Skip to main content

Multivariate Analysis of Adaptation Level in Low-Cost Lower Limb Prostheses: An Unsupervised Learning Approach

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2021)

Abstract

Objective: To develop an unsupervised learning approach to study the prosthesis adaptation process using functional assessment tests and their scales, health-related behaviors, and socio-demographic da-ta.

Subjects: 199 low-cost lower limb prosthesis users with below-knee and/or above-knee amputation.

Methods: For the unsupervised learning approach, different methods, such as K-Means, Agglomerative Clustering, and Fuzzy C-Means, were used to comprise clusters and classify individuals based on factors associated with the lower limb prosthesis. Davies Boulding, Dunn, and Calinski-Harabasz index as well as the Silhouette coefficient were used to validate, study, and understand the resulting clusters from the dataset.

Results: The unsupervised learning approach strategies provided patient phenotyping clusters that could be interpreted as adaptation levels in low-cost lower limb prosthesis users, while allowing the interpretation and patient phenotyping by physicians.

Conclusions : Patient care customization is important, especially in multidimensional problems. To do so, it is necessary to use historic-data-based tools, which allow better control of the current state of the prosthesis and the person's functional capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arelekatti, V.N.M.: Detc2015–47385 Passive Prosthetic Knee for Users With Transfemoral Amputation, pp. 1–8 (2015)

    Google Scholar 

  2. Sansam, K., Neumann, V., O’Connor, R., Bhakta, B.: Predicting walking ability following lower limb amputation: a systematic review of the literature. J. Rehabil. Med. 41(8), 593–603 (2009). https://doi.org/10.2340/16501977-0393

    Article  Google Scholar 

  3. Baars, E.C., Schrier, E., Dijkstra, P.U., Geertzen, J.H.B.: Prosthesis satisfaction in lower limb amputees: A systematic review of associated factors and questionnaires. Medicine 97(39), e12296 (2018). https://doi.org/10.1097/MD.0000000000012296

    Article  Google Scholar 

  4. Zoellick, C.M.: Informe Mundial La Discapacidad Sobre R E S U M E N”, B. R. Organ. Mund. la Salud, p. 27 (2011).

    Google Scholar 

  5. Biddiss, E.A., Chau, T.T.: Multivariate prediction of upper limb prosthesis acceptance or rejection. Disabil. Rehabil.: Assist. Technol. 3(4), 181–192 (2008). https://doi.org/10.1080/17483100701869826

    Article  Google Scholar 

  6. Salinas-Durán, F.A., et al.: “Guía de práctica clínica para el diagnóstico y tratamiento preoperatorio, intraoperatorio y posoperatorio de la persona amputada, la prescripción de la prótesis y la rehabilitación integral: Recomendaciones para el tratamiento de rehabilitación en adultos”. Iatreia 29(4), S-82–S-95 (2016)

    Google Scholar 

  7. Matamoros-Villegas, A., Plata-Contreras, J., Payares-Álvarez, K.: Correlation among tests and functional assessment scales in the follow-up of prosthetic adaptation in people with lower limb amputation. Rehabilitacion (2021)

    Google Scholar 

  8. Shamout, F., Zhu, T., Clifton, D.A.: Machine learning for clinical outcome prediction. IEEE Rev. Biomed. Eng. 14, 116–126 (2021). https://doi.org/10.1109/RBME.2020.3007816

    Article  Google Scholar 

  9. Chahar, R.: Computational decision support system in healthcare: a review and analysis. Int. J. Adv. Technol. Eng. Explor. 8(75), 199–220 (2021). https://doi.org/10.19101/IJATEE.2020.762142

    Article  Google Scholar 

  10. Ritter, M.A., Berend, M.E., Harty, L.D., Davis, K.E., Meding, J.B., Michael Keating, E.: Predicting range of motion after revision total knee arthroplasty. J. Arthro. 19(3), 338–343 (2004). https://doi.org/10.1016/j.arth.2003.11.001

    Article  Google Scholar 

  11. Syed Thouheed Ahmed, S., Thanuja, K., Guptha, N.S., Narasimha, S.: Telemedicine approach for remote patient monitoring system using smart phones with an economical hardware kit. In: 2016 International Conference on Computing Technologies and Intelligent Data Engineering. ICCTIDE 2016, pp. 1–4, 2016.

    Google Scholar 

  12. Zimina, E.Y., Novopashin, M.A., Shmid., A.V.:Application of medical data classification methods for a medical decision support system. CEUR Workshop Proceedinggs, vol. 2843 (2021)

    Google Scholar 

  13. Bose, E., Radhakrishnan, K.: Using unsupervised machine learning to identify subgroups among home health patients with heart failure using telehealth. CIN: Comput. Inf. Nurs. 36(5), 242–248 (2018). https://doi.org/10.1097/CIN.0000000000000423

    Article  Google Scholar 

  14. John, B., Wickramasinghe, N.: Clustering questions in healthcare social question answering based on design science theory. In: Wickramasinghe, N., Schaffer, J.L. (eds.) Theories to Inform Superior Health Informatics Research and Practice. HDIA, pp. 95–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72287-0_7

