Skip to main content

Advanced Engineering Control Strategies Applied to Occupational Noise Management in Mining Dump Trucks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1431))

Abstract

This paper addresses the implementation of cutting-edge engineering techniques to reduce the exposure to occupational noise in drivers of mining dump trucks. For this, a project has been carried out in Cerrejón, which is one of the biggest open coal mines in the world. The target goal is oriented to reduce the noise values under the TLVs according to the exposure time. Although, a guideline methodology for noise control design is established by the international standard ISO 11690, the complexity of the problem yields to the development of state of the art signal processing algorithms and the implementation of knowledge frontier measurement/simulation techniques. The results indicate that the proposed approach allows to tackle noise problems of high complexity leading to a practical solution that benefits the exposed population as noise levels are lowered below threshold limit values .

Supported by Positiva Compañía de Seguros S.A.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gerald, J., Paul, J.: Noise exposure and hearing conservation in U.S. coal mines - a surveillance report. J. Occup. Environ. Hyg. 4, 26–35 (2007)

    Article  Google Scholar 

  2. Edwards, A., Dekker, J., Franz, R., Dyk, T., Banyini, A.: Profiles of noise exposure levels in South African mining. J. South. Afr. Inst. Min. Metall. 11, 315–322 (2011)

    Google Scholar 

  3. McBride, D.: Noise-induced hearing loss and hearing conservation in mining. Occup. Med. 54, 290–296 (2004)

    Article  Google Scholar 

  4. National Institute for Occupational Safety and Health - NIOSH: Information Circular 9492 - Equipment Noise and Worker Exposure in the Coal Mining Industry (2006)

    Google Scholar 

  5. Bauer, E., Kohler, J.: Cross-sectional survey of noise exposure in the mining industry. In: Proceedings of 31st Annual Institute of Mining Health, Safety and Research, Virginia (2000)

    Google Scholar 

  6. Elliott, H., Larry, H., Julia, D., Dennis, P., Marty, L.: The Noise Manual. AIHA, Virginia (2003)

    Google Scholar 

  7. Occupational Safety and Health Administration - OSHA: Section III: Chapter 5 (n.d.). https://www.osha.gov/dts/osta/otm/new_noise. Accessed 28 Nov 2020

  8. National Institute for Occupational Safety and Health - NIOSH: Occupational Noise Exposure - Criteria for a Recommended Standard - Publication No 98–126 (1998)

    Google Scholar 

  9. Ministerio de Salud, Resolución 8321 - Normas sobre Protección y Conservación de la Audición de la Salud y el Bienestar de las Personas por Causa de la Producción y Emisión de Ruidos, Colombia (1983)

    Google Scholar 

  10. Ministerio de Trabajo y Seguridad Social y Salud, Resolución 1972 - Por la Cual se Adoptan Valores Límites Permisibles para la Exposición Ocupacional al Ruido, Colombia (1990)

    Google Scholar 

  11. International Organization for Standardization: International Standard ISO 11690–1: Recommended Practice for the Design of Low-Noise Workplaces Containing Machinery - Part 1: Noise control strategies, Switzerland (2020)

    Google Scholar 

  12. Narasimhan, S., Basumallick, N., Veena, S.: Introduction to Wavelet Transform: A Signal Processing Approach. Alpha Science International, Oxford (2011)

    Google Scholar 

  13. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Transform. Inf. Theor. 36, 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  14. Gomez, A., Ugarte, J., Murillo, D.: Bioacoustic signals denoising using the undecimated discrete wavelet transform. Appl. Comput. Sci. Eng. 916, 300–308 (2018)

    Article  Google Scholar 

  15. Jyothi, R., Abdul, M.: Comparative analysis of wavelet transforms in the recognition of ancient Grantha script. Int. J. Comput. Theor. Eng. 9, 235–241 (2017)

    Article  Google Scholar 

  16. Bell, L., Bell, D.: Levels and spectra. In: Industrial Noise Control, pp. 37–66. Marcel Deeker, New York (1994)

    Google Scholar 

  17. Foreman, J.: Sound Analysis and Noise Control, Sound Fields. Springer, New York (1990). https://doi.org/10.1007/978-1-4684-6677-5

  18. Fahy, F.: Sound Intensity, 2nd edn. CRC Press, London (2007)

    Google Scholar 

  19. Nelson, P., Fahy, F.: Fundamentals of Noise and Vibration, An Introduction to Acoustics. E & FN Spon, New York (2008)

    Google Scholar 

  20. Jacobsen, F.: A comparison of two different sound intensity measurement principles. J. Acoust. Soc. Am. 118, 1510–1517 (2005)

    Article  Google Scholar 

  21. Hopkins, C.: Sound Insulation. Direct Sound Transmission. Butterworth-Heinemann, Oxford (2007)

    Google Scholar 

  22. Astley, J., Crocker, M.: Numerical Acoustical Modeling (Finite Element Modeling). In: Handbook of Noise and Vibration Control. Wiley, New York (2007)

    Google Scholar 

  23. International Organization for Standardization, International Standard ISO 6394: Earth-moving machinery - Determination of Emission Sound Pressure Level at Operator’s Position - Stationary Test Conditions, Switzerland (2008)

    Google Scholar 

  24. Popov, D., Gapochkin, A., Nekrasov, A.: An algorithm of Daubechies wavelet transform in the final field when processing speech signals. Electronics 7, 120 (2018)

    Article  Google Scholar 

  25. Rodriguez, A., Hervella, L., Prieto, A., Rodriguez, R.: An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223(2), 469–488 (2007)

    Article  MathSciNet  Google Scholar 

  26. Murillo, D., Fazi, F., Astley, J.: Room acoustic simulations using the finite element method and diffuse absorption coefficients. Acta Acust. united Acust. 105(1), 231–239 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank to Positiva Compañía de Seguros S.A. for the support and technical assistance given to carried out this project, in particular, to Andrés Leonardo Tovar Rivera and Jawin Eduardo Gómez Freyle. Special regards to Marco Atencio from Cerrejón for his unwavering commitment and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Mauricio Murillo Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murillo Gómez, D.M., González León, E., Piedrahíta, H., Yate, J., Gómez Cristancho, C.E. (2021). Advanced Engineering Control Strategies Applied to Occupational Noise Management in Mining Dump Trucks. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86702-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86701-0

  • Online ISBN: 978-3-030-86702-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics