
TSXor: A Simple Time Series Compression
Algorithm

Andrea Bruno1, Franco Maria Nardini2, Giulio Ermanno Pibiri2,
Roberto Trani2, and Rossano Venturini1,2

1 University of Pisa, Italy
2 ISTI-CNR, Italy

Abstract. Time series are ubiquitous in computing as a key ingredi-
ent of many machine learning analytics, ranging from classification to
forecasting. Typically, the training of such machine learning algorithms
on time series requires to access the data in temporal order for several
times. Therefore, a compression algorithm providing good compression
ratios and fast decompression speed is desirable. In this paper, we present
TSXor, a simple yet effective lossless compressor for time series. The main
idea is to exploit the redundancy/similarity between close-in-time values
through a window that acts as a cache, as to improve the compression
ratio and decompression speed. We show that TSXor achieves up to 3×
better compression and up to 2× faster decompression than the state of
the art on real-world datasets.

1 Introduction

In this paper, we focus on compressing time series that have become the de-facto
data format for monitoring systems sharing content through the Internet [1].
As a result, time series are heavily used in several machine learning applications.
In fact, machine learning algorithms learn analytics on time series data by ac-
cessing the data in temporal order and for several times during training. Fast
and lossless decompression of time series is important to reduce training time
without compromising the accuracy of the process.

We present TSXor, a simple yet effective encoder/decoder for time series that
achieves high compression ratios and fast decompression speed. TSXor leverages
on the similarity between values in a window. This permits to reference recently
seen values using few bytes and, at the same time, to achieve fast decompression
by using the window of decompressed values as a data cache. We measure the
performance of TSXor in comparison to two state-of-the-art compression algo-
rithms (Gorilla [2] by Facebook and FPC [3]) on seven public, real-world, time
series datasets. Results show that TSXor achieves a compression ratio of up to
3× better compared to its competitors while decompressing up to 2× faster.

2 Background

A uni-variate time series is a collection of key-value pairs 〈tn, vn〉 for a single
time-dependent variable, where the key tn denotes the time at which the n-th



2 A. Bruno et al.

Table 1. Cost in bits of a value ∆ using the range-based encoding by Gorilla.

Range Value bits Total bits

∆ ∈ [−0, 0] 0 0 1
∆ ∈ [−26 + 1, 26] 10 7 9
∆ ∈ [−28 + 1, 28] 110 9 12
∆ ∈ [−211 + 1, 211] 1110 12 16
∆ ∈ [−231 + 1, 231] 1111 32 36

observation was made and vn is the corresponding measured value. A multi-
variate time series has m time-dependent variables, hence each point can be
regarded as a tuple 〈tn, [vn,1, . . . , vn,m]〉. In our experiments, in Section 4, we
consider both types of time series. Refer to the book by Hamilton [4] for an
introduction to time series.

FPC [3] is a lossless compression algorithm for double-precision floating-point
data. FPC compresses sequences of IEEE 754 double-precision floating-point
values by sequentially predicting each value. It uses variants of an FCM [5]
and a DFCM [6] value predictor to predict the doubles. Both predictors are
implemented using hash tables. The more accurate of the two predictions, i.e.,
that sharing the largest number of most significant bits with the true value, is
XOR-ed with the true value. The XOR operation turns identical bits into zeros.
Hence, if the binary representation of the predicted and that of the true value
are similar, the result has many leading zeros. FPC then counts the number of
leading zero bytes, encodes the count in a 3-bit value, and uses an extra bit to
specify which of the two predictions was used. The resulting 4-bit code and the
nonzero residual bytes are written to the output.

Gorilla [2] is an in-memory time-series database developed at Facebook. It
uses compression techniques based on delta-encoding timestamps and values.
The n-th timestamp tn is turned into a “delta of a delta” as ∆ = (tn − tn−1)−
(tn−1 − tn−2) and encoded using the simple range-based encoding illustrated in
Table 1: if ∆ belongs to the k-th range [`, r], first k is coded in unary, followed
by the binary representation of ∆ using dlog2(r − `+ 1)e bits. Since most mea-
surements occur at regular and constant intervals, this results in a very small
difference between consecutive timestamps (with often ∆ = 0), thus achieving
good compression effectiveness. Instead, the n-th value vn is XOR-ed with the
previous vn−1 and the result of the XOR, say xn, is encoded as follows (the first
value v0 is written explicitly in 64 bits). If xn = 0, then output a 0 bit. If xn 6= 0,
then output a 1 bit and calculate the number of leading and trailing zeros: if
these quantities are the same as those of the previous XOR value xn−1, then just
output the different bits; otherwise store the number of leading zeros (in 5 bits),
the number of different bits (in 6 bits), followed by the different bits themselves.