    Chapter  Google Scholar 

  15. Nunes, M.A., Campos-Neto, I., Ferraz, L.C., Lima, C.A., Rocha, T.O., Rocha, T.F.: Adaptation to prostheses among patients with major lower-limb amputations and its association with sociodemographic and clinical data. Sao Paulo Med. J. 132(2), 80–84 (2014). https://doi.org/10.1590/1516-3180.2014.1322572

    Article  Google Scholar 

  16. Wong, C.K., Gibbs, W., Chen, E.S.: Use of the houghton scale to classify community and household walking ability in people with lower-limb amputation: criterion-related validity. Arch. Phys. Med. Rehabil. 97(7), 1130–1136 (2016)

    Google Scholar 

  17. Houghton, A.D., Taylor, P.R., Thurlow, S., Rootes, E., McColl, I.: Success rates for rehabilitation of vascular amputees: implications for preoperative assessment and amputation level. British J. Surg. 79(8), 753–755 (1992). https://doi.org/10.1002/bjs.1800790811

    Article  Google Scholar 

  18. Sangve, S.S.B.S.M.: Clinical decision support system using SVM with the preservation of privacy. Int. J. Sci. Res 5(7), 2122–2125 (2016)

    Google Scholar 

  19. Biddiss, E.A., Chau, T.T.: Multivariate prediction of upper limb prosthesis acceptance or rejection. Disabil. Rehabil.: Assist. Technol. 3(4), 181–192 (2008). https://doi.org/10.1080/17483100701869826f

  20. Kim, T.K.: Understanding one-way anova using conceptual figures. Korean J. Anesthesiol. 70(1), 22–26 (2017)

    Google Scholar 

  21. Cardona, D., Uribe, J.: Identificación de las variables cinéticas, cinemáticas y funcionales en el proceso de adaptación protésica y la rehabilitación postprotésica en”, Cent. Doc. Ing. (Bl. 20–146)Colección Tesis Electrónicas, Univ. Antioquia. (2018)

    Google Scholar 

  22. Malembaka, E.B., et al.: A new look at population health through the lenses of cognitive, functional and social disability clustering in eastern DR Congo: a community-based cross-sectional study. BMC Public Health 19(1), 1–13 (2019)

    Google Scholar 

  23. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv (2018)

    Google Scholar 

  24. Indulska, M.: The curse of dimensionality in data quality. ACIS 2013 Proc. 2013(December), 4–6 (2013)

    Google Scholar 

  25. Dilts, D., Khamalah, J., Plotkin, A.: Using cluster analysis for medical resource decision making. Med. Dec. Making 15(4), 333–346 (1995). https://doi.org/10.1177/0272989X9501500404

    Article  Google Scholar 

  26. Ogbuabor, G., Ugwoke, F.N.: Clustering algorithm for a healthcare dataset using silhouette score value. Int. J. Comput. Sci. Inf. Technol. 10(2), 27–37 (2018). https://doi.org/10.5121/ijcsit.2018.10203

    Article  Google Scholar 

  27. Graham, L.A., Fyfe, N.C.M.: Prosthetic rehabilitation of amputees aged over 90 is usually successful. Disabil. Rehabil. 24(13), 700–701 (2002). https://doi.org/10.1080/09638280210142194

    Article  Google Scholar 

  28. Windgassen, S., Moss-Morris, R., Goldsmith, K., Chalder, T.: The importance of cluster analysis for enhancing clinical practice: an example from irritable bowel syndrome. J. Mental Health 27(2), 94–96 (2018). https://doi.org/10.1080/09638237.2018.1437615

    Article  Google Scholar 

  29. Malli, S., Dr. Nagesh, H.R., Dr. Joshi, H.G.: A study on rural health care data sets using clustering algorithms. Int. J. Eng. Res. 3(9), 546–548 (2014)

    Google Scholar 

  30. Granato, D., Santos, J.S., Escher, G.B., Ferreira, B.L., Maggio, R.M.: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective. Trends Food Sci. Technol. 72, 83–90 (2018)

    Google Scholar 

  31. Siriwardena, G.J.A., Bertrand, P.V.: Factors influencing rehabilitation of arteriosclerotic lower limb amputees. J. Rehabil. Res. Dev. 28(3), 35 (1991). https://doi.org/10.1682/JRRD.1991.07.0035

    Article  Google Scholar 

  32. Islam, T., Rafa, S.R., Kibria, G.: Early Prediction of Heart Disease Using PCA and Hybrid Genetic Algorithm with k -Means, pp. 19–21 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Medellín Higher Education Agency (Sapiencia) and the Ministry of Science, Technology, and Innovation of Colombia (Minciencias), and is part of a multi-disciplinary study called “Evaluation of a mixed strategy to improve the adherence of subjects amputated by Improvised Explosive Devices (IED) to the use of low-cost lower limb prostheses” with code 111580863475. We express our gratitude to the Mahavir Kmina Corporation and its entire work team, who were a great support throughout the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel Maldonado Colmenares or Jenny Kateryne Nieto Aristizabal .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colmenares, G.M., Nieto Aristizabal, J.K. (2021). Multivariate Analysis of Adaptation Level in Low-Cost Lower Limb Prostheses: An Unsupervised Learning Approach. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86702-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86701-0

  • Online ISBN: 978-3-030-86702-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics