arXiv:2105.14903v1 [cs.FL] 31 May 2021

Lower Bounds for the Number of Repetitions in 2D Strings

Pawel Gawrychowski*!, Samah Ghazawi?, and Gad M. Landau'"

nstitute of Computer Science, University of Wroctaw, Poland
2Department of Computer Science, University of Haifa, Israel
3NYU Tandon School of Engineering, New York University, Brooklyn, NY, USA

Abstract

A two-dimensional string is simply a two-dimensional array. We continue the study of the
combinatorial properties of repetitions in such strings over the binary alphabet, namely the
number of distinct tandems, distinct quartics, and runs. First, we construct an infinite family
of n x n 2D strings with Q(n?) distinct tandems. Second, we construct an infinite family of
n x n 2D strings with ©(n?logn) distinct quartics. Third, we construct an infinite family of
n x n 2D strings with Q(n?logn) runs. This resolves an open question of Charalampopoulos,
Radoszewski, Rytter, Walen, and Zuba [ESA 2020], who asked if the number of distinct quartics
and runs in an n x n 2D string is O(n?).

1 Introduction

The study of repetitions in strings goes back at least to the work of Thue from 1906 [35], who
constructed an infinite square-free word over the ternary alphabet. Since then, multiple definitions
of repetitions have been proposed and studied, with the basic question being focused on analyzing
how many such repetitions a string of length n can contain. The most natural definition is perhaps
that of palindromes, which are fragments that read the same either from left to right or right to
left. Of course, any fragment of the string a”™ is a palindrome, therefore we would like to count
distinct palindromes. An elegant folklore argument shows that this is at most n + 1 for any string
of length n [19], which is attained by a".

Another natural definition is that of squares, which are fragments of the form zz, where x
is a string. Again, because of the string a™ we would like to count distinct squares. Using a
combinatorial result of Crochemore and Rytter [16], Fraenkel and Simpson [21] proved that a
string of length n contains at most 2n distinct squares (see also [25] for a simpler proof, and [26]
for an upper bound of 2n — ©(logn)). They also provided an infinite family of strings of length n
with n — o(n) distinct squares. It is conjectured that the right upper bound is actually n, however
so far we only know that it is at most 11/6n [18]. Interestingly, a proof of the conjecture for the
binary alphabet would imply it for any alphabet [29].

Perhaps a bit less natural, but with multiple interesting applications, is the definition of runs.
A run is a maximal periodic fragment that is at least twice as long as its smallest period. Roughly

*Partially supported by the Bekker programme of the Polish National Agency for Academic Exchange
(PPN/BEK/2020/1/00444).

TPartially supported by the Israel Science Foundation grant 1475/18, and Grant No. 2018141 from the United
States-Israel Binational Science Foundation (BSF).



speaking, runs capture all the repetitive structure of a string, making them particularly useful
when constructing algorithms [15]. A well-known result by Kolpakov and Kucherov [28] is that a
string of length n contains O(n) runs; they conjectured that it is actually at most n. After a series
of improvements [12,31,32], with the help of an extensive computer search the upper bound was
decreased to 1.029n [13,24]. Finally, in a remarkable breakthrough Bannai et al. [9] confirmed the
conjecture. On the lower bound side, we current know an infinite family of strings with at least
0.944575712n runs [22,30,33]. Interestingly, better bounds are known for the binary alphabet [20].

Given that we seem to have a reasonably good understanding of repetitions in strings, it is
natural to consider repetitions in more complex structures, such as circular strings [7,17,34] or
trees [14,23,27]. In this paper, we are interested in repetitions in 2D strings. Naturally, algorithms
operating on 2D strings can be used for image processing, and combinatorial properties of such
strings can be used for designing efficient pattern matching algorithms [1—4, 11]. Therefore, we
would like to fully understand what is a repetition in a 2D string, and what is the combinatorial
structure of such repetition.

Apostolico and Brimkov [8] introduced the notions of tandems and quartics in 2D strings.
Intuitively, a tandem consists of two occurrences of the same block W arranged in a 1 x 2 or 2 x 1
pattern, while a quartic consists of 4 occurrences of the same block W arranged in a 2 x 2 pattern.
They considered tandems and quartics with a primitive W, meaning that it cannot be partitioned
into multiple occurrences of the same W’ (called primitively rooted in the subsequent work [10]),
and obtained asymptotically tight bounds of ©(n?log?n) and ©(n?logn) for the number of such
tandems and quartics in an n X n 2D string, respectively. Both tandems and quartics should be seen
as an attempt to extend the notion of squares in a 1D string to 2D strings, and thus the natural
next step is to consider distinct tandems and quartics (without restricting W to be primitive). Very
recently, Charalampopoulos et al. [10] studied the number of distinct tandems and quartics in an
n x n 2D string. For distinct tandems, they showed a tight bound of ©(n?) with the construction
used in the lower bound using an alphabet of size n. For distinct quartics, they showed an upper
bound of O(n?log?n) and conjectured that it is always O(n?), similarly to the number of distinct
squares in a 1D string of length n being O(n).

Amir et al. [5,6] introduced the notion of runs in 2D strings. Intuitively, a 2D run is a maximal
subarray that is both horizontally and vertically periodic; we defer a formal definition to the next
section. They proved that an n x n 2D string contains O(n?) runs, showing an infinite family of
n x n 2D strings with Q(n?) runs. Later, Charalampopoulos et al. [10] significantly improved on
this upper bound, showing that an n x n 2D string contains O(n?log®n) runs, and conjectured
that it is always O(n?), similarly to the number of runs in a 1D string of length n being O(n).

Our results. In this paper, we consider 2D strings and obtain improved lower bounds for the
number of distinct tandems, distinct quartics, and runs. We start with the number of distinct
tandems and extend the lower bound of Charalampopoulos et al. [10] over the binary alphabet in
Section 3 by showing the following.

Theorem 1.1. There exists an infinite family of nxn 2D strings over the binary alphabet containing
Q(n?) distinct tandems.

Then, we move to the number of distinct quartics in Section 4 and the number of runs in
Section 5, and show the following.

Theorem 1.2. There exists an infinite family of nxn 2D strings over the binary alphabet containing
Q(n%logn) distinct quartics.



Theorem 1.3. There exists an infinite family of nxn 2D strings over the binary alphabet containing
Q(n?logn) runs.

By the above theorem, the algorithm of Amir et al. [6] for locating all 2D runs in O(n? log n+output)
time is worst-case optimal.

Our constructions exhibit a qualitative difference between distinct squares and runs in 1D strings
and distinct quartics and runs in 2D strings. The number of the former is linear in the size of the
input, while the number of the latter, surprisingly, is superlinear.

Our techniques. For distinct tandems, our construction is similar to that of [10], except that
we use distinct characters only in two columns. This allows us to replace them by their binary
expansions, with some extra care as to not lose any counted tandems.

For both distinct quartics and runs, we proceed recursively, constructing larger and larger 2D
strings A; starting from the initial 2D string A;. The high-level ideas behind both constructions
are different, though.

For distinct quartics, our high-level idea is to consider subarrays with ©(logn) different aspect
ratios. For each such aspect ratio, we create 2(n?) distinct quartics, for an n x n array. Each step
of the recursion corresponds to a different aspect ratio and creates multiple new special characters,
as to make the new quartics distinct; later we show how to implement this kind of approach with
the binary alphabet.

For runs, we directly proceed with a construction for the binary alphabet, and build on the
insight used by Charalampopoulos et al. [10] to show that the same quartic can be induced by
O(n?) runs. Each step of the recursion corresponds to runs with asymptotically the same size.
This needs to be carefully analyzed in order to lower bound the overall number of runs.

2 Preliminaries

Let X be a fixed finite alphabet. A two-dimensional string (or 2D string, for short) over ¥ is an
m x n array A[0..m — 1][0..n — 1] with m rows and n columns, with every cell A[i][j] containing an
element of ¥. Furthermore, we use € to denote an empty 2D string. A subarray A[z;..xs|[y1..y2]
of A[0..m — 1][0..n — 1] is an (x2 — x1 + 1) X (y2 — y1 + 1) array consisting of cells A[i][j] with
i € [z1,22],7 € [y1,y2]-

We consider three notions of repetitions in 2D strings.

Tandem. A subarray T of A is a tandem if it consists of 2 x 1 (or 1 x 2) subarrays W # e. Two
tandems T' = and T' = are distinct when W # W'.

Quartic. A subarray @ of A is a quartic if it consists of 2 x 2 subarrays W # e. Two quartics

BRI
Q= % % and Q' = %, %, are distinct when W # W',

Run. Consider an r x ¢ subarray R of A. We define a positive integer p to be its horizontal period
if the i*" column of R is equal to the (i + p)*™® column of R, for all i = 1,2,...,¢c —p. The
horizontal period of R is its smallest horizontal period, and we say that R is h-periodic when
its horizontal period is at most ¢/2. Similarly, we define a vertical period, the vertical period,
and a v-periodic subarray. An h-periodic and v-periodic R is called a run when extending
R in any direction would result in a subarray with a larger horizontal or vertical period.
Informally, for such R there exists a subarray W such that we can represent R as follows,



with at least two repetitions of W in both directions, and we cannot extend R in any direction
while maintaining this property.

wol...|w | W
R=rwrTww
WI/ . W// W/I/

1 n
Where W = , W = VT[;/ and W = V‘V// ‘X//

w' W' w" U, U, V,V' and V" may be e.

, and any of the subarrays

3 Distinct Tandems

In this section, we show how to construct an n x n array A over the binary alphabet with ©(n?)
distinct tandems, for any ¢ > 1, where n = 3 - 2¢ + 20, The i*" row of A is divided into 5 parts,
see Figure 1. The first, third, and fifth part each consists of 2¢ cells, each containing the binary
representation of 1. The second and fourth part each consists of ¢ cells that contains the binary
representation of the number i — 1. Hence, all rows of A are different, see Figure 2.

2¢ cells £ cells 2¢ cells £ cells 2¢ cells
—— =

| 0...01 | (i —1) in binary [ 0...01 | (i — 1) in binary | 0...01

Figure 1: The i*® row of A.

Theorem 1.1. There exists an infinite family of nxn 2D strings over the binary alphabet containing
Q(n?) distinct tandems.

Proof. To lower bound the number of tandems in A, consider any 1 < ¢ < j < n and k €
{1,2,...,2%}. Then, let T be the subarray of width 2(2¢ + /) starting in the i*" row and ending
in the j* row with the top left cell of T being A[i][k]. We claim that for each choice of i, j, k we
obtain a distinct tandem, making the number of distinct tandems in A at least n? - 2 = Q(n?). It
is clear that each such T is a tandem. To prove that all of them are distinct, consider any such T'.
The position of the leftmost 1 in its top row allows us to recover the value of k. Then, the next ¢
cells contain the binary expansion of (i — 1), so we can recover i. Finally, the height of T" together
with ¢ allows us to recover j. Thus, we can uniquely recover 4, j, k from T, and all such tandems
are distinct. O

4 Distinct Quartics

In this section, we show how to construct an n x n array A, with Q(n?logn) distinct quartics, for
any £ > 1, where n = 3/ — 1. The construction is recursive, that is, we construct a series of arrays
Ay, As, ..., Ay, with A; being defined using A; 1. The number of columns of each array A; is the
same and equal to n. The number of rows is increasing, starting with 2 rows in A; and ending with
n rows in the final array Ay. We provide the details of the construction in the next subsection,
then analyze the number of distinct quartics in Ay in the subsequent subsection. Finally, in the



1 n
1[0 o1l o o1l o] [o[1
o] [of1 0 01 0 01
iyol Tol1 0 Jo|i@Mol| (o1
o|.[of[1] Yo 01 of.[01
jiol [ol1o of[1P™ol| (o1
o] Jol1l o] JolThyo| [o]1
o] [of1 0 01 0 01
nlo| [o0]1 0 01 0 01

Figure 2: Array A, where each color corresponds to the binary representation of the row number.
The black borders correspond to the leftmost tandem of height j — i + 1 and width 2(2¢ 4 ¢); by
shifting it to the right we obtain distinct tandems.

last subsection we show how to use A, to obtain an n’ x n’ array A over the binary alphabet with
Q(n%logn’) distinct quartics.
4.1 Construction

First, we provide array A; of size 2 x n with 0 in all but 4 cells, namely, cells A;[1][%2 + 1],
A12][%52 + 1], Aq[1][252] and A41[2][#%52] containing the same special character. In particular,
we are dividing the columns into 3 equal parts, see Figure 3.

1 n

Figure 3: Array A;, where white cells contain 0 and blue cells contain the same special character.

