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Abstract

A family of Lempel-Ziv factorizations is a well-studied string structure. The LZ-End
factorization is a member of the family that achieved faster extraction of any substrings (Kreft
& Navarro, TCS 2013). One of the interests for LZ-End factorizations is the possible difference
between the size of LZ-End and LZ77 factorizations. They also showed families of strings
where the approximation ratio of the number of LZ-End phrases to the number of LZ77 phrases
asymptotically approaches 2. However, the alphabet size of these strings is unbounded. In this
paper, we analyze the LZ-End factorization of the period-doubling sequence. We also show
that the approximation ratio for the period-doubling sequence asymptotically approaches 2
for the binary alphabet.

1 Introduction

The Lempel-Ziv 77 compression (LZ77 ) [33] is one of the most successful lossless compression
algorithms to date. On the practical side, LZ77 and its variants have been used as a core of
compression software such as zip, gzip, rar, and compressed formats such as PNG, JPEG, PDF.
In addition to these real world applications, compressed self-indexing structures based on LZ77
have been proposed [10, 11, 12, 24]. An LZ77-based compressed representation of a string allowing
for fast access, rank, and select queries also exists [2].

On the (more) theoretical side, the left-to-right greedy factorization in LZ77, a.k.a. the LZ77-
factorization, has widely been considered for decades. It parses a given input string w into a
sequence p1, . . . , pz of non-empty substrings such that p1 = w[1] and pi for i ≥ 2 is the shortest
prefix of pi · · · pz that does not occur in p1 · · · pi−1. This implies that the prefix pi[1..|pi|−1] occurs
in p1 · · · pi−1, and such an occurrence is called a source of pi

1.
Among many versions of LZ77 (c.f. [9, 13, 20, 21, 22, 29, 34]), this paper focuses on the LZ-End

compressor proposed by Kreft and Navarro [21]. It is also based on a greedy parsing q1, . . . , qz′ of
an input string, with a restriction that for each phrase qi there has to be a source which ends at
the right-end of a phrase in q1, . . . , qi−1. This constraint permits fast substring extraction without
expanding the whole input string. It is known that the LZ-End compression can be computed

1This version of LZ77 is often called non-overlapping LZ77 or LZ77 without self-references, since each phrase
pi never overlaps with any of its sources.
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in linear time in the input string length [17], or in compressed space with slight slow-down on
compression time [16].

One can regard LZ-End as a mix of LZ77 and LZ78 [34], since in the LZ78 factorization the
source of each phrase has to begin and end at boundaries of previous phrases. Since LZ78 belongs
to the class of grammar compression [6], LZ-End can be seen as a new bridge between grammar
compression and LZ77.

Now, a natural question arises. How good is the compression performance of LZ-End? Practical
evaluation in the literature [21] has revealed that the compression ratio of LZ-End is quite close
to that of LZ77 (at most 20% worse), but very little is understood in theory. As in the literature,
we measure and compare the sizes of LZ-End and LZ77 by the numbers z′ and z of their phrases
in the factorizations, i.e., “z′ versus z”.

Since LZ77 is an optimal greedy unidirectional parsing, z′ ≥ z always holds. Thus we are
concerned with the approximation ratio of LZ-End to LZ77, which is defined by z′/z. Kreft and
Navarro [21] presented a simple family of strings for which z′/z is asymptotically 2 over an alphabet
of size n/3, where n is the length of the string. Kreft and Navarro [21] conjectured that the upper
bound for z′/z is also 2, but to our knowledge no non-trivial upper bound is known.

In this paper, we show that the same lower bound for z′/z can be obtained on a binary alphabet,
thus significantly reducing the number of distinct characters used in the analysis from n/3 to 2. In
particular, we prove that z′/z is asymptotically 2 for the period-doubling sequences, an interesting
family of recursive strings. While the LZ77-factorization of the period-doubling sequences has an
obvious structure (Proposition 10), the LZ-End factorization of the period-doubling sequences has
a non-trivial structure and needs careful analysis (see our extensive discussions in Section 4 for
detail).

Since the LZ77 factorization (without self-references) and the LZ-End factorization for the
unary string an are the same, our result uses a minimum possible number of distinct characters
to achieve such a lower bound for z′/z.

Related work. A famous variant of the LZ77 factorization, which is called the C-factorization [9]
and is denoted by w = c1 · · · cx, differs from the LZ77 in that each phrase ci is either a fresh
character or the longest prefix of ci · · · cx that occurs in c1 · · · ci−1. The size x of the C-factorization
is known to be a lower bound for the size of the smallest grammar which generates only the input
string [30]. A comparison of the LZ77 factorization and the C-factorization was also considered in
the literature [3, 26]. The structure of the C-factorization of the period-doubling sequences was
investigated in [3]. We emphasize that our analysis of the LZ-End factorization of the period-
doubling sequences is independent and is quite different from this existing work [3].

Relative LZ (RLZ ) is a practical modification of LZ77 which efficiently compresses a collection
of highly repetitive sequences [22]. In [20] an RLZ-based factorization of a string, called the
ReLZ-factorization, was proposed. The approximation ratio of ReLZ to LZ77 was shown to be
Ω(log n) [20], where n denotes the length of the input string. On the other hand, in practice ReLZ
was larger than LZ77 by at most a factor of two in all the tested cases in [20].

2 Preliminaries

2.1 Strings

Let Σ be the binary alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. The empty string ε is the string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗ \ {ε}. For a string w = xyz, x, y and z are called a prefix, substring, and
suffix of w, respectively. They are called a proper prefix, a proper substring, and a proper suffix of
w if x 6= w, y 6= w, and z 6= w, respectively. Further, we say that w has an internal occurrence of y
if y occurs in w as a proper substring which is neither a prefix nor a suffix. The i-th character of a
string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let
w[i..j] denote the substring of w that begins at position i and ends at position j. For convenience,
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let w[i..j] = ε when i > j. For any 1 ≤ i ≤ |w|, w[i..|w|] · w[1..i − 1] is called a cyclic rotation of
w. If a cyclic rotation of w is not equal to w, the cyclic rotation is said to be proper. For any
string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2, i.e., wk is the k-times repetition
of w. A string w is said to be primitive if w cannot be written as xk for any x ∈ Σ∗ and k ≥ 2.
Let c be the opposite character of c in a binary alphabet (e.g., a = b, b = a for alphabet {a, b}).
For any non-empty binary string w, ŵ denotes the string w[1..|w| − 1] ·w[|w|]. We sometimes use
b(x) and e(x) as the beginning position and the ending position of a substring x of a given string
w, if the occurrence of x in w is clear from a discussion.

2.2 Lempel-Ziv factorizations

We introduce the Lempel-Ziv 77 and LZ-End factorizations.

Definition 1 (LZ77 [33]2). The Lempel-Ziv 77 factorization (LZ77 factorization for short) of a
string w is the factorization LZ77(w) = p1, . . . , pz of w such that pi[1..|pi| − 1] is the longest prefix
of pi · · · pz which occurs in p1 · · · pi−1. As an exception, the last phrase pz can be a suffix of w
which occurs in p1 · · · pz−1.

Definition 2 (LZ-End [21]). The LZ-End factorization of a string w is the factorization LZend(w) =
q1, . . . , qz′ of w such that qi[1..|qi| − 1] is the longest prefix of qi · · · qz′ which occurs as a suffix of
q1 · · · qj for some j < i. As an exception, the last phrase qz′ can be a suffix of w which occurs as
a suffix of q1 · · · qj for some j < z′.

We refer to each pi and qi as an LZ phrase and LZ-End phrase, respectively. For each phrase,
associated longest substring is called a source of the phrase. z77(w) and zend(w) denote the number
of the LZ phrases and the LZ-End phrases of a string w, respectively. For each 1 ≤ i ≤ zend(w),
LZend(w)[i] denotes the i-th LZ-End phrase of LZend(w). Let LZend(w).last be the last LZ-End
phrase of a string w, i.e., LZend(w).last = LZend(w)[zend(w)]. Fig. 1 shows examples of two factor-
izations.

LZ77(w) = a b a a a b a b a b a a a b a a a b a a a b a b a b a a a b a b

LZend(w) = a b a a a b a b a b a a a b a a a b a a a b a b a b a a a b a b

Figure 1: The upper one shows the LZ77 factorization of w and the lower one shows the LZ-End
factorization of w, where w = abaaabababaaabaaabaaabababaaabab. This w is the fifth period-
doubling sequence S5 which will be defined later.

2.3 Period-doubling sequence

The period-doubling sequence (cf. [1]) is one of the prominent automatic sequences. Let Sk be the
k-th period-doubling sequence for any k ≥ 0. The following two definitions are equivalent:

Definition 3. S0 = a and Sk = φ(Sk−1) for k ≥ 1 where φ is the morphism such that φ(a) =
ab, φ(b) = aa.

Definition 4. S0 = a and Sk = Sk−1 · Ŝk−1 for k ≥ 1.

Let nk be the length of the k-th period-doubling sequence, i.e., nk = 2k.

2This definition of LZ77 is different from the original one [33] (see [21] for more information).
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3 Properties on period-doubling sequence

The period-doubling sequences have many good combinatorial properties (see cf. [1]). In this
section, we introduce helpful properties for our results on the period-doubling sequences.

Lemma 5. For any k ≥ 0, Sk is primitive.

Proof. If Sk is not primitive, Sk has a period 2i for some i. This implies that Sk[nk/2] = Sk[nk],
which contradicts Definition 4.

Lemma 6 (Proposition 8.1.5 of [25]). If a string w is primitive, ww has no internal occurrence
of w.

Lemma 7. For any k ≥ 2, Sk = AkBkAkAk where Ak = Sk−2 and Bk = Âk. Moreover,
Ak = Ak−1Bk−1 and Bk = Ak−1Ak−1 for any k ≥ 3.

Proof. Straightforward from Definition 3.

Lemma 8. For any k ≥ 2, AkAk, AkBk, and BkAk have no internal occurrence of Ak. Hence
the number of occurrences of Ak in Sk = AkBkAkAk is 3.

Proof. If k = 2, the lemma clearly holds. We assume k ≥ 3. Since Ak = Sk−2, Ak is primitive.

By Lemma 6, AkAk has no internal occurrence of Ak. Since AkBk = ÂkAk, AkBk also has no
internal occurrence of Ak. Similarly, Ak−1Ak−1 and Ak−1Bk−1 have no internal occurrence of
Ak−1. Also, by Lemma 7, BkAk can be written as Ak−1Ak−1Ak−1Bk−1. These imply that BkAk

have no internal occurrence of Ak = Ak−1Bk−1.

Lemma 9. For any k ≥ 3 and any proper cyclic rotation α of Ak, the number of occurrences of
α in AkAkAk, AkBk, and BkAk are 2, 1, and 0, respectively.

Proof. Since Ak = Sk−2 and Lemma 5, Ak is primitive. This implies that α is also primitive. Thus,
AkAk has exactly one (internal) occurrences of α. Namely, α occurs in AkAkAk exactly two times.

Since AkBk = ÂkAk, AkBk also has exactly one (internal) occurrence of α. Finally, let us consider
BkAk = Ak−1Ak−1Ak−1Bk−1. In a similar way of the proof of Lemma 8, we can show that both
Ak−1Ak−1 and Ak−1Bk−1 have no internal occurrence of Bk−1. From this facts and Lemma 8,
Ak−1 occurs exactly three times and Bk−1 occurs exactly once in BkAk. If α = Bk−1Ak−1, α
cannot occur in BkAk. Otherwise, α can be written as either xBk−1y or x′Ak−1y

′ where x (resp. y)
is a non-empty suffix (resp. prefix) of Ak−1, and x′ (resp. y′) is a non-empty suffix (resp. prefix) of
Bk−1. If α = xBk−1y, α cannot occur in BkAk due to the constraint of Bk−1. If α = x′Ak−1y

′, α
cannot occur in BkAk due to the constraint of Ak−1 and the difference between the last characters
of Ak−1 and x′. Therefore α cannot occur in BkAk in all cases.

4 Factorizations of period-doubling sequence

By the definition of LZ77, the following proposition immediately holds:

Proposition 10. LZ77(Sk) = (S0, Ŝ0, Ŝ1, . . . , Ŝk−1) and thus z77(Sk) = k + 1.

In this section, we mainly discuss the LZ-End factorization of the period-doubling sequence,
and give the following result.

Theorem 11. zend(Sk) = 2k − f(k) where f(k) = O(log∗ k).

By Proposition 10 and Theorem 11, we can reach our goal of this paper:

Corollary 12. There exists a family of binary strings w such that the ratio zend(w)/z77(w) asymp-
totically approaches 2.
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In the rest of this paper, we show Theorem 11. The next lemma gives the LZ-End factorization
of the period-doubling sequence. Notice that statement (I) in the lemma is not an immediate
property for the LZ-End factorization due to the next example. Let S = abaababaabbabbaababa.
Then,

LZend(S) = a|b|aa|ba|baab|bab|baabab|a,
LZend(Saba) = a|b|aa|ba|baab|bab|baababaaba.

Lemma 13. For any k ≥ 5, the following statements (I)-(IV) hold.

(I) LZend(Sk)[i] = LZend(Sk−1)[i] for every 1 ≤ i ≤ zend(Sk−1)− 1.

(II) zend(Sk) ≥ zend(Sk−1) + 1.

Let

wk = LZend(Sk)[zend(Sk−1)],

xk = LZend(Sk)[zend(Sk−1) + 1],

yk = Sk[e(xk) + 1..nk] (possibly empty).

(III) If wk 6= LZend(Sk−1).last,

|wk| =
1

8
nk + 1, |xk| =

3

8
nk, |yk| =

3

16
n`(k) − (k − `(k))− 1,

where `(k) = max{i | i ≤ k,wi = LZend(Si−1).last}.
Otherwise (if wk = LZend(Sk−1).last),

|wk| =
3

16
nk, |xk| =

5

16
nk + 1, |yk| =

3

16
nk − 1.

(IV) If |yk| ≥ 2, yk[1..|yk| − 1] has another occurrence to the left which ends with some LZ-End
phrase of Sk. Namely, yk is the last LZ-End phrase of Sk if yk is not empty.

Proof. In this proof, we use Z′k = LZend(Sk) and z′k = zend(Sk) for simplicity. We prove this
lemma by induction on k.

Suppose that k = 5. The LZ-End factorizations of S4, S5 are

Z′4 = a|b|aa|aba|bab|aaabaa,
Z′5 = a|b|aa|aba|bab|aaabaa|abaaabababa|aabab.

Statements (I) and (II) clearly hold. Then, w5 = aaabaa, x5 = abaaabababa, y5 = aabab. Hence,
statement (III) holds since n5 = 32 and w5 = Z′4.last (i.e., the latter case). Statement (IV) also
holds since y5[1..4] = aaba has an occurrence which ends with the fourth phrase aba.

Suppose that all the statements hold for any k ∈ [5, k′ − 1] for some k′ > 5. We show that all
the statements hold for k′. Firstly, suppose on the contrary that statement (I) does not hold for k′.
This implies that there exists a phrase T = Sk′ [b(Z′k−1[i])..j] for some i < z′k′−1 and j > nk′−1.
Since |xk′−1yk′−1| ≥ 3

8nk′−1 > 1
4nk′−1 and xk′−1yk′−1 is a substring of T , T has an internal

occurrence of the length- 14nk′−1 suffix Ak′−1 of Sk′−1. By Lemma 8 (showing the occurrences of
Ak−1 in Sk−1), Ak′−1 occurs exactly three times in Sk′ [1..nk′−1]. The first occurrence of Ak′−1
cannot be included by a source of T since Ak′−1 is not a prefix of T [1..|T | − 1]. In addition, the
second occurrence of Ak′−1 also cannot be included by a source of T since the source overlaps
phrase T . Thus, T [1..|T | − 1] cannot have another occurrence to the left as a source of T . This
contradicts that T is an LZ-End phrase of Sk′ at that position. Hence, statement (I) holds for
k′. Due to statement (I), wk′ must have yk′−1 as a prefix. On the other hand, wk′ cannot reach
the end of Sk′ . Hence, statement (II) also holds. Thanks to statements (I) and (II) for k′, three
substrings wk′ , xk′ , and yk′ are well-defined (see Fig. 2 and 5 for illustrations).

Next, we show statements (III) and (IV).
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𝐴!! 𝐵!! 𝐴!! 𝐴!!

𝑆!!

𝑆!!"# 𝑦!!"#

𝑦!!𝑥!!𝑤!!

𝑛!!"#

𝑛!!

𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐴!!"# 𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐵!!"#

𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$

𝑤!!"# 𝑥!!"#

Figure 2: Illustration for the LZ-End factorization when wk′ 6= Z′k′−1.last.

𝐴!! 𝐵!! 𝐴!! 𝐴!!

𝑆!!

𝑆!!"# 𝑦!!"#

𝑊

𝑛!!"#

𝑛!!

𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐴!!"# 𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐵!!"#

𝑤"!#$ 𝑥!!"#

𝑊𝑊 𝑢 𝑢

Figure 3: Illustration for a part of the proof. W is a candidate of a source of phrase w′k.

• Assume that `(k′−1) = `(k′) (i.e., wk′ 6= Z′k′−1.last). We consider a phrase wk′ . If |yk′−1| =
0, xk′−1 is the suffix of length 3

8nk′−1 of Sk′−1, i.e., xk′−1 = Bk′−2Ak′−1. From Lemma 8,
xk′−1 does not have other occurrences to the left. This implies that wk′ = xk′−1. This
contradicts to wk′ 6= Z′k′−1.last. Thus, |yk′−1| > 0 holds. Namely, xk′−1 = Z′k′−1[z′k′−1− 1]
and yk′−1 = Z′k′−1.last (see also Fig. 2). Let W be the string of length 1

8nk′ which begins at
b(Z′k′−1.last). `(k

′−1) = `(k′) also implies that `(k′−1) < k′. Hence, |yk′−1| < 3
16n`(k′−1) ≤

3
32nk′ <

1
8nk′ . This fact means that W is a proper cyclic rotation of Ak′−1. By Lemma 9, W

occurs twice to the left (one is in Ak′−1Bk′−1, the other is in Ak′−1Ak′−1). Since the second
occurrence ends with phrase Z′k′ [z

′
k′−1 − 1], WcW is a candidate of phrase wk′ where cW is

the character preceded by W . Assume on the contrary that a source of phrase wk′ is Wu for
some u ∈ Σ+ (see Fig. 3). The second occurrence of W cannot be the beginning position of
a source of wk′ since Wu overlaps wk′ . Hence, the only candidate of the beginning position
of source Wu is in the first Ak′−1Bk′−1. Moreover, Wu cannot contain Bk′−1 since the
original Wu occurs in Ak′−1Ak′−1 · · · . Thus, Wu is a proper substring of Ak′−1Ak′−1 and
Ak′−1Bk′−1. In other words, u′Wu is a proper prefix of Ak′−1Ak′−1 and Ak′−1Bk′−1 for
some u′. Since xk′−1 is a proper substring of Ak′−1Ak′−1, xk′−1 also occurs in u′Wu. Hence,
this contradicts that phrase xk′−1 ends with W (i.e., xk′−1 has to be a longer phrase.), and
then, wk′ = WcW . Next, we consider a phrase xk′ . By the definition of the period-doubling
sequence, there exists a clear candidate X of a source which ends at e(xk′−1) (see Fig. 4).
Then, an equation |yk′−1| + 1

2nk′ = |wk′ | + |X| + |yk′−1| stands w.r.t. the length of suffix
Sk′ [b(yk′−1)..nk′ ]. Thus, |X| = 3

8nk′ − 1 holds since |wk′ | = 1
8nk′ + 1. This implies that X

has Bk′−1Ak′−1 as a substring. There does not exist a longer candidate since Bk′−1Ak′−1

6



𝑆!!

𝑆!!"# 𝑦!!"#

𝑐"𝑤!!

𝑤!!"# 𝑥!!"#

𝑋𝑋

|𝑦!!"#|
1
2
𝑛!!

Figure 4: Illustration for a part of the proof. X is a candidate of a source of phrase x′k.

𝐴!! 𝐵!! 𝐴!! 𝐴!!

𝑆!!

𝑆!!"#

𝑦!!𝑥!!𝑤!!

𝑛!!"#

𝑛!!

𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐴!!"# 𝐴!!"# 𝐵!!"# 𝐴!!"# 𝐵!!"#

𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$ 𝐴!!"$ 𝐵!!"$ 𝐴!!"$ 𝐴!!"$

𝑤!!"# 𝑥!!"#

Figure 5: Illustration for the LZ-End factorization when wk′ = Z′k′−1.last.

has only one occurrence to the left. Hence, xk′ = XcX where cX is the character preceded
by X. Finally, we consider the suffix yk′ of Sk′ . If |yk′ | ≥ 2, from the above discussion,
yk′−1[2..|yk′−1| − 1] = yk′ [1..|yk′ | − 1] holds. Since yk′−1[2..|yk′−1| − 1] has an occurrence
to the left which ends with some phrase (∵ statement (IV) for k′ − 1), yk′ [1..|yk′ | − 1] too.
Therefore, statements (III) and (IV) also hold.

• Assume that `(k′ − 1) 6= `(k′) (i.e., wk′ = Z′k′−1.last). We can show that all the statements
also hold for this case in a similar way. If we assume |yk′−1| > 0, then |wk′ | > |yk′−1| holds
by the above discussions. This contradicts that wk′ = Z′k′−1.last, and hence, |yk′−1| = 0
and wk′ = xk′−1 hold (see Fig. 5). Hence, |wk′ | = |xk′−1| = 3

8nk′−1 = 3
16nk′ . We consider a

phrase xk′ that begins at position 1
2nk′+1. Let X ′ = Sk′ [1..e(wk′−1)] be a clear candidate of

a source of xk′ . Since |X ′| = 1
2nk′ −

3
16nk′ = 5

16nk′ , X
′ has A′k as a prefix. From Lemma 8,

X ′ is the only candidate of a source, and thus xk′ = X ′cX′ where cX′ = Sk′ [
13
16nk′ + 1] is

the character preceded by X ′. Moreover, the length of yk′ is 1
2nk′ − ( 5

16nk′ + 1) = 3
16nk′ − 1.

