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Abstract

Given an input string, the Burrows-Wheeler Transform (BWT) can be seen as a reversible
permutation of it that allows efficient compression and fast substring queries. Due to these properties,
it has been widely applied in the analysis of genomic sequence data, enabling important tasks such
as read alignment. Mantaci et al. [TCS2007] extended the notion of the BWT to a collection of
strings by defining the extended Burrows-Wheeler Transform (eBWT). This definition requires no
modification of the input collection, and has the property that the output is independent of the
order of the strings in the collection. However, over the years, the term eBWT has been used more
generally to describe any BWT of a collection of strings. The fundamental property of the original
definition (i.e., the independence from the input order) is frequently disregarded. In this paper,
we propose a simple linear-time algorithm for the construction of the original eBWT, which does
not require the preprocessing of Bannai et al. [CPM 2021]. As a byproduct, we obtain the first
linear-time algorithm for computing the BWT of a single string that uses neither an end-of-string
symbol nor Lyndon rotations.

We also combine our new eBWT construction with a variation of prefix-free parsing (PFP) [WABI
2019] to allow for construction of the eBWT on large collections of genomic sequences. We implement
this combined algorithm (pfpebwt) and evaluate it on a collection of human chromosomes 19 from
the 1,000 Genomes Project, on a collection of Salmonella genomes from GenomeTrakr, and on a
collection of SARS-CoV2 genomes from EBI’s COVID-19 data portal. We demonstrate that pfpebwt
is the fastest method for all collections, with a maximum speedup of 7.6x on the second best method.
The peak memory is at most 2x larger than the second best method. Comparing with methods that
are also, as our algorithm, able to report suffix array samples, we obtain a 57.1x improvement in peak
memory. The source code is publicly available at https://github.com/davidecenzato/PFP-eBWT.
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1 Introduction

In the last several decades, the number of sequenced human genomes has been growing
at unprecedented pace. In 2015 the number of sequenced genomes was doubling every 7
months [40] – a pace that has not slowed into the current decade. The plethora of resulting
sequencing data has expanded our knowledge of the biomarkers responsible for human disease
and phenotypes [5, 43, 42], the evolutionary history between and among species [38], and will
eventually help realize the personalization of healthcare [3]. However, the amount of data
for any individual species is large enough that it poses challenges with respect to storage
and analysis. One of the most well-known and widely-used methods for compressing and
indexing data that has been applied in bioinformatics is the Burrows-Wheeler Transform
(BWT), which is a text transformation that compresses the input in a manner that also
allows for efficient substring queries. Not only can it be constructed in linear-time in the
length of the input, it is also reversible – meaning the original input can be constructed from
its compressed form. The BWT is formally defined over a single input string; thus, in order
to define and construct it for one or more strings, the input strings need to be concatenated
or modified in some way. In 2007 Mantaci et al. [30] presented a formal definition of the
BWT for a multiset of strings, which they call the extended Burrows-Wheeler Transform
(eBWT). It is a bijective transformation that sorts the cyclic rotations of the strings of the
multiset according to the ω-order relation, an order, defined by considering infinite iterations
of each string, which is different from the lexicographic order.

Since its introduction several algorithms have been developed that construct the BWT
of collection of strings for various types of biological data including short sequence reads
[6, 4, 11, 14, 27, 13, 14, 1, 19, 36, 37], protein sequences [44], metagenomic data [18] and
longer DNA sequences such as long sequence reads and whole chromosomes [25]. However,
we note that in the development of some of these methods the underlying definition of
eBWT was loosened. For example, ropebwt2 [25] tackles a similar problem of building what
they describe as the FM-index for a multiset of long sequence reads, however, they do not
construct the suffix array (SA) or SA samples, and also, require that the sequences are
delimited by separator symbols. Similarly, gsufsort [27] and egap [14] construct the BWT
for a collection of strings but do not construct the eBWT according to its original definition.
gsufsort [27] requires the collection of strings to be concatenated in a manner that the
strings are deliminated by separator symbols that have an augmented relative order among
them. egap [14], which was developed to construct the BWT and LCP for a collection of
strings in external memory, uses the gSACA-K algorithm to construct the suffix array of the
concatenated input using an additional O(α+ 1) logn bits, and then constructs the BWT
for the collection from the resulting suffix array. Lastly, we note that there exists a number
of methods for construction of the BWT for a collection of short sequence reads, including
ble [6], BCR [4], G2BWT [13], egsa [28]; however, these methods make implicit or explicit use
of end-of-string symbols appended to strings in the collection. For an example of the effects
of these manipulations, see Section 2, and [10] for a more detailed study.

We present an efficient algorithm for constructing the eBWT that preserves the original
definition of Mantaci et al. [30]—thus, it does not impose any ordering of the input strings
or delimiter symbols. It is an adaptation of the well-known Suffix Array Induced Sorting
(SAIS) algorithm of Nong et al. [33], which computes the suffix array of a single string T
ending with an end-of-string character $. Our adaptation is similar to the algorithm proposed
by Bannai et al. [2] for computing the BBWT, which can also be used for computing the
eBWT, after linear-time preprocessing of the input strings. The key change in our approach
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is based on the insight that the properties necessary for applying Induced Sorting are valid
also for the ω-order between different strings. As a result, is it not necessary that the input
be Lyndon words, or that their relative order be known at the beginning. Furthermore, our
algorithmic strategy, when applied to a single string, provides the first linear-time algorithm
for computing the BWT of the string that uses neither an end-of-string symbol nor Lyndon
rotations.

We then combine our new eBWT construction with a variation of a preprocessing
technique called prefix free parsing (PFP). PFP was introduced by Boucher et al. [8] for
building the (run length encoded) BWT of large and highly repetitive input text. Since
its original introduction, it has been extended to construct the r-index [24], been applied
as a preprocessing step for building grammars [15], and used as a data structure itself [7].
Briefly, PFP is a one-pass algorithm that divides the input into overlapping variable length
phrases with delimiting prefixes and suffixes; which in effect, leads to the construction of
what is referred to as the dictionary and parse of the input. It follows that the BWT can be
constructed in the space that is proportional to the size of the dictionary and parse, which is
expected to be significantly smaller than linear for repetitive text.