Second, we describe the general construction of an M; X n array A;, for i > 2. We maintain the
invariant that the columns of A; are partitioned into 3 maximal ranges of N; columns consisting
of only 0s and separated with single columns, i.e., Ny = @ To obtain A;, we first vertically
concatenate 3 copies of A;, using different special characters in each copy, while adding a single
separating row between the copies. Thus, M; = 3M,;_1+2. Initially, each separating row consists of
only 0s. For each maximal range of columns in A;_; that consists of only Os, we proceed as follows.
We further partition the columns of the range into 3 sub-ranges of % columns, separated by
single columns. We create a new special character and insert its four copies at the intersection
of each column separating the sub-ranges and each separating row. Overall, we create 3'~! new
special characters. See Figure 4 for an illustration with ¢ = 2 and Figure 5 for an example with

n = 26 and A3 being the final array.

4.2 Analysis

Before we move to counting distinct quartics in each A;, we recall that the number of columns in
each A; is the same and equal to n, while the number of rows M; is described by the recurrence
My =2 and M; = 3M;_1 + 2 for i > 2, hence M; = 3* — 1. The size N; of each maximal range of
columns consisting only of 0s is described by the recurrence Ny = ”T72 and N; = % for ¢ > 2,

hence N; = ”;; — 1. By setting n = 3 — 1 we guarantee that all these numbers are integers.




[N
=

H Han B B
N _Han B n

i
N

HEEEEN
HEEEEE

® N U W N R

Figure 4: Array As, where rows 1-2 are the first copy of A1, rows 4-5 are the second copy of Ay, and
rows 7-8 are the third copy of A;. Rows 3 and 6 are the separating rows. Each color corresponds
to a different special character.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

10

11

12

13

S

14

15

.
1

#

16

17

19

=

20

21
22

23
2
25

el
el

el
el

e

Figure 5: Array As includes 3 copies of As in rows 1-8, 10-17 and 19-26. The separating rows are
9 and 18. Note that As is the final array for n = 26. Additionally, each color represent a different
special character, in total 27 special characters are used in As.

We now analyze the number of distinct quartics in each A4;. We will be only counting some of
them, and denote by @; the distinct quartics counted in the following argument that, similarly to
the construction, considers first : = 1 and then the general case.

For i = 1, we count distinct quartics that contain special characters. Each of them is of width
2(% + 1) and height 2. There are Q; = an +1= "TH such quartics and all of them are distinct,
see Figure 6.

For the general case of i > 2, we consider two groups of distinct quartics. The first group
consists of distinct quartics contained in the copies of A;_1. For each of the 3*~! maximal range of

N;_1 columns of A;_; consisting of Os, the second group consists of all possible (2M;_1+2) x ZM’%

subarrays contained in that range. For each such range, we have % + 1 possible horizontal
shifts and M;_1 + 1 possible vertical shifts and for each of them we obtain a distinct quartic
containing the new special character created for the range. As we use different special characters
in every copy of A;_1 and, for every range, in the separating rows of A;, overall we have at least
Qi =3Qi—1+ 31*1(% + 1)(M;_1 + 1) distinct quartics. See Figure 7 for an illustration with
1= 2.

Substituting the formulas for N;_; and M;_1, we conclude that ;1 = ”T‘H and Q; = 3Q;_1 +



Figure 6: Array A;, where the red border corresponds to the leftmost quartic that contains the
special character cells, and by shifting it to the right we obtain distinct quartics.

1 n

]S

HE:HT
-

L L.

@ N U A W N R

Figure 7: Array Ao, where the black border corresponds to the leftmost quartic in the third copy
of Ay, and by shifting it to the right we obtain distinct quartics. The red borders correspond to
the leftmost quartic in each of the 3 maximal ranges of columns of A; consisting of Os; by shifting
each of them to the right and down we obtain distinct quartics.

3772(n+1) for i > 2. Unwinding the recurrence, we obtain that Q; = 3 "1Q1 + (i —1)3* 2(n+1) =
312l 4 (i — 1)3772(n + 1). Therefore, Q; = 3 "2i(n + 1).

Theorem 4.1. There exists an infinite family of n x n 2D strings containing Q(n?logn) distinct
quartics.

Proof. For each £ > 1, we take n = 3¢ —1 and define arrays A;, As, ..., Ay as described above. The
final array Ay consists of My = n rows and n columns, and contains at least Q, = 3‘~2((n + 1)
distinct quartics, which is Q(n?logn). O

While we were not concerned with the size of the alphabet in this construction, observe that
the number of distinct special characters S; in A; is described by the recurrences S; = 1 and
S; = 38,1 + 37! for i > 2. This is because we are using new special characters in each copy of
A;_1 and adding 3! new special characters to divide the maximal ranges of N;_; columns into 3
parts. Therefore, the size of the alphabet used to construct A, is Sy = w + 1.

4.3 Reducing Alphabet

In this subsection, we show how to modify the array A, to obtain an array Aj over the binary
alphabet, for any ¢ > 4. Informally speaking, we will replace each special character by a small
gadget encoding its binary representation, and then carefully revise the parameters of the new
construction, particularly the number of distinct quartics.

Let ¥ = {1,2,...,0} be the alphabet used to construct A,, where o = ("H)l;w +1. We
define arrays Bi, Bs, ..., B, of the same size k x k, where k = /logo + 2. The first row and
column of every array B. contain only Os, while the remaining cells of the last row and column
contain only 1s. The concatenation of cells from the middle of B, (without the first and last row
and column), in the left-right top-bottom order, should be equal to the binary representation of c.
Now, we construct the array Aj, from the array A, by repeating the recursive construction of arrays



A, Ao, ..., Ay, but replacing a cell containing the character ¢ with the array B.. We denote the
resulting arrays A}, A5, ..., A).

We now set n’ = n - k. Each of the arrays A} consists of n’ columns and M; - k rows, so the
final array, Aj, is of size n’ x n/. We now analyze the number of distinct quartics in A;. This will
be done similarly as it was for A;, but we must be more careful about arguing quartics as being
distinct, because we no longer have multiple distinct special characters. We first argue that, for
all sufficiently wide and tall subarrays of R, the horizontal and vertical shifts are uniquely defined
modulo k.

Lemma 4.2. Consider a subarray R = Al[z1..x2][y1..y2] with width and height at least k. Then
(x1 mod k) and (y1 mod k) can be recovered from R.

Proof. We only analyze how to recover (y; mod k), recovering (x; mod k) is symmetric. By con-
struction of By, Bo, ..., By, every k™ row of Al consists of only 0s, while in every other row there
is at least one 1 in every block of k cells. Therefore, because the width of R is at least k, a row of
R consists of 0Os if and only if it is aligned with a row of A} that consists of 0s. Because the height
of R is at least k such a row surely exists and allows us to recover (y; mod k). O

We argue that the number of distinct quartics in A} is at least Q) = L:;?k +1. To show this, we
consider subarrays spanning the whole height of A} and of width 2(% +k). There are "1637_2’“ +1
such subarrays and each of them is a quartic that fully contains some B.. Furthermore, subarrays
starting in columns with different remainders modulo k are distinct by Lemma 4.2. Subarrays
starting in columns with the same remainder modulo k£ are also distinct, as in such a case we can
recover the special character from B, fully contained in the subarray.

For the general case, we claim that the number of distinct quartics in A} is at least Q) =
3Q ;1 + 314,1(1\/1-,1%1:—% +1)(M;—1-k+1) for i > 2. The argument proceeds as for A;; however, we
must argue that the counted quartics are all distinct. By construction, each of them fully contains
some B.. Thus, quartics starting in columns with different remainders modulo & (and also in rows
with different remainders modulo k) are distinct by Lemma 4.2. Now consider all counted quartics
starting in columns with remainder y modulo k and rows with remainder x modulo k. For each of
them, we can recover the special character from B, fully contained in the quartic, so all of them
are distinct.

Finally, we lower bound and solve the recurrence for @, as follows.

Q=3 + 3 (I (k)
>3Qiy + 372 k(N1 — 2)M;
n+1

=3Q, , +372- kX 3T 3)(37 - 1)
) Coi—1 _ 1
= 3Q;_1 + 32_2 . k2(’n — 37')33T
>3Q,_, +373 - k*(n -3 using i > 2.

Unwinding the recurrence, we obtain that @} > 2;22 30793073 k2 (n—3%) > 33 kK2 ((i—1)n— 3%)

Theorem 1.2. There exists an infinite family of nxn 2D strings over the binary alphabet containing
Q(n%logn) distinct quartics.



Proof. For each £ > 4, we take n = 3° — 1 and define arrays A}, A), .. ., A} as described above.
The final array A} is over the binary alphabet by construction, consists of n’ rows and n’ columns,
where n’ = n - k, and contains at least Q) distinct quartics. Finally,

3@
Q>33 k2 (t—1)n— )
3@
=37 (- - 1) - )
3@

>33 k2. (4= 2)(3f —1) because 5 <3'-1

¢ l
234—3.k2.§.(3f_1) because€—22§.

Therefore, the number of runs in A} is Q(3% - k2 - £) = Q(n"?logn’). O

5 Runs

In this section, we show how to construct an n x n array A, with Q(n?logn) runs, for any ¢ > 2,
where n = 2-4¢. As in the previous section, the construction is recursive, i.e., we construct a series
of arrays A1, Ao, ..., Ay, with A; being defined using A;_1. Both the number of rows and columns
in A; is equal to 2 - 4%, starting with 8 rows and columns in A;. We describe the construction in
the next subsection, then analyze the number of runs in Ay in the subsequent subsection.

5.1 Construction

First, we provide array A; of size 8 x 8 with 1s in the cells A;[1][2], A1[2][1], A1[7][8] and A;[8][7],
and Os in the other cells, see Figure 8 (left).

Second, we obtain array A; by concatenating 4 x 4 copies of array A;_; while using 1s to fill the
antidiagonals in the upper left and bottom right copy of A;_1, with A ; denoting such modified
copy of A;_1, see Figure 8 (right) for an illustration with ¢ = 2 and Figure 9 for an example with
n = 128 and A3 being the final array.

The intuition behind the recursive construction is to duplicate the runs obtained in the previous
arrays. For example, the array A; produces one run that does not touch the boundaries. This is

Figure 8: Left: array A;, where red cells contain 1s and white cells contain 0s. Right: Array As
consists of 14 copies of A; and 2 copies of A]. Red cells include 1s and white cells include 0s. Red
is used to fill the antidiagonals of A].



-

-
#
ﬁ:
-
-

-

-

-
=
&
-
# H
ﬁ
.
&
o
.
&

e

EH'EE_E:;'EE EE_E:;_: E #
’% # % : :%

Figure 9: Array As includes 14 copies of Ag, 2 copies of A), 216 copies of A; and 40 copies of A].
Note that, Aj is the final array for n = 128.

duplicated 14 times in As, hence, A; contributes 14 runs to the total number of runs produced by
As. Moreover, the intuition behind filling the antidiagonals is to produce new runs such that the
number of the new runs is equal to the size of the array up to some constant. As an example, A
produces 72 new runs between the antidiagonals of A} such that the upper left and the bottom
right corners of each run touch exactly two cells of the antidiagonals of the two copies of A). See
Figure 10 for an illustration. Therefore, overall the number of runs produced by As is 14+ 72 = 63.
The general case is analyzed in detail in the next subsection.

5.2 Analysis

The number N; of rows and columns in A; is described by the recurrence N1 = 8 and N; = 4N, _1
for i > 2, so N; = 2-4%. By straightforward induction, the antidiagonal of every A; is filled with Os.

We analyze the number of runs in A;. First, we have R; new runs not contained in any of the
copies of A;_; or A!_; such that the upper left and the bottom right corners touch exactly two
cells of the antidiagonals of the two copies of A] ;.

10



[
"

0"
R

\\lL!

Figure 10: Array As, where the blue borders correspond to new runs produced by As. The green
borders correspond to runs previously produced by A;.

Lemma 5.1. R; = (2-471 —1)2 = 10" _4i 4 1,

Proof. Consider any subarray R of A; with the upper left and the bottom right corners touching
exactly two cells of the antidiagonals of the two copies A, ;. It is easy to verify that N;_; is a
horizontal and a vertical period of R. Therefore, R is h-periodic and v-periodic. Now consider
extending R in any direction, say by one column to the left. Then the topmost cell of the new
column would contain a 1 from the antidiagonal of A§—1- For the horizontal period of the extended
array to remain N; 1 we would need a 1 in the corresponding cell of the antidiagonal of A; 1,
but that cell contains a 0, a contradiction. Therefore, any such R is a run. The number of such
subarrays is (N;_1 — 1)2 = (2471 —1)2 = 1& — 4 4 1 because we have (N;_; — 1) possibilities
for choosing the upper left and bottom right corner. O