Since |yk′ | = |wk′ |−1 and phrase wk′ is a suffix of Sk′−1, a source of wk′ can be also a source
of yk′ . Namely, yk′ is the last phrase. Thus, all the statements also hold for this case.

Therefore, this lemma holds.

We have just finished showing the form of the LZ-End factorization of Sk. Now, we will analyze
the number of phrases of the factorization. Let K be the sequence of integers k which satisfies
`(k) = k. Let k∗m denotes the m-th smallest integer in K. Each k∗m can be represented by the
following recurrence formula:

Lemma 14.

k∗1 = 5 and k∗m = k∗m−1 +
3

16
· 2k

∗
m−1 for m ≥ 2.

Proof. Let m be an integer greater than one. By the discussion of the proof for the previous
lemma, |yi−1| − 1 = |yi| holds for any integer i ∈ [k∗m−1 + 1, k∗m − 1]. In addition, |yk∗m−1| = 0.
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Hence,

k∗m = k∗m−1 + |yk∗m−1
|+ 1 = k∗m−1 +

3

16
nk∗m−1

= k∗m−1 +
3

16
· 2k

∗
m−1 .

Lemma 15. For any k ≥ 5,
zend(Sk) = 2k − f(k),

where f(k) is a function such that f(k) = m+ 1 if k ∈ [k∗m − 1, k∗m+1 − 2].

Proof. By Lemma 13, if |yk| = 0 (i.e., k+ 1 ∈ K), then zend(Sk) = zend(Sk−1) + 1 holds, otherwise,
zend(Sk) = zend(Sk−1) + 2 holds. Hence, for any k ∈ [k∗m − 1, k∗m+1 − 2],

zend(Sk) = zend(S5) + 2(k − 5)− (m− 1) = 2k − (m+ 1) = 2k − f(k).

Lemma 16. f(k) = O(log∗ k).

Proof. By Lemma 14,

k∗m = O(2k
∗
m−1) ⊆ O

22
. .

.
2
k∗1

 .

Thus, m = O(log∗ k) holds. This implies that f(k) = O(log∗ k) by Lemma 15.

By Lemmas 15 and 16, Theorem 11 holds.

5 Conclusions and further work

Let z′ and z be the number of phrases in the LZ-End and LZ77 factorizations in a string. In this
paper, we proved that the approximation ratio z′/z of LZ-End to LZ77 is asymptotically 2 for the
period-doubling sequences. This significantly reduces the number of distinct characters needed to
achieve such a lower bound from n/3 (in the existing work [21]) to 2 (in this work). We believe
that our work initiates analysis of theoretical performance of LZ-End compression.

A lot of interesting further work remains for LZ-End, including the following:

• Is our lower bound for the approximation ratio tight? Kreft and Navarro [21] conjectured
that z′/z ≤ 2 holds for any string. We performed some exhaustive experiments on binary
strings and the result supports their conjecture.

• Is the size z′ of the LZ-End factorization a lower bound for the size g of the smallest grammar
generating the input string? It is known that the size of the C-factorization [9], a variant
of LZ77, is a lower bound of g [30, 6]. In particular case of the period-doubling sequences,
there exists the following small SLP (i.e., grammar in the Chomsky normal form) generating
the k-th period-doubling sequence: Sk = Sk−1Tk, Tk = Sk−2Sk−2, . . . , S1 = ab, S0 = a.
Following [30], the size of an SLP is evaluated by the number of productions and thus the
above grammar is of size 2k + 1. It is quite close to the size of the LZ-End factorization
which is 2k −O(log∗ k) but is slightly larger.

• Interesting relationships between the size of the C-factorization and other string repetitive
measures such as the size r of the run-length BWT [5], the size s of the smallest run-length
SLP [28], the size ` of the Lyndon factorization [7], the size b of the smallest bidirectional
scheme [31], the size γ of the smallest string attractor [18], the substring complexity δ [8],
have been considered in the literature [4, 14, 15, 19, 23, 27, 32]. Can we extend these results
to the LZ-End?
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