In our approach, prefix-free parsing is applied to obtain a parse that is a multiset of cyclic
strings (cyclic prefix-free parse) on which our eBWT construction is applied. We implement
our approach (called pfpebwt), measure the time and memory required to build the eBWT
for sets of increasing size of chromosome 19, Salmonella, and SARS-CoV2 genomes, and
compare this to that required by gsufsort, ropebwt2, and egap. We show that pfpebwt
is consistently faster and uses less memory than gsufsort and egap on reasonably large
input (≥ 4 copies of chromosome 19, ≥ 50 Salmonella genomes, and ≥ 25,000 SARS-CoV2
genomes). Although ropebwt2 uses less memory than pfpebwt on large input, pfpebwt is 7x
more efficient in terms of wall clock time, and 2.8x in terms of CPU time. Moreover, pfpebwt
is capable of reporting SA samples in addition to the eBWT with a negligible increase in
time and memory [24], whereas ropebwt2 does not have that ability. If we compare pfpebwt
only with methods that are able to report SA samples in addition to the eBWT (e.g., egap
and gsufsort), we obtain a 57.1x improvement in peak memory.

2 Preliminaries

A string T = T [1..n] is a sequence of characters T [1] · · ·T [n] drawn from an ordered alphabet
Σ of size σ. We denote by |T | the length n of T , and by ε the empty string, the only string
of length 0. Given two integers 1 ≤ i, j ≤ n, we denote by T [i..j] the string T [i] · · ·T [j], if
i ≤ j, while T [i..j] = ε if i > j. We refer to T [i..j] as a substring (or factor) of T , to T [1..j]
as the j-th prefix of T , and to T [i..n] = T [i..] as the i-th suffix of T . A substring S of T is
called proper if T 6= S. Given two strings S and T , we denote by lcp(S, T ) the length of the
longest common prefix of S and T , i.e., lcp(S, T ) = max{i | S[1..i] = T [1..i]).

Given a string T = T [1..n] and an integer k, we denote by T k the kn-length string
TT · · ·T (k-fold concatenation of T ), and by Tω the infinite string TT · · · obtained by
concatenating an infinite number of copies of T . A string T is called primitive if T = Sk

implies T = S and k = 1. For any string T , there exists a unique primitive word S and a
unique integer k such that T = Sk. We refer to S = S[1..nk ] as root(T ) and to k as exp(T ).
Thus, T = root(T )exp(T ).

We denote by <lex the lexicographic order: for two strings S[1..n] and T [1..m], S <lex T if
S is a proper prefix of T , or there exists an index 1 ≤ i ≤ n,m such that S[1..i−1] = T [1..i−1]
and S[i] < T [i]. Given a string T [1..n], the suffix array [29], denoted by SA = SAT , is the
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permutation of {1, . . . , n} such that T [SA[i]..] is the i-th lexicographically smallest suffix of
T .

We denote by ≺ω the ω-order [16, 30], defined as follows: for two strings S and T , S ≺ω T
if root(S) = root(T ) and exp(S) < exp(T ), or Sω <lex T

ω (this implies root(S) 6= root(T )).
One can verify that the ω-order relation is different from the lexicographic one. For instance,
CG <lex CGA but CGA ≺ω CG.

The string S is a conjugate of the string T if S = T [i..n]T [1..i−1], for some i ∈ {1, . . . , n}
(also called the i-th rotation of T ). The conjugate S is also denoted conji(T ). It is easy
to see that T is primitive if and only if it has n distinct conjugates. A Lyndon word is a
primitive string which is lexicographically smaller than all of its conjugates. For a string T ,
the conjugate array1 CA = CAT of T is the permutation of {1, . . . , n} such that CA[i] = j if
conjj(T ) is the i-th conjugate of T with respect to the lexicographic order, with ties broken
according to string order, i.e. if CA[i] = j and CA[i′] = j′ for some i < i′, then either
conjj(T ) <lex conjj′(T ), or conjj(T ) = conjj′(T ) and j < j′. Note that if T is a Lyndon
word, then CA[i] = SA[i] for all 1 ≤ i ≤ n [17].

Given a string T , U a circular or cyclic substring of T if it is a factor of TT of length at
most |T |, or equivalently, if it is the prefix of some conjugate of T . For instance, ATA is a
cyclic substring of AGCAT. It is sometimes also convenient to regard a given string T [1..n]
itself as circular (or cyclic); in this case we set T [0] = T [n] and T [n+ 1] = T [1].

2.1 Burrows-Wheeler-Transform
The Burrows-Wheeler Transform [9] of T , denoted BWT, is a reversible transformation
extensively used in data compression. Given a string T , BWT(T ) is a permutation of the
letters of T which equals the last column of the matrix of the lexicographically sorted
conjugates of T . The mapping T 7→ BWT(T ) is reversible, up to rotation. It can be
made uniquely reversible by adding to BWT(T ) and index indicating the rank of T in the
lexicographic order of all of its conjugates. Given BWT(T ) and an index i, the original
string T can be computed in linear time [9]. The BWT itself can be computed from the
conjugate array, since for all i = 1, . . . , n, BWT(T )[i] = T [CA[i]− 1], where T is considered
to be cyclic.

It should be noted that in many applications, it is assumed that an end-of-string-character
(usually denoted $), which is not element of Σ, is appended to the string; this character is
assumed to be smaller than all characters from Σ. Since T$ has exactly one occurrence of $,
BWT(T$) is now uniquely reversible, without the need for the additional index i, since T$
is the unique conjugate ending in $. Moreover, adding a final $ makes the string primitive,
and $T is a Lyndon word. Therefore, computing the conjugate array becomes equivalent to
computing the suffix array, since CAT$[i] = SAT$[i]. Thus, applying one of the linear-time
suffix-array computation algorithms [32] leads to linear-time computation of the BWT.

When no $-character is appended to the string, the situation is slightly more complex.
For primitive strings T , first the Lyndon conjugate of T has to be computed (in linear time,
[39]) and then a linear-time suffix array algorithm can be employed [17]. For strings T which
are not primitive, one can take advantage of the following well-known property of the BWT:
let T = Sk and BWT(S) = U [1..m], then BWT(T ) = U [1]kU [2]k · · ·U [m]k (Prop. 2 in [31]).
Thus, it suffices to compute the BWT of root(T ). The root of T can be found by computing

1 Our conjugate array CA is called circular suffix array and denoted SA◦ in [20, 2], and BW-array
in [23, 35], but in both cases defined for primitive strings only.
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the border array b of T : T is a power if and only if n/(n − b[n]) is an integer, which is
then also the length of root(T ). The border array can be computed, for example, by the
preprocessing phase of the KMP-algorithm for pattern matching [21], in linear time in the
length of T .

2.2 Generalized Conjugate Array and Extended Burrows-Wheeler
Transform

Given a multiset of stringsM = {T1[1..n1], . . . , Tm[1..nm]}, the generalized conjugate array
ofM, denoted by GCAM or just by GCA, contains the list of the conjugates of all strings
inM, sorted according to the ω-order relation. More formally, GCA[i] = (j, d) if conjj(Td)
is the i-th string in the �ω-sorted list of the conjugates of all strings ofM, with ties broken
first w.r.t. the index of the string (in case of identical strings), and then w.r.t. the index in
the string itself.

