Skip to main content

Heterogeneous Acoustic Features Space for Automatic Classification of Drone Audio Signals

  • Conference paper
  • First Online:
  • 1046 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1431))

Abstract

The incremented use of unmanned aerial vehicles (UAV) in recent years, have leaded to security flaws that demand a solution oriented to UAV monitoring. An attractive solution to this problem is based on the analysis of UAV audio signals. Such approach aims to extract a set of acoustic features and to use them as inputs of machine learning algorithms. Current works on this topic are mainly focused in using a specific set of acoustic features, such as linear prediction and cepstral metrics. However, relevant UAV acoustic information may be missing by considering a single type of features. In this work, we propose a heterogenous acoustic features space for solving UAV automatic classification problems. Temporal, spectral and time-frequency analysis are implemented to extract features from UAV audio signals and thus building a high dimensional features space. By applying features selection techniques, the most relevant acoustic features are identified and they are used to train machine learning algorithms. Our results show that, the heterogeneous features space yields high performance in automatic UAV classification tasks of binary and multiclass type. The classification results outperform the overall classification performance of other studies using set of homogeneous features. Furthermore, the metrics extracted using the wavelet packet transform are the most prevalent in the features spaces that yield the best classification results for the binary and muticlass classification tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Emadi, S., Al-Ali, A., Mohammad, A., Al-Ali, A.: Audio based drone detection and identification using deep learning. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 459–464. IEEE (2019)

    Google Scholar 

  2. Anwar, M.Z., Kaleem, Z., Jamalipour, A.: Machine learning inspired sound-based amateur drone detection for public safety applications. IEEE Trans. Veh. Technol. 68(3), 2526–2534 (2019)

    Article  Google Scholar 

  3. Begum, S., Chakraborty, D., Sarkar, R.: Data classification using feature selection and kNN machine learning approach. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 811–814. IEEE (2015)

    Google Scholar 

  4. Benesty, J., Sondhi, M.M., Huang, Y.: Springer Handbook of Speech Processing. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49127-9

    Book  Google Scholar 

  5. Busset, J., et al.: Detection and tracking of drones using advanced acoustic cameras. In: Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications, vol. 9647, p. 96470F. International Society for Optics and Photonics (2015)

    Google Scholar 

  6. Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 38(2), 713–718 (1992)

    Article  Google Scholar 

  7. Fernandes, J., Teixeira, F., Guedes, V., Junior, A., Teixeira, J.P.: Harmonic to noise ratio measurement-selection of window and length. Procedia Comput. Sci. 138, 280–285 (2018)

    Article  Google Scholar 

  8. Fugal, D.: Conceptual Wavelets in Digital Signal Processing: An In-depth, Practical Approach for the Non-mathematician. Space & Signals Technical Publications (2009)

    Google Scholar 

  9. García-Gómez, J., Bautista-Durán, M., Gil-Pita, R., Rosa-Zurera, M.: Feature selection for real-time acoustic drone detection using genetic algorithms. In: Audio Engineering Society Convention 142. Audio Engineering Society (2017)

    Google Scholar 

  10. Gómez, A., Ugarte, J.P., Gómez, D.M.M.: Bioacoustic signals denoising using the undecimated discrete wavelet transform. In: Figueroa-García, J.C., Villegas, J.G., Orozco-Arroyave, J.R., Maya Duque, P.A. (eds.) WEA 2018. CCIS, vol. 916, pp. 300–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00353-1_27

    Chapter  Google Scholar 

  11. Jolliffe, I.: Principal Component Analysis. Springer, New York (2014)

    MATH  Google Scholar 

  12. Joshi, A.V.: Machine Learning and Artificial Intelligence. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26622-6

    Book  Google Scholar 

  13. Meola, A.: Drone Industry Analysis: Market Trends & Growth Forecasts. Business Insider (2017)

    Google Scholar 

  14. Mezei, J., Fiaska, V., Molnár, A.: Drone sound detection. In: 2015 16th IEEE International Symposium on Computational Intelligence and Informatics (CINTI), pp. 333–338. IEEE (2015)

    Google Scholar 

  15. Mezei, J., Molnár, A.: Drone sound detection by correlation. In: 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 509–518. IEEE (2016)

    Google Scholar 

  16. Mirjalili, S., Faris, H., Aljarah, I.: Evolutionary Machine Learning Techniques. Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9990-0

    Book  Google Scholar 

  17. Ohlenbusch, M., Ahrens, A., Rollwage, C., Bitzer, J.: Robust drone detection for acoustic monitoring applications. In: 2020 28th European Signal Processing Conference (EUSIPCO), pp. 6–10. IEEE (2021)

    Google Scholar 

  18. Park, S., et al.: Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles (UAVs). In: 2015 IEEE SENSORS, pp. 1–4. IEEE (2015)

    Google Scholar 

  19. Peeters, G.: A large set of audio features for sound description (similarity and classification) in the CUIDADO project. CUIDADO Ist Project Report 54, 1–25 (2004)

    Google Scholar 

  20. Phinyomark, A., Thongpanja, S., Hu, H., Phukpattaranont, P., Limsakul, C.: The usefulness of mean and median frequencies in electromyography analysis. In: Computational Intelligence in Electromyography Analysis-a Perspective on Current Applications and Future Challenges, pp. 195–220 (2012)

    Google Scholar 

  21. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1), 23–69 (2003)

    Article  Google Scholar 

  22. Schüpbach, C., Patry, C., Maasdorp, F., Böniger, U., Wellig, P.: Micro-UAV detection using DAB-based passive radar. In: 2017 IEEE Radar Conference (RadarConf), pp. 1037–1040. IEEE (2017)

    Google Scholar 

  23. Siriphun, N., Kashihara, S., Fall, D., Khurat, A.: Distinguishing drone types based on acoustic wave by IoT device. In: 2018 22nd International Computer Science and Engineering Conference (ICSEC), pp. 1–4. IEEE (2018)

    Google Scholar 

  24. Strauss, M., Mordel, P., Miguet, V., Deleforge, A.: DREGON: dataset and methods for UAV-embedded sound source localization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  25. Vilímek, J., Buřita, L.: Ways for copter drone acustic detection. In: 2017 International Conference on Military Technologies (ICMT), pp. 349–353. IEEE (2017)

    Google Scholar 

  26. Waldekar, S., Saha, G.: Analysis and classification of acoustic scenes with wavelet transform-based mel-scaled features. Multimedia Tools Appl. 79(11), 7911–7926 (2020)

    Article  Google Scholar 

  27. Yan, X., Zhang, L., Li, J., Du, D., Hou, F.: Entropy-based measures of hypnopompic heart rate variability contribute to the automatic prediction of cardiovascular events. Entropy 22(2), 241 (2020)

    Article  Google Scholar 

  28. Yang, B., Matson, E.T., Smith, A.H., Dietz, J.E., Gallagher, J.C.: UAV detection system with multiple acoustic nodes using machine learning models. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 493–498. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Ugarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabogal, A.F., Gómez, M., Ugarte, J.P. (2021). Heterogeneous Acoustic Features Space for Automatic Classification of Drone Audio Signals. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86702-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86701-0

  • Online ISBN: 978-3-030-86702-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics