemma 7, BkAk can be written as Ak−1Ak−1Ak−1Bk−1. These imply that BkAk

have no internal occurrence of Ak = Ak−1Bk−1.

Lemma 9. For any k ≥ 3 and any proper cyclic rotation α of Ak, the number of occurrences of
α in AkAkAk, AkBk, and BkAk are 2, 1, and 0, respectively.

Proof. Since Ak = Sk−2 and Lemma 5, Ak is primitive. This implies that α is also primitive. Thus,
AkAk has exactly one (internal) occurrences of α. Namely, α occurs in AkAkAk exactly two times.

Since AkBk = ÂkAk, AkBk also has exactly one (internal) occurrence of α. Finally, let us consider
BkAk = Ak−1Ak−1Ak−1Bk−1. In a similar way of the proof of Lemma 8, we can show that both
Ak−1Ak−1 and Ak−1Bk−1 have no internal occurrence of Bk−1. From this facts and Lemma 8,
Ak−1 occurs exactly three times and Bk−1 occurs exactly once in BkAk. If α = Bk−1Ak−1, α
cannot occur in BkAk. Otherwise, α can be written as either xBk−1y or x′Ak−1y

′ where x (resp. y)
is a non-empty suffix (resp. prefix) of Ak−1, and x′ (resp. y′) is a non-empty suffix (resp. prefix) of
Bk−1. If α = xBk−1y, α cannot occur in BkAk due to the constraint of Bk−1. If α = x′Ak−1y

′, α
cannot occur in BkAk due to the constraint of Ak−1 and the difference between the last characters
of Ak−1 and x′. Therefore α cannot occur in BkAk in all cases.

4 Factorizations of period-doubling sequence

By the definition of LZ77, the following proposition immediately holds:

Proposition 10. LZ77(Sk) = (S0, Ŝ0, Ŝ1, . . . , Ŝk−1) and thus z77(Sk) = k + 1.

In this section, we mainly discuss the LZ-End factorization of the period-doubling sequence,
and give the following result.

Theorem 11. zend(Sk) = 2k − f(k) where f(k) = O(log∗ k).

By Proposition 10 and Theorem 11, we can reach our goal of this paper:

Corollary 12. There exists a family of binary strings w such that the ratio zend(w)/z77(w) asymp-
totically approaches 2.

4

In the rest of this paper, we show Theorem 11. The next lemma gives the LZ-End factorization
of the period-doubling sequence. Notice that statement (I) in the lemma is not an immediate
property for the LZ-End factorization due to the next example. Let S = abaababaabbabbaababa.
Then,

LZend(S) = a|b|aa|ba|baab|bab|baabab|a,
LZend(Saba) = a|b|aa|ba|baab|bab|baababaaba.

Lemma 13. For any k ≥ 5, the following statements (I)-(IV) hold.

(I) LZend(Sk)[i] = LZend(Sk−1)[i] for every 1 ≤ i ≤ zend(Sk−1)− 1.

(II) zend(Sk) ≥ zend(Sk−1) + 1.

Let

wk = LZend(Sk)[zend(Sk−1)],

xk = LZend(Sk)[zend(Sk−1) + 1],

yk = Sk[e(xk) + 1..nk] (possibly empty).

(III) If wk 6= LZend(Sk−1).last,

|wk| =
1

8
nk + 1, |xk| =

3

8
nk, |yk| =

3

16
n`(k) − (k − `(k))− 1,

where `(k) = max{i | i ≤ k,wi = LZend(Si−1).last}.
Otherwise (if wk = LZend(Sk−1).last),

|wk| =
3

16
nk, |xk| =

5

16
nk + 1, |yk| =

3

16
nk − 1.

(IV) If |yk| ≥ 2, yk[1..|yk| − 1] has another occurrence to the left which ends with some LZ-End
phrase of Sk. Namely, yk is the last LZ-End phrase of Sk if yk is not empty.