The extended Burrows-Wheeler Transform (eBWT) is an extension of the BWT to a
multiset of strings [30]. It is a bijective transformation that, given a multiset of strings
M = {T1, . . . , Tm}, produces a permutation of the characters on the strings in the multiset
M. Formally, eBWT(M) can be computed by sorting all the conjugates of the strings in the
multiset according to the �ω-order, and the output is the string obtained by concatenating
the last character of each conjugate in the sorted list, together with the set of indices
representing the positions of the original strings ofM in the list. Similarly to the BWT, the
eBWT is thus uniquely reversible. The eBWT(M) can be computed from the generalized
conjugate array ofM in linear time, since eBWT(M)[i] = Td[j− 1] if GCA[i] = (j, d), where
again, the strings inM are considered to be cyclic. It is easy to see that whenM consists
of only one string, i.e.M = {T}, then eBWT(M) = BWT(T ).

I Example 1. LetM = {GTACAACG,CGGCACACACGT,C}. Then GCA(M) is as fol-
lows, where we give the pair (j, d) vertically, i.e. the first row contains the position in the
string, and the second row the index of the string:

5 3 5 7 6 9 4 4 6 8 1 1 7 10 3 2 8 1 11 2 12
1 1 2 2 1 2 1 2 2 2 3 2 1 2 2 2 1 1 2 1 2

From the GCA we can compute eBWT(M) = CTCCACAGAACTAAGCCGCGG, with
index set {11, 12, 18}. Note that e.g. the conjugate conj8(T2) comes before conj1(T3), since
CACGTCGGCACA ≺ω C, because (CACGTCGGCACA)ω <lex Cω = CCCC . . . holds.
The full list of conjugates is in Appendix A.

I Remark 2. Note that if end-of-string symbols are appended to the string of the collection
the output of eBWT could be quite different. For instance, if M = {GTACAACG$1,

CGGCACACACGT$2, C$3}, eBWT(M) = GTCCTCCAC$3AGAAA$2ACGCC$1GG.

Note that while in the original definition of eBWT [30], the multisetM was assumed
to contain only primitive strings, our definition is more general and allows also for non-
primitive strings. For example, eBWT({ATA, TATA}) = TATTAAA, with index set {2, 6},
while eBWT({ATA,TA,TA}) = TATTAAA, with index set {2, 6, 7}. Also the linear-time
algorithm for recovering the original multiset can be straightforwardly extended.

The following lemma shows how to construct the generalized conjugate array GCAM of
a multisetM of strings (not necessarily primitive), once we know the generalized conjugate
array GCAR of the multiset R of the roots of the strings inM. It follows straightforwardly
from the fact that equal conjugates will end up consecutively in the GCA.
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I Lemma 3. Let M = {T1, . . . , Tm} be a multiset of strings and let R the multiset of
the roots of the strings in M, i.e. R = {S1, . . . , Sm}, where Ti = (Srii ), with ri ≥ 1 for
1 ≤ i ≤ m. Let GCAR[1..K] = [(j1, i1), (j2, i2), . . . , (jK , iK)], where K =

∑m
i=1 |Si|. The

generalized conjugate array is then given by

GCAM[1..N ] = [(j1, i1), (j1 + |Si1 |, i1), . . . , (j1 + (ri1 − 1) · |Si1 |, i1),
(j2, i2), (j2 + |Si2 |, i2), . . . , (j2 + (ri2 − 1) · |Si2 |, i2),
. . .

(jK , iK), (jK + |SiK |, iK), . . . , (jK + (riK − 1) · |SiK |, iK)],

with N =
∑m
i=1 |Si| · ri.

From now on we will assume that the multisetM = {T1, . . . , Tm} consists of m primitive
strings.

3 A simpler algorithm for computing the eBWT and GCA

In this section, we describe our algorithm to compute the eBWT of a multiset of strings
M. We will assume that all strings in M are primitive, since we can use Lemma 3 to
compute the eBWT ofM otherwise. Our algorithm is an adaptation of the well-known SAIS
algorithm of Nong et al. [33], which computes the suffix array of a single string T ending
with an end-of-string character $. Our adaptation is similar to that of Bannai et al. [2] for
computing the BBWT, which can also be used for computing the eBWT. Even though our
algorithm does not improve the latter asymptotically (both are linear time), it is significantly
simpler, since it does not require first computing and sorting the Lyndon rotations of the
input strings.

In the following, we assume some familiarity with the SAIS algorithm, focusing on the
differences between our algorithm and the original SAIS. Detailed explanations of SAIS can
be found in the original paper [33], or in the books [34, 26].

The main differences between our algorithm and the original SAIS algorithm are: (1)
we are comparing conjugates rather than suffixes, (2) we have a multiset of strings rather
than just one string, (3) the comparison is done w.r.t. the omega-order rather than the
lexicographic order, and (4) the strings are not terminated by an end-of-string symbol.

We need the following definition, which is the cyclic version of the definition in [33] (where
S stands for smaller, L for larger, and LMS for leftmost-S):

I Definition 4 (Cyclic types, LMS-substrings). Let T be a primitive string of length at least
2, and 1 ≤ i ≤ |T |. Position i of T is called (cyclic) S-type if conji(T ) <lex conji+1(T ), and
(cyclic) L-type if conji(T ) >lex conji+1(T ). An S-type position i is called (cyclic) LMS if
i− 1 is L-type (where we view T as a cyclic string). An LMS-substring is a cyclic substring
T [i, j] of T such that both i and j are LMS-positions, but there is no LMS-position between i
and j. Given a conjugate conji(T ), its LMS-prefix is the cyclic substring from i to the first
LMS-position strictly greater than i (viewed cyclically).

Since T is primitive, no two conjugates are equal, and in particular, no two adjacent
conjugates are equal. Therefore, the type of every position of T is defined.

I Example 5. Continuing Example 1,
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G T A C A A C G C G G C A C A C A C G T

S L S L S S S S S L L L S L S L S S S L

∗ ∗ ∗ ∗ ∗ ∗

where we mark LMS-positions with a ∗. The LMS-substrings are ACA, AACGGTA, CGGCA,
and ACGTC. The LMS-prefix of the conjugate conj7(T1) = CGGTACAA is CGGTA.