3 TSXor

Inspired by the XOR-based approach adopted by both FPC and Gorilla, we now
present a novel lossless compressor, TSXor. We aim at improving the compression



TSXor: A Simple Time Series Compression Algorithm 3

Table 2. Examples of pairs of values and their corresponding IEEE 754 double-
precision representation.

Value Double-Precision Representation

11.3 0100000000100110100110011001100110011001100110011001100110011010

11.5 0100000000100111000000000000000000000000000000000000000000000000

-6.6 1100000000011010011001100110011001100110011001100110011001100110

-3.8 1100000000001110011001100110011001100110011001100110011001100110

15.9 0100000000101111110011001100110011001100110011001100110011001101

12.4 0100000000101000110011001100110011001100110011001100110011001101

ratios of FPC and Gorilla, while achieving very fast decoding speed. In this
preliminary version of the work we focus on compressing the values vn, that are
more challenging to compress effectively compared to the timestamps tn.

Good compression has to necessarily exploit the empirical property of time
series data in that close-in-time measurements are very similar if not exactly the
same. To understand how to best exploit this property, we first study how the
IEEE 754 double-precision binary representation of two values varies in com-
parison to their decimal representation. We contribute the following insight:
floating-point values that are very close in decimal format do not necessarily have
a similar binary representation. Table 2 illustrates some concrete examples. The
first two rows are relative to 11.3 and 11.5 that are very close in decimal format
but only share 16 bits out of 64 (25%). Instead, although the difference between
-6.6 and -3.8 is larger than 11.5− 11.3 = 0.2, the binary format of -6.6 and -3.8
share 61 bits out of 64 (more than 95%).

As a result of this observation, it is not always effective to compress vn
relative to vn−1 (as Gorilla does). Better compression can instead be achieved
by enlarging the number of values that should be compared to vn as to select the
one with most common bits. To achieve this, we compare vn with its preceding
W ≤ 127 values, logically corresponding to the values seen in the time range
[tn−W , tn−1]. Our goal is to compress vn relative to this “window” containing
the previous W values. We distinguish between 3 cases, namely Reference, XOR,
and Exception.

Reference. If vn is equal to a value in the window, just output its position p
in the window. Since the window contains at most 127 values, 1 byte suffices to
write the position with the most significant bit always equal to 0.

If the window does not contain vn, then we search for the value u in the
window such that x = vn ⊕ u has the largest number of leading and trailing
zeros bytes. Let p be the position of u in the window. We first write p + 128
using 1 byte. In this case the most significant bit will always be 1 because of
sum, which allows us to distinguish this case from the Reference case. Let LZ
and TZ indicate the number of leading and trailing zero bytes of x respectively.

XOR. If LZ + TZ ≥ 2, we output a byte where 4 bits are dedicated to TZ and
the other 4 bits to the length (in bytes) of the segment of x between the leading
and trailing zero bytes. We then write such middle bytes.



4 A. Bruno et al.

Table 3. Basic statistics of the datasets: number of time series, size of each time series,
and percentage of distinct values.

Dataset Time Series Size Distinct Values

AMPds2 [7] 14 629 292 11 5.01%
Bar-Crawl [8] 14 057 564 4 12.45%
Max-Planck [9] 473 353 32 0.54%
Kinect [10] 733 432 80 41.07%
Oxford-Man [11] 143 397 19 79.85%
PAMAP [12] 3 127 602 44 0.38%
UCI-Gas [8] 2 841 954 18 0.63%

Exception. Otherwise, we output an exception code, i.e., the value 255 using 1
byte, followed by the plain double-precision representation of vn using 8 bytes.

The decoding algorithm just reverts the encoding procedure. In particular,
during decoding, the last W decoded values are cached in a separate data struc-
ture that represents the sliding window. If the Reference case occurs frequently,
as we are going to show for several real-world datasets, decoding vn defaults to
an inexpensive lookup in the window, which is small and likely to be kept in
the processor cache. Moreover, the encoding of vn requires just 1 byte which is
not possible with neither FPC nor Gorilla. The byte-level alignment maintained
by the algorithm further contributes to keep the decoding process simple and
efficient.

4 Experiments

In this section, we present the results of an experimental evaluation that com-
pares the performance of TSXor, FPC, and Gorilla on seven public time se-
ries datasets. All experiments are carried out on a server machine equipped
with Intel i7-7700 cores (@3.60GHz), 64 GB of RAM, and running Ubuntu
18.04. The implementation of TSXor is written in C++ and available at https:
//github.com/andybbruno/TSXor. The code was compiled with gcc 9.1.0 with
the -O3 optimization flag.

We test all algorithms on datasets belonging to different scientific fields so as
to not introduce any bias in the results. The datasets comprehend uni-variate as
well as multi-variate time series. We do not apply any normalization nor further
pre-processing to the datasets. Table 3 reports some basic statistics.

Compression Effectiveness. TSXor achieves a higher compression ratio than
FPC and Gorilla, compressing from 1.0 to 3.5× better than Gorilla and from 1.2
to 5.8× better than FPC (which is always outperformed by Gorilla). Further-
more, TSXor achieves a 6.4× compression ratio on the AMPds2 dataset, while
the best competitor achieve only a 2.0× compression ratio on this dataset. Here,
the strength of TSXor is the use of a single byte in 85% of the cases (see Table 5)
to reference an identical 8-byte value that occurred in the sliding window.

On the dataset containing the highest percentage of distinct values, i.e.,
Oxford-Man, TSXor is still able to beat the other two algorithms. Interestingly



TSXor: A Simple Time Series Compression Algorithm 5

Table 4. Performance of TSXor, FPC, and Gorilla. The best performance on each
dataset is highlighted in bold.

Compr. Ratio Decompr. Speed (MB/s) Compr. Speed (MB/s)

TSXor FPC Gorilla TSXor FPC Gorilla TSXor FPC Gorilla

AMPds2 6.39× 1.10× 2.03× 1174 411 666 67 339 704
Bar-Crawl 2.36× 1.20× 1.44× 710 436 447 29 424 466
Max-Planck 4.84× 1.06× 2.97× 1057 355 859 52 313 871
Kinect 1.37× 1.09× 1.41× 665 287 636 17 166 696
Oxford-Man 1.30× 1.06× 1.28× 604 222 574 15 170 630
PAMAP 4.85× 1.01× 1.38× 949 224 487 45 182 521
UCI-Gas 3.50× 1.19× 1.23× 642 455 578 22 287 654

enough, on this dataset only 23% of the values has been compressed using 9
bytes (see Table 5), thus spending an extra byte with respect to the 8 bytes
needed by the uncompressed representation. In this case, our advantage comes
from the 17% of the values that are compressed with only one byte (Reference
case), while the remaining 59% of the values are compressed using 6.94 bytes on
average.

Decompression Speed. Since the time series are compressed once but read
several times, the most critical evaluation metric is decompression speed. There-
fore, we start by analyzing the decompression speeds (reported in MB/s) of the
different algorithms. Gorilla is from 1.0 to 2.6× faster than FPC. TSXor is the
fastest algorithm, consistently on all datasets. In particular, TSXor is from 1.0
to 1.9× faster than Gorilla and from 1.4 to 4.2× faster than FPC. The byte
granularity helps the algorithm to avoid bit shifts and costly functions calls. In
particular, 92% of the times (see Table 5) we end up either in the Reference case
or in the XOR case, by consuming only 2.62 bytes on average instead of the 8
bytes of the original representation. This means that TSXor heavily leverages
on the window of cached values.

Compression Speed. Regarding the compression speeds (in MB/s), which is
the less interesting case, Gorilla outperforms both FPC and TSXor. The reason
lies in the simplicity of the algorithm. Indeed Facebook’s approach requires nei-
ther table lookups nor complicated calculations. The second fastest algorithm is
FPC, which compresses the values exploiting two hash functions as predictors.
TSXor trades compression speed for better compression and faster decoding
speed. In fact, for each value to encode, the whole window is scanned.

Varying the Window Size. We now examine the performance achieved by
TSXor when varying the window size W . We show this analysis in Figure 1,
which reports the average performance over all datasets. We did not observe
noteworthy variations among the different datasets. Figure 1a shows that the
compression ratio improves when increasing the window size. Not surprisingly,
the larger the window, more compression opportunities are created for Reference
and XOR cases. This improvement is balanced by the fact that the compression
algorithm needs to look at more values when compressing. Indeed, Figure 1c
shows that the compression speed slows down when increasing the window size.



6 A. Bruno et al.

Table 5. Percentage of TSXor cases (Reference, XOR, and Exception) over each
dataset. For the XOR case, it is evident that TSXor spends less than 8 bytes for a
double-precision value.