Second, we have the runs contained in the 14 copies of A;_1, hence A;_1 contributes 14 - R; 1
to the total number of runs in A;. Moreover, whenever A;_; contains a copy of A;, for some
j <i—1, all new runs of A; are preserved in A;_; and consequently in A;. Additionally, we have
the two copies of A, ;. Because we have filled their antidiagonals with 1s, we lose some of the
runs. However, whenever A]_; contains a copy of A; that does not intersect the antidiagonal, for
some j < i — 1, all new runs of A; are preserved in A, ; and consequently in A;. For example,
each copy of A;_; contains 14 copies of A; 5 and each copy of A, _; contains 10 copies of A;_5 (5
above and 5 below the antidiagonal). Hence, A; contains 14 - 14 + 2 - 10 = 216 copies of A;_o, thus
A;_o contributes 216 - R;_o to the total number of runs in A;. Therefore, in order to count the
total number of runs in the final array Ay, we need to analyze how many copies of A; are in Ay, for
1<i</.

Let X; denote the number of copies of A; in Ay, and Y; denote the number of copies of A} in
Ay. By construction, A; consists of 14 copies of A;_; and 2 copies of A] ;. Similarly, A} consists
of 10 copies of A;_; (5 above and 5 below the antidiagonal) and 6 copies of A, ; (4 intersecting
the antidiagonal and the top left and bottom right copy). Consequently, we obtain the recurrences
Xy=1and X; =14X;41 +10Y;41 for i < £, Yy =0 and Y; = 6Y;41 + 2X;41 for i < £. Instead of
solving the recurrences, we show the following.

Lemma 5.2. X; > %165_i

Proof. We first observe that X;+Y; = 16(X;114Yi41), as A;11 consists of the 4x4 smaller subarrays,
each of them being A; or A]. By unwinding the recurrence, X; +Y; = 16€_i(Xg +Y) = 1647
Furthermore, we argue that X; > 5Y; for every ¢ < £. This is proved by induction on i:

11



i=0—1 X,y = 14X, + 10Y; = 14 > 5Y,_; = 5(6Y; + 2X,) = 10.

i < £—1 Assuming that X;11 > 5Y;41, we write X; = 14X;41 + 10Y;41 > 10X;41 + 30Y; 41 and
5Y; = 30Y;11 + 10X, 11, so X; > 5Y;.

Therefore, 16/~ = X; + ¥; < X; + %, s0 X; > 216/, O

As explained earlier, whenever a copy of A; occurs in Ay, all of its new runs contribute to the
total number of runs in Ay. Therefore, the total number of runs in Ay is at least Zle X, R;.

Theorem 1.3. There exists an infinite family of nxn 2D strings over the binary alphabet containing
Q(n%logn) runs.

Proof. For each ¢ > 2, we take n = 2-4¢ and construct the arrays Ay, As, ..., As as described above.
The final array Ay is over the binary alphabet by construction, consists of n rows and columns and
contains at least Zle X; - R; runs. By Lemma 5.1 and 5.2, this is at least

‘5 5, 16/
21607024 — 12 =216 ) 167 (— — 4P+ 1
> it = G101 )

i=1 6

5o, 1 1 1

= 216¢ e
66;(4 42 161)
5,0 1 1 4

= 2164 = _ S
66(4+3~4e 15 - 16¢ 15)
5 , 5, 1 5,

=—/-16 4" — — 16
6-4 +6-3 6-3 6-3
) 1 2

> 7-16° — — — ~16°

— 24 18 9
1

> ﬂf -16° = Q(n?logn) using £ > 2 O

References

[1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Data Compression
Conference, pages 279-288, 1992.

[2] A. Amir and G. Benson. Two-dimensional periodicity in rectangular arrays. SIAM Journal
on Computing, 27(1):90-106, 1998.

[3] A. Amir, G. Benson, and M. Farach-Colton. An alphabet independent approach to two di-
mensional pattern matching. SIAM Journal on Computing, 23(2):313-323, 1995.

[4] A. Amir, G. Benson, and M. Farach-Colton. Optimal parallel two dimensional text searching
on a CREW PRAM. Information and Computation, 144:1-17, 1998.

[5] A. Amir, G. M. Landau, S. Marcus, and D. Sokol. Two-dimensional maximal repetitions. In
26th ESA, 112(2):1-14, 2018.

[6] A. Amir, G. M. Landau, S. Marcus, and D. Sokol. Two-dimensional maximal repetitions.
Theoretical Computer Science, 812:49-61, 2020.

12



[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Amit and P. Gawrychowski. Distinct squares in circular words. In 24/th SPIRE, pages
27-37, 2017.