I Lemma 6 (Cyclic type properties). Let T be primitive string of length at least 2. Let a1
be the smallest and aσ the largest character of the alphabet. Then the following hold, where
T is viewed cyclically:

1. if T [i] < T [i+ 1], then i is of type S, and if T [i] > T [i+ 1], then i is of type L,
2. if T [i] = T [i+ 1], then the type of i is the same as the type of i+ 1,
3. i is of type S iff T [i′] > T [i], where i′ = min{j | T [j] 6= T [i]},
4. if T [i] = a1, then i is of type S, and if T [i] = aσ, then i is of type L.

Proof. 1. follows from the fact that for all b, c ∈ Σ, if b < c then for all U, V ∈ Σ∗, bU ≺ω cV ;
2. follows by induction from the fact that for all U, V ∈ Σ∗, if U ≺ω V , then cU ≺ω cV ; 3.
and 4. follow from 2. by induction. J

I Corollary 7 (Linear-time cyclic type assignment). Let T be a primitive string of length at
least 2. Then all positions can be assigned a type in altogether at most 2|T | steps.

Proof. Once the type of one position is known, then the assignment can be done in one
cyclic pass over T from right to left, by Lemma 6. Therefore, it suffices to find the type of
one single position. Any position of character a1 or of character aσ will do; alternatively,
any position i such that T [i+ 1] 6= T [i], again by Lemma 6. Since T is primitive and has
length at least 2, the latter must exist and can be found in at most one pass over T . J

Let N be the total length of the strings in M. The algorithm constructs an initially
empty array A of size N , which, at termination, will contain the GCA ofM. The algorithm
also returns the set I containing the set of indices in A representing the positions of the
strings ofM. The overall procedure consists of the following steps:

Algorithm SAIS-for-eBWT

Step 1 remove strings of length 1 fromM (these will be added back at the end)
Step 2 assign cyclic types to all positions of strings fromM
Step 3 use procedure Induced Sorting to sort cyclic LMS-substrings
Step 4 assign names to cyclic LMS-substrings; if all distinct, go to Step 6
Step 5 recurse on new string multisetM′, returning array A′, map A′ back to A
Step 6 use procedure Induced Sorting to sort all positions inM, add length-1 strings in

their respective positions, return (A, I)

At the heart of the algorithm is the procedure Induced Sorting of [33] (Algorithms 3.3
and 3.4), which is used once to sort the LMS-substrings (Step 3), and once to induce the
order of all conjugates from the correct order of the LMS-positions (Step 6), as in the original
SAIS. Before sketching this procedure, we need to define the order according to which the
LMS-substrings are sorted in Step 2. Note that our definition of LMS-order is an extension
of the LMS-order defined in [33], to LMS-prefixes. It can be proved that these definitions
coincide for LMS-substrings.
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I Definition 8 (LMS-order). Given two strings S and T , let U resp. V be their LMS-prefixes.
We define U <LMS V if either V is a proper prefix of U , or neither is a proper prefix of the
other and U <lex V .

The procedure Induced Sorting for the conjugates of the multiset is analogous to the
original one, except that strings are viewed cyclically. First, the array A is subdivided into
so-called buckets, one for each character. For c ∈ Σ, let nc denote the total number of
occurrences of the character c in the strings in M. Then the buckets are [1, na1 ], [na1 +
1, na1 + na2 ], . . . , [N − naσ + 1, N ], i.e., the k-th bucket will contain all conjugates starting
with character ak. The procedure Induced Sorting first inserts all LMS-positions at the
end of their respective buckets, then induces the L-type positions in a left-to-right scan of
A, and finally, induces the S-type positions in a right-to-left scan of A, possibly overwriting
previously inserted positions. We need two pointers for each bucket b, head(b) and tail(b),
pointing to the current first resp. last free position of the bucket.

Procedure Induced Sorting [33]
1. insert all LMS-positions at the end of their respective buckets; initialize head(b),

tail(b) to the first resp. last position of the bucket, for all buckets b
2. induce the L-type positions in a left-to-right scan of A: for i from 1 to N−1, if A[i] =

(j, d) then A[head(bucket(Td[j−1]))]← (j−1, d); increment head(bucket(Td[j−1]))
3. induce the S-type positions in a right-to-left scan of A: for i from N to 2, if A[i] =

(j, d) then A[tail(bucket(Td[j − 1]))]← (j − 1, d); decrement tail(bucket(Td[j − 1]))

At the end of this procedure, the LMS-substrings are listed in correct relative LMS-order
(see Lemma 10), and they can be named according to their rank. For the recursive step, we
define, for i = 1, . . . ,m, a new string T ′i , where each LMS-substring of Ti is replaced by its
rank. The algorithm is called recursively onM′ = {T ′1, . . . , T ′m} (Step 5).

Finally (Step 6), the array A′ = GCA(M′) from the recursive step is mapped back into
the original array, resulting in the placement of the LMS-substrings in their correct relative
order. This is then used to induce the full array A. All length-1 strings Ti which were
removed in Step 1 can now be inserted between the L- and S-type positions in their bucket
(Lemma 9). See Figure 1 for a full example.

3.1 Correctness and running time
The following lemma shows that the individual steps of Induced Sorting are applicable for
the ω-order on conjugates of a multiset (part 1), that L-type conjugates (of all strings) come
before the S-type conjugates within the same bucket (part 2), and that length-1 strings are
placed between S-type and L-type conjugates (part 3). The second property was originally
proved for the lexicographic order between suffixes in [22]:

I Lemma 9 (Induced sorting for multisets). Let U, V ∈ Σ∗.

1. If U ≺ω V , then for all c ∈ Σ, cU ≺ω cV .
2. If U [i] = V [j], i is an L-type position, and j an S-type position, then conji(U) ≺ω

conjj(V ).
3. If U [i] = V [j] = c, i is an L-type position, and j an S-type position, then conji(U) ≺ω

c ≺ω conjj(V ).

Proof. 1. follows directly from the definition of ω-order. 3. implies 2. For 3., let i′ be the
nearest character following i in U such that U [i′] 6= c. By Lemma 6, U [i′] < c, and thus
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T1 T2 T3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 1
M = { G T A C A A C G , C G G C A C A C A C G T , C }

S L S L S S S S S L L L S L S L S S S L
∗ ∗ ∗ ∗ ∗ ∗

Step 2 - assign cyclic types to all positions of strings fromM
Step 1 - remove strings of length 1 fromM

A C G T
S∗ 5 7 9 3 5 1

2 2 2 1 1 2
L 4 6 8 4 3 2 2 12
−→ 2 2 2 1 2 2 1 2
S 5 5 7 3 6 9 1 7 10 8 1 11
←− 1 2 2 1 1 2 2 1 2 1 1 2

A C G T
5 5 7 3 6 9 4 6 8 4 1 7 10 3 2 8 1 11 2 12
1 2 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 2 1 2
∗ ∗ ∗ ∗ ∗ ∗

Step 3 - use procedure Induced Sorting to sort cyclic
LMS-substrings

A A C G G T A a
A C A b
A C G T C c
C G G C A d

Step 4 - Assign names to
cyclic LMS-substrings

T ′1 = b a

T ′2 = d b b a

T ′1 T ′2

1 2 1 2 3 4
M′ = { b a , d b b c }

L S L S S S
∗ ∗

a b c d
S∗ 2 2

1 2
L 1 1
−→ 1 2
S 2 2 3 4
←− 1 2 2 2

A′ 2 1 2 3 4 1
1 1 2 2 2 2

Step 5 - recurse on new string multisetM′

A C G T
S∗ 5 3 5 7 9 1

1 1 2 2 2 2
L 4 4 6 8 3 2 2 12
−→ 1 2 2 2 2 2 1 2
S 5 3 5 7 6 9 1 1 7 10 8 1 11
←− 1 1 2 2 1 2 3 2 1 2 1 1 2 T3

Step 6 - use procedure Induced Sorting to sort cyclic LMS-substrings,
add length-1 strings in their respective positions

GCA 5 3 5 7 6 9 4 4 6 8 1 1 7 10 3 2 8 1 11 2 12
1 1 2 2 1 2 1 2 2 2 3 2 1 2 2 2 1 1 2 1 2

eBWT C T C C A C A G A A C T A A G C C G C G G

Generalized conjugate array ofM

Figure 1 The algorithm SAIS-for-eBWT on Example 1. Start positions of input strings are
marked in bold.
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conji(U) <lex c
|U |, and therefore, conji(U) ≺ω c. Analogously, if j′ is the next character in

V s.t. V [j′] 6= c, then by Lemma 6, V [j′] > c, and therefore, c ≺ω conjj(V ). J

Next, we show that after applying procedure Induced Sorting, the conjugates will
appear in A such that they are correctly sorted w.r.t. to the LMS-order of their LMS-prefixes,
while the order in which conjugates with identical LMS-prefixes appear in A is determined
by the input order of the LMS-positions.

I Lemma 10 (Extension of Thm. 3.12 of [33]). Let T1, T2 ∈M, let U be the LMS-prefix of
conji(T1), with i′ the last position of U ; let V be the LMS-prefix of conjj(T2), and j′ the last
position of V . Let k1 be the position of conji(T1) in array A after the procedure Induced
Sorting, and k2 that of conjj(T2).

1. If U <LMS V , then k1 < k2.
2. If U = V , then k1 < k2 if and only if conji′(T1) was placed before conjj′(T2) at the start

of the procedure.

Proof. Both claims follow from Lemma 9, and the fact that from one LMS-position to the
previous one, there is exactly one run of L-type positions, preceded by one run of S-type
positions. J

The next lemma shows that the LMS-order of the LMS-prefixes respects the ω-order.

I Lemma 11. Let S, T ∈ Σ∗, let U be the LMS-prefix of S and V the LMS-prefix of T . If
U <LMS V then S ≺ω T .

Proof. If neither U nor V is a proper prefix one of the other, then there exists an index i s.t.
S[i] = U [i] < V [i] = T [i], and therefore, S ≺ω T . Otherwise, V is a proper prefix of U . Let
i = |V | and c = V [i]. Since both U and V are LMS-prefixes, with i being the last position of
V but not of U , this implies that V [i] = T [i] is of type S, while U [i] = S[i] is of type L. Let
j be the next character in S s.t. S[j] 6= c, and k be the next character in T s.t. T [k] 6= c. By
Lemma 6, S[j] < c, T [k] > c, and by definition of j, k all characters inbetween equal c. Then
for i′ = min(j, k), we have S[i′] < T [i′], with i′ being the first position where S and T differ.
Therefore, S ≺ω T . J

I Theorem 12. Algorithm SAIS-for-eBWT correctly computes the GCA and eBWT of a
multiset of stringsM in time O(N), where N is the total length of the strings inM.

Proof. By Lemma 6, Step 2 correctly assigns the types. Step 3 correctly sorts the LMS-
substrings by Lemma 10. It follows from Lemma 11 that the order of the conjugates of
the new strings T ′i coincides with the relative order of the LMS-conjugates. In Step 6, the
LMS-conjugates are placed in A in correct relative order from the recursion; by Lemmas 10
and 11, this results in the correct placement of all conjugates of strings of length > 1, while
the positioning of the length-1 strings is given by Lemma 9.

For the running time, note that Step 1 takes time at most 2N . The Induced Sorting
procedure also runs in linear time O(N). Finally, since no two LMS-positions are consecutive,
and we remove strings of length 1, the problem size in the recursion step is reduced to at
most N/2. J
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1 2 3 4 5 6
b a n a n a
L S L S L S
* * *

Step 2

a b n
S∗ 2 4 6
L 1 3 5
S 6 2 4

6 2 4 1 3 5

Step 3

6 a b a A

2 a n a B

4 a n a B

Step 4

1 2 3
A B B
S L L

*

A B

1
3 2

1 3 2

Step 5

a b n

6 4 2
1 5 3

GCA 6 4 2 1 5 3
BWT n n b a a a

Step 6

Figure 2 Example for computing the BWT for one string, start index marked in bold.

3.2 Computing the BWT for one single string
The special case whereM consists of one single string leads to a new algorithm for computing
the BWT, since for a singleton set, the eBWT coincides with the BWT. To the best of our
knowledge, this is the first linear-time algorithm for computing the BWT of a string without
an end-of-string character that uses neither Lyndon rotations nor end-of-string characters.

We demonstrate the algorithm on a well-known example, T = banana. We get the
following types, from left to right: LSLSLS, and all three S-type positions are LMS. We
insert 2, 4, 6 into the array A; after the left-to-right pass, indices are in the order 2, 4, 6, 1, 3, 5,
and after the right-to-left pass, in the order 6, 2, 4, 1, 3, 5. The LMS-substring aba (pos. 6)
gets the name A, and the LMS-substring ana (pos. 2,4) gets the name B. In the recursive
step, the new string T ′ = ABB, with types SLL and only one LMS-position 1, the GCA
gets induced in just one pass: 1, 3, 2. This maps back to the original string: 6, 2, 4, and one
more pass over the array A results in 6, 4, 2, 1, 5, 3 and the BWT nnbaaa. See Figure 2.

4 eBWT and prefix-free parsing

In this section, we show how to extend the prefix-free parsing to build the eBWT. We define
the cyclic prefix-free parse for a multiset of stringsM = {T1, T2, . . . , Tm} (with |Ti| = ni,
1 ≤ i ≤ m) as the multiset of parses P = {P1, P2, . . . , Pm} with dictionary D, where we
consider Ti as circular, and Pi is the parse of Ti. We denote by pi the length of the parse Pi.

Next, given a positive integer w, let E be a set of strings of length w called trigger strings.
We assume that each string Th ∈M has length at least w and at least one cyclic factor in E.

We divide each string Th ∈M into overlapping phrases as follows: a phrase is a circular
factor of Th of length > w that starts and ends with a trigger string and has no internal
occurrences of a trigger string. The set of phrases obtained from strings inM is the dictionary
D. The parse Ph can be computed from the string Th by replacing each occurrence of a
phrase in Th with its lexicographic rank in D.

I Example 13. LetM = {T1 : CACGTGCTAT, T2 : CCACTTGCTAGA, T3 : CACTTGCTAT}
and let E = {AC ,GC}. The dictionary D of the multiset of parses P of M is D =
{ACCAC ,ACGTGC ,ACTTGC ,GCTAGAC ,GCTATCAC} and P = {2 5 , 3 4 1 , 3 5}, where
P2 = 2 5 means that the parsing of T2 is given by the second and fifth phrases of the dic-
tionary. Note that the string T2 has a trigger string AC that spans the first position of
T2.

We denote by S the set of suffixes of D having length greater than w. The first important
property of the dictionary D is that the set S prefix-free, i.e., no string in S is prefix of
another string of S. This follows directly from [8].
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I Example 14. Continuing Example 13, we have that

S = {ACCAC ,ACGTGC ,ACTTGC ,AGAC ,ATCAC ,CAC ,CCAC ,CGTGC ,
CTAGAC ,CTATCAC ,CTTGC ,GAC ,GCTAGAC ,GCTATCAC ,GTGC ,
TAGAC ,TATCAC ,TCAC ,TGC ,TTGC}

The computation of eBWT from the prefix-free parse consists of three steps: computing
the cyclic prefix-free parse ofM (denoted as P), computing the eBWT of P by using the
algorithm described in Section 3; and lastly, computing the eBWT ofM from the eBWT of
P using the lexicographically sorted dictionary D = {D1, D2, . . . , D|D|} and its prefix-free
suffix set S. We now describe the last step as follows. We define δ as the function that
uniquely maps each character of Th[j] to the pair (i, k), where with 1 ≤ i ≤ ph, k > w, and
Th[j] corresponds to the k-th character of the Ph[i]-th phrase of D. We call i and k the
position and the offset of Th[j], respectively. Furthermore, we define α as the function that
uniquely associates to each conjugate conjj(Th) the element s ∈ S such that s is the k-th
suffix of the Ph[i]-th element of D, where (i, k) = δ(Th[j]). By extension, i and k are also
called the position and the offset of the suffix α(conjj(Th)).

I Example 15. In Example 13, δ(T2[4]) = (1, 2) since T2[4] is the second character (offset 2)
of the phrase ACTTGC , which is the first phrase (position 1) of P2. Moreover, α(conj4(T2)) =
CTTGC since CTTGC is the suffix of D3, which is prefix of conj4(T2) = CTTGCTAGACCA.

I Lemma 16. Given two strings Tg, Th ∈ M, if α(conji(Tg)) <lex α(conji(Th)) it follows
that conji(Tg) ≺ω conjj(Th).

Proof. It follows from the definition of α that α(conji(Tg)) and α(conjj(Th)) are prefixes of
conji(Tg) and conjj(Th), respectively. J

I Proposition 17. Given two strings Tg, Th ∈ M. Let conji(Tg) and conjj(Th) be the i-th
and j-th conjugates of Tg and Th, respectively, and let (i′, g′) = δ(Tg[i]) and (j′, h′) =
δ(Th[j]). Then conji(Tg) ≺ω conjj(Th) if and only if either α(conji(Tg)) <lex α(conjj(Th)),
or conji′+1(Pg) ≺ω conjj′+1(Ph), i.e., Pg[i′] precedes Ph[j′] in eBWT(P).

Proof. By definition of α, conji(Tg) = α(conji(Tg))Tg[i+ g′′]Tg[i+ g′′ + 1] . . . Tg[i− 1] and
conjj(Th) = α(conjj(Th))Th[j + h′′]Th[j + h′′ + 1] . . . Th[j − 1], where g′′ = |α(conji(Tg))|
and h′′ = |α(conjj(Th))|, respectively. Moreover, conji(Tg) ≺ω conjj(Th) if and only if either
α(conjj(Th)) <lex α(conjj(Th)) or conji+g′′−w(Tg) ≺ω conjj+h′′−w(Th), where w is the length
of trigger strings. It is easy to verify that the position of Tg[i+ g′′ − w] and Th[j + h′′ − w]
is i′ + 1 and j′ + 1, respectively. Moreover, since Tg[i+ g′′ − w] and Th[j + h′′ − w] are the
first character of a phrase, we have that conji+g′′−w(Tg) ≺ω conjj+h′′−w(Th) if and only if
conji′+1(Pg) ≺ω conjj′+1(Ph). J

Next, using Proposition 17, we define how to build the eBWT of the multiset of strings
M from P and D. First, we note that we will iterate through all the suffixes in S in
lexicographic order, and build the eBWT ofM in blocks corresponding to the suffixes in S.
Hence, it follows that we only need to describe how to build an eBWT block corresponding
to a suffix s ∈ S. Given s ∈ S, we let Ss be the set of the lexicographic ranks of the phrases
of D that have s as a suffix, i.e., Ss = {i | 1 ≤ i ≤ |D|, s is a suffix of Di ∈ D}. Moreover,
given the string Th ∈ M, we let conji(Th) be the i-th conjugate of Th, let j and k be the
position and offset of Th[i], and lastly, let p be the position of Ph[j] in eBWT(P). We define
f(p, k) = DPh[j][k − 1] if k > 1, otherwise f(p, k) = DPh[j−1][|DPh[j−1]| − w] where we view
Ph as a cyclic string.
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I Example 18. In Example 13, eBWT(P) = 4 5 1 5 3 2 3 . Let us consider conj4(T2) and
conj3(T3) that are both mapped to the suffix CTT by the function α. By using Example 15,
the position and the offset of T2[4] are 1 and 2, respectively. The position of P2[1] = 3 in
eBWT(P) is 5, because conj2(P2) ≺ω conj2(P3). This implies that conj4(T2) ≺ω conj3(T3)
by Proposition 17. Furthermore, f(5, 2) = T2[3] = A.