Proof. In this proof, we use Z′k = LZend(Sk) and z′k = zend(Sk) for simplicity. We prove this
lemma by induction on k.

Suppose that k = 5. The LZ-End factorizations of S4, S5 are

Z′4 = a|b|aa|aba|bab|aaabaa,
Z′5 = a|b|aa|aba|bab|aaabaa|abaaabababa|aabab.

Statements (I) and (II) clearly hold. Then, w5 = aaabaa, x5 = abaaabababa, y5 = aabab. Hence,
statement (III) holds since n5 = 32 and w5 = Z′4.last (i.e., the latter case). Statement (IV) also
holds since y5[1..4] = aaba has an occurrence which ends with the fourth phrase aba.

Suppose that all the statements hold for any k ∈ [5, k′ − 1] for some k′ > 5. We show that all
the statements hold for k′. Firstly, suppose on the contrary that statement (I) does not hold for k′.
This implies that there exists a phrase T = Sk′ [b(Z′k−1[i])..j] for some i < z′k′−1 and j > nk′−1.
Since |xk′−1yk′−1| ≥ 3

8nk′−1 > 1
4nk′−1 and xk′−1yk′−1 is a substring of T , T has an internal

occurrence of the length- 14nk′−1 suffix Ak′−1 of Sk′−1. By Lemma 8 (showing the occurrences of
Ak−1 in Sk−1), Ak′−1 occurs exactly three times in Sk′ [1..nk′−1]. The first occurrence of Ak′−1
cannot be included by a source of T since Ak′−1 is not a prefix of T [1..|T | − 1]. In addition, the
second occurrence of Ak′−1 also cannot be included by a source of T since the source overlaps
phrase T . Thus, T [1..|T | − 1] cannot have another occurrence to the left as a source of T . This
contradicts that T is an LZ-End phrase of Sk′ at that position. Hence, statement (I) holds for
k′. Due to statement (I), wk′ must have yk′−1 as a prefix. On the other hand, wk′ cannot reach
the end of Sk′ . Hence, statement (II) also holds. Thanks to statements (I) and (II) for k′, three
substrings wk′ , xk′ , and yk′ are well-defined (see Fig. 2 and 5 for illustrations).

Next, we show statements (III) and (IV).

5

𝐴!! 𝐵!! 𝐴!! 𝐴!!

𝑆!!

𝑆!!"# 𝑦!!"#

𝑦!!𝑥!!𝑤!!

𝑛!!"#

𝑛!!

𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐴!!"# 𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐵!!"#

𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$

𝑤!!"# 𝑥!!"#

Figure 2: Illustration for the LZ-End factorization when wk′ 6= Z′k′−1.last.

𝐴!! 𝐵!! 𝐴!! 𝐴!!

𝑆!!

𝑆!!"# 𝑦!!"#

𝑊

𝑛!!"#

𝑛!!

𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐴!!"# 𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐵!!"#

𝑤"!#$ 𝑥!!"#

𝑊𝑊 𝑢 𝑢

Figure 3: Illustration for a part of the proof. W is a candidate of a source of phrase w′k.

• Assume that `(k′−1) = `(k′) (i.e., wk′ 6= Z′k′−1.last). We consider a phrase wk′ . If |yk′−1| =
0, xk′−1 is the suffix of length 3

8nk′−1 of Sk′−1, i.e., xk′−1 = Bk′−2Ak′−1. From Lemma 8,
xk′−1 does not have other occurrences to the left. This implies that wk′ = xk′−1. This
contradicts to wk′ 6= Z′k′−1.last. Thus, |yk′−1| > 0 holds. Namely, xk′−1 = Z′k′−1[z′k′−1− 1]
and yk′−1 = Z′k′−1.last (see also Fig. 2). Let W be the string of length 1