A. Apostolico and V.E. Brimkov. Fibonacci arrays and their two-dimensional repetitions.
Theoretical Computer Science, 237(1-2):263-273, 2000.

H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The “runs” theorem.
SIAM Journal on Computing, 46(5):1501-1514, 2017.

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleni, and W. Zuba. The Number of
Repetitions in 2D-Strings. In 28th ESA, 173(32):1-18, 2020.

R. Cole, M. Crochemore, Z. Galil, L. Gasieniec, R. Eariharan, S. Muthukrishnan, K. Park,
and W. Rytter. Optimally fast parallel algorithms for preprocessing and pattern matching in
one and two dimensions. In 34th FOCS, pages 248-258, 1993.

M. Crochemore and L. Ilie. Maximal repetitions in strings. Journal of Computer and System
Sciences, 74(5), 2008.

M. Crochemore, L. Ilie, and L. Tinta. The ”"runs” conjecture. Theoretical Computer Science,
412(27):2931-2941, 2011.

M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter,
W. Tyczynski, and T. Walen. The maximum number of squares in a tree. In 25th CPM,
7354:27-40, 2012.

M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen.
Extracting powers and periods in a word from its runs structure. Theoretical Computer Science,
521:29-41, 2014.

M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string searching.
Algorithmica, 13:405-425, 1995.

J. D. Currie and D. S. Fitzpatrick. Circular words avoiding patterns. Developments in Language
Theory, 2450:319-325, 2002.

A. Deza, F. Franek, and A. Thierry. How many double squares can a string contain? Discrete
Applied Mathematics, 180:52—69, 2015.

X. Droubay, J. Justin, and G. Pirillo. Episturmian words and some constructions of de Luca
and Rauzy. Theoretical Computer Science, 255(1):539-553, 2001.

J. Fischer, S. Holub, T. I, and M. Lewenstein. Beyond the runs theorem. In 22th SPIRFE,
pages 277-286, 2015.

A. S. Fraenkel and J. Simpson. How many squares can a string contain? Journal of Combi-
natorial Theory, Series A, 82(1):112-120, 1998.

F. Franek and Q. Yang. An asymptotic lower bound for the maximal number of runs in a
string. International Journal of Foundations of Computer Science, 19(1):195-203, 2008.

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen. Tight bound for the number of
distinct palindromes in a tree. In 22th SPIRFE, 9309:270-276, 2015.

13



[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

[32]

[33]

[34]
[35]

M. Giraud. Not so many runs in strings. In 2nd LATA, volume 5196 of Lecture Notes in
Computer Science, pages 232-239, 2008.

L. Tlie. A simple proof that a word of length n has at most 2n distinct squares. Journal of
Combinatorial Theory, Series A, 112(1):163-164, 2005.

L. Tlie. A note on the number of squares in a word. Theoretical Computer Science, 380(3):373~
376, 2007.

T. Kociumaka, J. Radoszewski, W. Rytter, and T. Walen. String powers in trees. Algorithmica,
79(3):814-834, 2017.

R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In 40th
FOCS, pages 596604, IEEE Computer Society, 1999.

F. Manea and S. Seki. Square-density increasing mappings. In 10th WORDS, 9304:160-169,
2015.

W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and A. Shinohara. New lower bounds for
the maximum number of runs in a string. In Proceedings of the Prague Stringology Conference
2008, pages 140-145, 2008.

S. J. Puglisi, J. Simpson, and W. F. Smyth. How many runs can a string contain? Theoretical
Computer Science, 401(1-3):165-171, 2008.

W. Rytter. The number of runs in a string. Information and Computation, 205(9):1459-1469,
2007.

J. Simpson. Modified padovan words and the maximum number of runs in a word. The
Australasian Journal of Combinatorics, 46:129-146, 2010.

J. Simpson. Palindromes in circular words. Theoretical Computer Science, 550:66—78, 2014.

A. Thue. Uber unendliche Zeichenreihen. Norske Vid Selsk. Skr. I Mat-Nat KI.(Christiana),
7:1-22, 1906.

14



	1 Introduction
	2 Preliminaries
	3 Distinct Tandems
	4 Distinct Quartics
	4.1 Construction
	4.2 Analysis
	4.3 Reducing Alphabet

	5 Runs
	5.1 Construction
	5.2 Analysis