Finally, we let Os be the set of pairs (p, c) such that for all d ∈ Ss, p is the position
of an occurrence of d in eBWT(P), and c is the character resulting the application of the
f function considering as k the offset of s in Dd, i.e., c = f(p, |Dd| − |s| + 1). Formally,
Os = {(p, f(p, |DeBWT(P)[p]| − |s|+ 1) | eBWT(P)[p] ∈ Ss}.

I Example 19. In Example 13, if s = CAC ∈ S and Ss = {1 , 5}, where 1 : ACCAC and
5 : GCTATCAC , then it follows that Os = {(3,C ), (2,T), (4,T)} since the phrase 1 is in
position 3 in the eBWT(P) and the suffix CAC starts in position 3 of D1, the character
preceding the occurrences of CAC corresponding to the phrase 1 is C . Analogously, the
phrase 5 is in positions 2 and 4 in the eBWT(P) and the suffix CAC starts in position 6 of
D5, hence the character preceding the occurrences of CAC corresponding to the phrase 5 is
T .

To build the eBWT block corresponding to s ∈ S, we scan the set Os in increasing
order of the first element of the pair, i.e., the position of the occurrence in eBWT(P), and
concatenate the values of the second element of the pair, i.e., the character preceding the
occurrence of s in Th.Note that if all the occurrences in Os are preceded by the same character
c, we do not need to iterate through all the occurrences but rather concatenate |Os| copies
of the character c.

I Example 20. In Example 13, eBWT(M) = GCCCTTTTCTAAGGGAAATTTCCCCAATGTCC ,
where the block of the eBWT corresponding to the suffix s = CAC ∈ S is underlined. Given
Os = {(3,C ), (2,T ), (4,T )}, we generate the block by sorting Os by the first element of each
pair – resulting in Os = {(2,T), (3,C ), (4,T)} – and concatenating the second element of
each pair obtaining TCT .

Keeping track of the first rotations.

So far, we showed how to compute the first component of the eBWT. Now we show how
to compute the second component of the eBWT i.e., the set of indices marking the first
rotation of each string. The idea is to keep track of the starting positions of each text in
the parse, by marking the offset of the first position of each string in the last phrase of the
corresponding parse. We propagate this information during the computation of the eBWT
of the parse. When scanning the suffixes of S, we check if one of the phrases sharing the
same suffix s ∈ S is marked as a phrase containing a starting position, and if the offset of the
starting position coincides with the offset of the suffix. If so, when generating the elements
of Os, we mark the element corresponding to the occurrence of the first rotation of a string,
and we output the index of the eBWT when that element is processed.

Implementation notes.

In practice, as in [8], we implicitly select the set of trigger strings E, by rolling a Karp-Rabin
hash over consecutive windows of size w and take as a trigger strings of length w all windows
such that their hash value is congruent 0 modulo a parameter p. In our version of the
PFP, we also need to ensure that there is at least one trigger string on each sequence of the



14 Computing the original eBWT faster, simpler, and with less memory

collection. Hence, we change the way we select the trigger strings as follows. We define a
set D of remainders and we select a window of length w as a trigger string with hash value
congruent d modulo p if d ∈ D. Note that if we set D = {0} we obtain the same set of trigger
strings as in the original definition. We choose the set D in a greedy way. We start with
D = {0} by scanning the set of sequences and checking if the current sequence has a trigger
string according to the current D. As soon as we find one, we move to the next sequence. If
we don’t find any trigger string, we take the reminder of the last window we checked, and we
include it in the set D.

We note that we consider S to be the set of suffixes of the phrases of D such that s ∈ S
is not a phrase in D nor it has length smaller than w in the implementation. This allows
us to compute f more efficiently since we can compute the preceding character of all the
occurrences of a suffix in S from its corresponding phrase in D. Moreover, as in [8], for each
phrase in D, we keep an ordered list of their occurrences in the eBWT of the parse. For a
given suffix s ∈ S, we do not generate Os all at once and sort it – but rather, we visit the
elements of Os in order using a min-heap as we merge the ordered lists of the occurrences in
the eBWT of the parse of the phrases that share the same suffix s.

5 Experimental results

We implemented the algorithm for building the eBWT and measured its performance on
real biological data. We performed the experiments on a server with Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz with 16 cores and 62 gigabytes of RAM running Ubuntu 16.04 (64bit,
kernel 4.4.0). The compiler was g++ version 9.4.0 with -O3 -DNDEBUG -funroll-loops
-msse4.2 options. We recorded the runtime and memory usage using the wall clock time,
CPU time, and maximum resident set size from /usr/bin/time. The source code is available
online at: https://github.com/davidecenzato/PFP-eBWT.

We compared our method (pfpebwt) with the BCR algorithm implementation of [25]
(ropebwt2), gsufsort [27], and egap [14]. We did not compare against G2BWT [13], lba [6],
and BCR [4] since they are currently implemented only for short reads2. We did not compare
against egsa [28] since it is the predecessor of egap or against methods that construct the
BWT of a multiset of strings using one of the methods we evaluated against, i.e., LiME [18],
BEETL [11], metaBEETL [1], and ebwt2snp [36, 37].

5.1 Datasets
We evaluated our method using 2,048 copies of human chromosomes 19 from the 1000
Genomes Project [42]; 10,000 Salmonella genomes taken from the GenomeTrakr project [41],
and 400,000 SARS-CoV2 genomes from EBI’s COVID-19 data portal [12]. The sequence
data for the Salmonella genomes were assembled, and the assembled sequences that had
length less than 500 bp were removed. In addition, we note that we replaced all degenerate
bases in the SARS-CoV2 genomes with N’s and filtered all sequences with more than 95%
N’s. A brief description of the datasets is reported in Table 1. We used 12 sets of variants of
human chromosome 19 (chr19), containing 2i variants for i = 0, . . . , 11 respectively. We used
6 collections of Salmonella genomes (salmonella) containing 50, 100, 500, 1,000, 5,000, and
10,000 genomes respectively. We used 5 sets of SARS-CoV2 genomes (sars-cov2) containing

2 G2BWT crashed and BCR did not terminate within 48 hours with the smallest of each dataset; lba works
only with sequences of length up to 255

https://github.com/davidecenzato/PFP-eBWT
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Name Description σ n/106 n/r

chr19 Human chromosome 19 5 121,086.62 2199.21
salmonella Salmonella genomes 4 48,791.75 112.72
sars-cov2 SARS-CoV2 genomes 5 11,930.96 1424.65

Table 1 Datasets used in the experiments. We give the alphabet size in column 3. We report
the length of the file and the ratio of the length to the number of runs in the eBWT in columns 4
and 5, respectively.

25,000, 50,000, 100,000, 200,000, 400,000 genomes respectively. Each collection is a superset
of the previous one.