8nk′ which begins at
b(Z′k′−1.last). `(k

′−1) = `(k′) also implies that `(k′−1) < k′. Hence, |yk′−1| < 3
16n`(k′−1) ≤

3
32nk′ <

1
8nk′ . This fact means that W is a proper cyclic rotation of Ak′−1. By Lemma 9, W

occurs twice to the left (one is in Ak′−1Bk′−1, the other is in Ak′−1Ak′−1). Since the second
occurrence ends with phrase Z′k′ [z

′
k′−1 − 1], WcW is a candidate of phrase wk′ where cW is

the character preceded by W . Assume on the contrary that a source of phrase wk′ is Wu for
some u ∈ Σ+ (see Fig. 3). The second occurrence of W cannot be the beginning position of
a source of wk′ since Wu overlaps wk′ . Hence, the only candidate of the beginning position
of source Wu is in the first Ak′−1Bk′−1. Moreover, Wu cannot contain Bk′−1 since the
original Wu occurs in Ak′−1Ak′−1 · · · . Thus, Wu is a proper substring of Ak′−1Ak′−1 and
Ak′−1Bk′−1. In other words, u′Wu is a proper prefix of Ak′−1Ak′−1 and Ak′−1Bk′−1 for
some u′. Since xk′−1 is a proper substring of Ak′−1Ak′−1, xk′−1 also occurs in u′Wu. Hence,
this contradicts that phrase xk′−1 ends with W (i.e., xk′−1 has to be a longer phrase.), and
then, wk′ = WcW . Next, we consider a phrase xk′ . By the definition of the period-doubling
sequence, there exists a clear candidate X of a source which ends at e(xk′−1) (see Fig. 4).
Then, an equation |yk′−1| + 1

2nk′ = |wk′ | + |X| + |yk′−1| stands w.r.t. the length of suffix
Sk′ [b(yk′−1)..nk′]. Thus, |X| = 3

8nk′ − 1 holds since |wk′ | = 1
8nk′ + 1. This implies that X

has Bk′−1Ak′−1 as a substring. There does not exist a longer candidate since Bk′−1Ak′−1

6

𝑆!!

𝑆!!"# 𝑦!!"#

𝑐"𝑤!!

𝑤!!"# 𝑥!!"#

𝑋𝑋

|𝑦!!"#|
1
2
𝑛!!

Figure 4: Illustration for a part of the proof. X is a candidate of a source of phrase x′k.

𝐴!! 𝐵!! 𝐴!! 𝐴!!

𝑆!!

𝑆!!"#

𝑦!!𝑥!!𝑤!!

𝑛!!"#

𝑛!!

𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐴!!"# 𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐵!!"#

𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$

𝑤!!"# 𝑥!!"#

Figure 5: Illustration for the LZ-End factorization when wk′ = Z′k′−1.last.

has only one occurrence to the left. Hence, xk′ = XcX where cX is the character preceded
by X. Finally, we consider the suffix yk′ of Sk′ . If |yk′ | ≥ 2, from the above discussion,
yk′−1[2..|yk′−1| − 1] = yk′ [1..|yk′ | − 1] holds. Since yk′−1[2..|yk′−1| − 1] has an occurrence
to the left which ends with some phrase (∵ statement (IV) for k′ − 1), yk′ [1..|yk′ | − 1] too.
Therefore, statements (III) and (IV) also hold.

• Assume that `(k′ − 1) 6= `(k′) (i.e., wk′ = Z′k′−1.last). We can show that all the statements
also hold for this case in a similar way. If we assume |yk′−1| > 0, then |wk′ | > |yk′−1| holds
by the above discussions. This contradicts that wk′ = Z′k′−1.last, and hence, |yk′−1| = 0
and wk′ = xk′−1 hold (see Fig. 5). Hence, |wk′ | = |xk′−1| = 3

8nk′−1 = 3
16nk′ . We consider a

phrase xk′ that begins at position 1
2nk′+1. Let X ′ = Sk′ [1..e(wk′−1)] be a clear candidate of

a source of xk′ . Since |X ′| = 1
2nk′ −

3
16nk′ = 5

16nk′ , X
′ has A′k as a prefix. From Lemma 8,

X ′ is the only candidate of a source, and thus xk′ = X ′cX′ where cX′ = Sk′ [
13
16nk′ + 1] is

the character preceded by X ′. Moreover, the length of yk′ is 1
2nk′ − (5

16nk′ + 1) = 3
16nk′ − 1.