Reference (1 byte) XOR Exception (9 bytes)

% % bytes %

AMPds2 84.87 14.87 3.19 0.26
Bar-Crawl 50.53 28.25 5.53 21.22
Max-Planck 77.93 21.94 4.15 0.13
Kinect 28.01 62.95 7.66 9.04
Oxford-Man 17.44 59.44 6.94 23.12
PAMAP 75.95 23.13 3.63 0.92
UCI-Gas 45.36 54.63 3.57 0.01

Average 54.30 37.89 4.95 7.81

(a) Compr. Ratio (b) Decompr. Speed (c) Compr. Speed

Fig. 1. Compression ratio, decompression speed, and compression speed of TSXor by
varying the size of the window. Each point represents the average of each metric over
all datasets.

An interesting finding is that the window does not affect the decompression
speed (Figure 1b). The main reason is that during the decoding phase no searches
are performed in the window, but only direct access to individual elements.

5 Conclusion and Future Work

In this short communication we introduced a lossless compression scheme for
time series, TSXor, achieving good compression ratios and very fast sequential
decoding. Despite its simplicity, TSXor provides very promising results: there-
fore, we think that room for improvement is possible with more sophisticated
mechanisms. One defect of TSXor is certainly its encoding time, as it requires
to scan the window for each value to encode. Future work will tackle this is-
sue, e.g., by exploiting vectorized instructions. We will also explore the concrete
applicability of TSXor to machine learning applications.

Acknowledgments. This work was partially supported by the projects: Mo-
biDataLab (EU H2020 RIA, grant agreement No

¯101006879), OK-INSAID (MIUR-
PON 2018, grant agreement No

¯ARS01 00917), and “Algorithms, Data Struc-
tures and Combinatorics for Machine Learning” (MIUR-PRIN 2017).



Bibliography

[1] Shivangi Vashi, Jyotsnamayee Ram, Janit Modi, Saurav Verma, and
Chetana Prakash. Internet of Things (IoT): A vision, architec-
tural elements, and security issues. pages 492–496, February 2017.
https://doi.org/10.1109/I-SMAC.2017.8058399.

[2] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan. Gorilla: a
fast, scalable, in-memory time series database. Proceedings of the
VLDB Endowment, 8(12):1816–1827, August 2015. ISSN 2150-8097.
https://doi.org/10.14778/2824032.2824078.

[3] Martin Burtscher and Paruj Ratanaworabhan. FPC: A High-Speed
Compressor for Double-Precision Floating-Point Data. IEEE Trans-
actions on Computers, 58(1):18–31, January 2009. ISSN 0018-9340.
https://doi.org/10.1109/TC.2008.131.

[4] James Douglas Hamilton. Time series analysis. Princeton university press,
2020.

[5] Y. Sazeides and J.E. Smith. The predictability of data values. In Proceedings
of 30th Annual International Symposium on Microarchitecture, pages 248–
258, December 1997. https://doi.org/10.1109/MICRO.1997.645815. ISSN:
1072-4451.

[6] B. Goeman, H. Vandierendonck, and K. de Bosschere. Differential
FCM: increasing value prediction accuracy by improving table usage ef-
ficiency. In Proceedings HPCA Seventh International Symposium on
High-Performance Computer Architecture, pages 207–216, January 2001.
https://doi.org/10.1109/HPCA.2001.903264.

[7] Stephen Makonin, Bradley Ellert, Ivan V Bajić, and Fred Popowich. Elec-
tricity, water, and natural gas consumption of a residential house in canada
from 2012 to 2014. Scientific data, 3(1):1–12, 2016.

[8] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. Reser-
voir computing compensates slow response of chemosensor arrays exposed
to fast varying gas concentrations in continuous monitoring. Sensors and
Actuators B: Chemical, 215:618–629, 2015.

[9] Max Planck Institute for Biogeochemistry. Max-Planck-Institut fuer Bio-
geochemie - Wetterdaten, 2019. URL https://www.bgc-jena.mpg.de/

wetter/.

[10] Simon Fothergill, Helena Mentis, Pushmeet Kohli, and Sebastian Nowozin.
Instructing people for training gestural interactive systems. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’12, page 1737–1746, New York, NY, USA,
2012. Association for Computing Machinery. ISBN 9781450310154.
https://doi.org/10.1145/2207676.2208303. URL https://doi.org/10.

1145/2207676.2208303.



8 A. Bruno et al.

[11] Gerd Heber, Asger Lunde, Neil Shephard, and Kevin Sheppard. Oxford-
man institute’s realized library, 2009.

[12] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset
for activity monitoring. In 2012 16th International Symposium on Wearable
Computers, pages 108–109. IEEE, 2012.