5.2 Setup
We run pfpebwt and ropebwt2 with 16 threads, and gsufsort and egap with a single
thread since they do not support multi-threading. Using pfpebwt, we set w = 10 and
p = 100. Furthermore, for pfpebwt on the salmonella dataset, we used up to three different
remainders to build the eBWT. We used ropebwt2 with the -R flag to exclude the reverse
complement of the sequences from the computation of the BWT. All other methods were
run with default parameters.

We repeated each experiment five times, and report the average CPU time and peak
memory for the set of chromosomes 19 up to 64 distinct variants, for Salmonella up to
1,000 sequences, and for all SARS-CoV2. The experiments that exceeded 48 hours of wall
clock time or exceeded 62 GB of memory were omitted for further consideration, e.g., 128
sequences of chr19, 5000 sequences of salmonella and 400,000 sequences of sars-cov2 for
egap. Furthermore, gsufsort failed to successfully build the eBWT for 256 sequences of
chr19, 5000 sequences of salmonella, and 400,000 sequences of sars-cov2 or more, because
it exceeded the 62GB memory limit.

5.3 Results
In Figures 3, 4, and 5 we illustrate the construction time and memory usage to build the
eBWT and the BWT of collections of strings for the chromosome 19 dataset, the Salmonella
dataset, and the SARS-CoV2 dataset, respectively.

pfpebwt was the fastest method to build the eBWT of 4 or more sequences of chromosome
19, with a maximum speedup of 7.6x of wall-clock time and 2.9x of CPU time over ropebwt2
on 256 sequences of chromosomes 19, 2.7x of CPU time over egap on 64 sequences, and
3.8x of CPU time over gsufsort on 128 sequences. On Salmonella sequences, pfpebwt
was always the fastest method, except for 10,000 sequences where ropebwt2 was the fastest
method on wall-clock time. pfpebwt had a maximum speedup of 3.0x of wall-clock time
over ropebwt2 on 100 sequences of salmonella. Considering the CPU time, pfpebwt was
the fastest for ≥ 500 sequences with a maximum speedup of 1.7x over ropebwt2 on 100
sequences and 1.2x over gsufsort and egap on 1,000 sequences. On SARS-CoV2 sequences,
pfpebwt was always the fastest method, with a maximum speedup of 2.4x of wall-clock time
over ropebwt2 while a maximum speedup of 1.3x of CPU time over ropebwt2 on 400,000
sequences, 2.9x over gsufsort and 2.7x over egap on 200,000 sequences of SARS-CoV2.

Considering the peak memory, on the chromosomes 19 dataset, ropebwt2 used the smallest
amount of memory for 1, 2, 4, 8, and 2,048 sequences, while pfpebwt used the smallest amount
of memory in all other cases. pfpebwt used a maximum of 5.6x less memory than ropebwt2
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Figure 3 Chromosome 19 dataset construction CPU time and peak memory usage. We compare
pfpebwt with ropebwt2, gsufsort, and egap.
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Figure 4 Salmonella dataset construction CPU time and peak memory usage. We compare
pfpebwt with ropebwt2, gsufsort, and egap.

on 256 sequences of chromosomes 19, 28.0x less than egap on 64 sequences, and 45.3x less
than gsufsort on 128 sequences. On Salmonella sequences, pfpebwt used more memory
than ropebwt2 for 50, 100, and 10,000 sequences, while pfpebwt used the smallest amount of
memory on all other cases. The largest gap between ropebwt2 and pfpebwt memory peak is
of 1.7x on 50 sequences. On the other hand, pfpebwt used a maximum of 17.0x less memory
than egap and gsufsort on 1,000 sequences. On SARS-CoV2 sequences, pfpebwt always
used the smallest amount of memory, with a maximum of 6.4x less memory than ropebwt2
on 25,000 sequences of SARS-CoV2, 57.1x over gsufsort and egap on 200,000 sequences.

The memory peak of ropebwt2 is given by the default buffer size of 10 GB, and the size
of the run-length encoded BWT stored in the rope data structure. This explains the memory
plateau on 10.5 GB of ropebwt2 on the chromosomes 19 dataset. However, ropebwt2 is able
only to produce the BWT of the input sequence collection, while pfpebwt can be trivially
extended to produce also the samples of the conjugate array at the run boundaries with
negligible additional costs in terms of time and peak memory.
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(a) Construction time.
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Figure 5 SARS-CoV2 dataset construction CPU time and peak memory usage. We compare
pfpebwt with ropebwt2, gsufsort, and egap.

6 Conclusion

We described the first linear-time algorithm for building the eBWT of a collection of strings
that does not require the manipulation of the input sequence, i.e., neither the addition of
an end-of-string character, nor computing and sorting the Lyndon rotations of the input
strings. We also combined our algorithm with an extension of the prefix-free parsing to
enable scalable construction of the eBWT. We demonstrated pfpebwt was efficient with
respect to both memory and time when the input is highly repetitive. Lastly, we curated a
novel dataset of 400,000 SARS-CoV2 genomes from EBI’s COVID-19 data portal, which we
believe will be important for future benchmarking of data structures that have potential use
in bioinformatics.
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A eBWT missing examples

Full conjugate table for Example 1: M = {GTACAACG,CGGCACACACGT,C}.

GCA �ω-sorted conjugates
1 (5,1) AACGGTAC
2 (3,1) ACAACGGT
3 (5,2) ACACACGTCGGC
4 (7,2) ACACGTCGGCAC
5 (6,1) ACGGTACA
6 (9,2) ACGTCGGCACAC
7 (4,1) CAACGGTA
8 (4,2) CACACACGTCGG
9 (6,2) CACACGTCGGCA
10 (8,2) CACGTCGGCACA

→ 11 (1,3) C
→ 12 (1,2) CGGCACACACGT

13 (7,1) CGGTACAA
14 (10,2) CGTCGGCACACA
15 (3,2) GCACACACGTCG
16 (2,2) GGCACACACGTC
17 (8,1) GGTACAAC

→ 18 (1,1) GTACAACG
19 (11,2) GTCGGCACACAC
20 (2,1) TACAACGG
21 (12,2) TCGGCACACACG

eBWT({GTACAACG,CGGCACACACGT,C}) = CTCCACAGAACTAAGCCGCGG


	1 Introduction
	2 Preliminaries
	2.1 Burrows-Wheeler-Transform
	2.2 Generalized Conjugate Array and Extended Burrows-Wheeler Transform

	3 A simpler algorithm for computing the eBWT and GCA
	3.1 Correctness and running time
	3.2 Computing the BWT for one single string

	4 eBWT and prefix-free parsing
	5 Experimental results
	5.1 Datasets
	5.2 Setup
	5.3 Results

	6 Conclusion
	A eBWT missing examples