Since |yk′ | = |wk′ |−1 and phrase wk′ is a suffix of Sk′−1, a source of wk′ can be also a source
of yk′ . Namely, yk′ is the last phrase. Thus, all the statements also hold for this case.

Therefore, this lemma holds.

We have just finished showing the form of the LZ-End factorization of Sk. Now, we will analyze
the number of phrases of the factorization. Let K be the sequence of integers k which satisfies
`(k) = k. Let k∗m denotes the m-th smallest integer in K. Each k∗m can be represented by the
following recurrence formula:

Lemma 14.

k∗1 = 5 and k∗m = k∗m−1 +
3

16
· 2k

∗
m−1 for m ≥ 2.

Proof. Let m be an integer greater than one. By the discussion of the proof for the previous
lemma, |yi−1| − 1 = |yi| holds for any integer i ∈ [k∗m−1 + 1, k∗m − 1]. In addition, |yk∗m−1| = 0.

7

Hence,

k∗m = k∗m−1 + |yk∗m−1
|+ 1 = k∗m−1 +

3

16
nk∗m−1

= k∗m−1 +
3

16
· 2k

∗
m−1 .

Lemma 15. For any k ≥ 5,
zend(Sk) = 2k − f(k),

where f(k) is a function such that f(k) = m+ 1 if k ∈ [k∗m − 1, k∗m+1 − 2].

Proof. By Lemma 13, if |yk| = 0 (i.e., k+ 1 ∈ K), then zend(Sk) = zend(Sk−1) + 1 holds, otherwise,
zend(Sk) = zend(Sk−1) + 2 holds. Hence, for any k ∈ [k∗m − 1, k∗m+1 − 2],

zend(Sk) = zend(S5) + 2(k − 5)− (m− 1) = 2k − (m+ 1) = 2k − f(k).

Lemma 16. f(k) = O(log∗ k).

Proof. By Lemma 14,

k∗m = O(2k
∗
m−1) ⊆ O

22
. .

.
2
k∗1

 .

Thus, m = O(log∗ k) holds. This implies that f(k) = O(log∗ k) by Lemma 15.

By Lemmas 15 and 16, Theorem 11 holds.

5 Conclusions and further work

Let z′ and z be the number of phrases in the LZ-End and LZ77 factorizations in a string. In this
paper, we proved that the approximation ratio z′/z of LZ-End to LZ77 is asymptotically 2 for the
period-doubling sequences. This significantly reduces the number of distinct characters needed to
achieve such a lower bound from n/3 (in the existing work [21]) to 2 (in this work). We believe
that our work initiates analysis of theoretical performance of LZ-End compression.

A lot of interesting further work remains for LZ-End, including the following:

• Is our lower bound for the approximation ratio tight? Kreft and Navarro [21] conjectured
that z′/z ≤ 2 holds for any string. We performed some exhaustive experiments on binary
strings and the result supports their conjecture.

• Is the size z′ of the LZ-End factorization a lower bound for the size g of the smallest grammar
generating the input string? It is known that the size of the C-factorization [9], a variant
of LZ77, is a lower bound of g [30, 6]. In particular case of the period-doubling sequences,
there exists the following small SLP (i.e., grammar in the Chomsky normal form) generating
the k-th period-doubling sequence: Sk = Sk−1Tk, Tk = Sk−2Sk−2, . . . , S1 = ab, S0 = a.
Following [30], the size of an SLP is evaluated by the number of productions and thus the
above grammar is of size 2k + 1. It is quite close to the size of the LZ-End factorization
which is 2k −O(log∗ k) but is slightly larger.

• Interesting relationships between the size of the C-factorization and other string repetitive
measures such as the size r of the run-length BWT [5], the size s of the smallest run-length
SLP [28], the size ` of the Lyndon factorization [7], the size b of the smallest bidirectional
scheme [31], the size γ of the smallest string attractor [18], the substring complexity δ [8],
have been considered in the literature [4, 14, 15, 19, 23, 27, 32]. Can we extend these results
to the LZ-End?

8

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP20J11983 (TM), JP20J21147
(MF), JP18K18002 (YN), JP21K17705 (YN), JP18H04098 (MT), JP20H05964 (MT), and by
JST PRESTO Grant Number JPMJPR1922 (SI).

9

References

[1] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations.
Cambridge University Press, 2003.

[2] D. Belazzougui, T. Gagie, P. Gawrychowski, J. Kärkkäinen, A. O. Pereira, S. J. Puglisi,
and Y. Tabei. Queries on LZ-bounded encodings. In A. Bilgin, M. W. Marcellin, J. Serra-
Sagristà, and J. A. Storer, editors, 2015 Data Compression Conference, DCC 2015, Snowbird,
UT, USA, April 7-9, 2015, pages 83–92. IEEE, 2015.

[3] J. Berstel and A. Savelli. Crochemore factorization of Sturmian and other infinite words. In
R. Kralovic and P. Urzyczyn, editors, Mathematical Foundations of Computer Science 2006,
31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September
1, 2006, Proceedings, volume 4162 of Lecture Notes in Computer Science, pages 157–166.
Springer, 2006.

[4] P. Bille, T. Gagie, I. L. Gørtz, and N. Prezza. A separation between RLSLPs and LZ77. J.
Discrete Algorithms, 50:36–39, 2018.

[5] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, DIGITAL SRC RESEARCH REPORT, 1994.

[6] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.

[7] K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus, IV. the quotient groups
of the lower central series. Annals of Mathematics, 68(1):81–95, 1958.

[8] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro, and N. Prezza. Optimal-time
dictionary-compressed indexes. ACM Trans. Algorithms, 17(1):8:1–8:39, 2021.

[9] M. Crochemore. An optimal algorithm for computing the repetitions in a word. Information
Processing Letters, 12(5):244 – 250, 1981.

[10] H. H. Do, J. Jansson, K. Sadakane, and W. Sung. Fast relative Lempel-Ziv self-index for
similar sequences. Theor. Comput. Sci., 532:14–30, 2014.

[11] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. A faster grammar-
based self-index. In A. Dediu and C. Mart́ın-Vide, editors, Language and Automata Theory
and Applications - 6th International Conference, LATA 2012, A Coruña, Spain, March 5-
9, 2012. Proceedings, volume 7183 of Lecture Notes in Computer Science, pages 240–251.
Springer, 2012.

[12] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. LZ77-based self-
indexing with faster pattern matching. In A. Pardo and A. Viola, editors, LATIN 2014:
Theoretical Informatics - 11th Latin American Symposium, Montevideo, Uruguay, March 31
- April 4, 2014. Proceedings, volume 8392 of Lecture Notes in Computer Science, pages 731–
742. Springer, 2014.

[13] K. Goto, H. Bannai, S. Inenaga, and M. Takeda. LZD factorization: Simple and practical
online grammar compression with variable-to-fixed encoding. In F. Cicalese, E. Porat, and
U. Vaccaro, editors, Combinatorial Pattern Matching - 26th Annual Symposium, CPM 2015,
Ischia Island, Italy, June 29 - July 1, 2015, Proceedings, volume 9133 of Lecture Notes in
Computer Science, pages 219–230. Springer, 2015.

[14] J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A. M. Shur. On the size of
Lempel-Ziv and Lyndon factorizations. In H. Vollmer and B. Vallée, editors, 34th Symposium
on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover,
Germany, volume 66 of LIPIcs, pages 45:1–45:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

10

[15] D. Kempa and T. Kociumaka. Resolution of the Burrows-Wheeler transform conjecture. In
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 1002–1013. IEEE, 2020.

[16] D. Kempa and D. Kosolobov. LZ-End parsing in compressed space. In A. Bilgin, M. W.
Marcellin, J. Serra-Sagristà, and J. A. Storer, editors, 2017 Data Compression Conference,
DCC 2017, Snowbird, UT, USA, April 4-7, 2017, pages 350–359. IEEE, 2017.

[17] D. Kempa and D. Kosolobov. LZ-End parsing in linear time. In K. Pruhs and C. Sohler,
editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017,
Vienna, Austria, volume 87 of LIPIcs, pages 53:1–53:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

[18] D. Kempa and N. Prezza. At the roots of dictionary compression: string attractors. In
I. Diakonikolas, D. Kempe, and M. Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 827–840. ACM, 2018.

[19] T. Kociumaka, G. Navarro, and N. Prezza. Towards a definitive measure of repetitiveness.
In Y. Kohayakawa and F. K. Miyazawa, editors, LATIN 2020: Theoretical Informatics -
14th Latin American Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings, volume
12118 of Lecture Notes in Computer Science, pages 207–219. Springer, 2020.

[20] D. Kosolobov, D. Valenzuela, G. Navarro, and S. J. Puglisi. Lempel-Ziv-like parsing in small
space. Algorithmica, 82(11):3195–3215, 2020.

[21] S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. Theor. Comput.
Sci., 483:115–133, 2013.

[22] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv compression of genomes for
large-scale storage and retrieval. In E. Chávez and S. Lonardi, editors, String Processing
and Information Retrieval - 17th International Symposium, SPIRE 2010, Los Cabos, Mexico,
October 11-13, 2010. Proceedings, volume 6393 of Lecture Notes in Computer Science, pages
201–206. Springer, 2010.

[23] K. Kutsukake, T. Matsumoto, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. On
repetitiveness measures of Thue-Morse words. In C. Boucher and S. V. Thankachan, editors,
String Processing and Information Retrieval - 27th International Symposium, SPIRE 2020,
Orlando, FL, USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture Notes in
Computer Science, pages 213–220. Springer, 2020.

[24] J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for
string matching (extended abstract). In Proc. 3rd South American Workshop on String Pro-
cessing (WSP’96, pages 141–155. Carleton University Press, 1996.

[25] M. Lothaire. Applied combinatorics on words, volume 105. Cambridge University Press, 2005.

[26] S. Mitsuya, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Compressed communica-
tion complexity of Hamming distance. Algorithms, 14(4):116, 2021.

[27] G. Navarro, C. Ochoa, and N. Prezza. On the approximation ratio of ordered parsings. IEEE
Trans. Inf. Theory, 67(2):1008–1026, 2021.

[28] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index and LZ factoriza-
tion in compressed space. Discret. Appl. Math., 274:116–129, 2020.

[29] T. Nishimoto and Y. Tabei. LZRR: LZ77 parsing with right reference. In A. Bilgin, M. W.
Marcellin, J. Serra-Sagristà, and J. A. Storer, editors, Data Compression Conference, DCC
2019, Snowbird, UT, USA, March 26-29, 2019, pages 211–220. IEEE, 2019.

11

[30] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

[31] J. A. Storer and T. G. Szymanski. Data compression via textual substitution. J. ACM,
29(4):928–951, 1982.

[32] Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. On the size of overlapping
Lempel-Ziv and Lyndon factorizations. In N. Pisanti and S. P. Pissis, editors, 30th Annual
Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy,
volume 128 of LIPIcs, pages 29:1–29:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[33] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory, 23(3):337–343, 1977.

[34] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inf. Theory, 24(5):530–536, 1978.

12

	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Lempel-Ziv factorizations
	2.3 Period-doubling sequence

	3 Properties on period-doubling sequence
	4 Factorizations of period-doubling sequence
	5 Conclusions and further work

