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Abstract. Explanation in Artificial Intelligence is often focused on pro-
viding reasons for why a model under consideration and its outcome are
correct. Recently, research in explainable machine learning has initiated
a shift in focus on including so-called counterfactual explanations. In this
paper we propose to combine both types of explanation in the context
of explaining Bayesian networks. To this end we introduce persuasive
contrastive explanations that aim to provide an answer to the question
Why outcome t instead of t′? posed by a user. In addition, we propose an
algorithm for computing persuasive contrastive explanations. Both our
definition of persuasive contrastive explanation and the proposed algo-
rithm can be employed beyond the current scope of Bayesian networks.
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1 Introduction

Explanation of Bayesian networks has been a topic of interest ever since their
introduction [15,19]. Four categories of explanation method are distinguished,
depending on the focus of explanation: 1) explanation of evidence; 2) explanation
of reasoning; 3) explanation of the model itself, and 4) explanation of decisions [5,
11]. The last category is a recent addition to cover methods that address the
question of whether or not the user can make an informed enough decision.

In the explanation of reasoning category, methods typically aim to provide
justification for the obtained outcomes and the underlying inference process [11].
Approaches include those that extract reasoning chains from the Bayesian net-
work, measure the impact of evidence, or identify supporting and conflicting
evidence [10–12,20,22,25]. Explanation of reasoning could also address the expla-
nation of outcomes not obtained [11]. In fact, upon encountering an unexpected
event, people tend to request contrastive explanations that answer the ques-
tion Why outcome t instead of t′? [14]. Such contrastive explanations were
recently adopted to explain black-box machine learning (ML) models with high-
dimensional feature spaces [23] by using counterfactuals that capture the change
in input required to change the outcome from t to t′. The use of counterfactuals
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J. Vejnarová and N. Wilson (Eds.): ECSQARU 2021, LNAI 12897, pp. 229–242, 2021.
https://doi.org/10.1007/978-3-030-86772-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86772-0_17&domain=pdf
http://orcid.org/0000-0003-4339-8146
https://doi.org/10.1007/978-3-030-86772-0_49
https://doi.org/10.1007/978-3-030-86772-0_17


230 T. Koopman and S. Renooij

for the purpose of explanation is popular in ML research, although the definition
of what a counterfactual explanation entails varies greatly [21].

A recently identified challenge for ML research is that of unifying coun-
terfactual explanations with more “traditional explainable AI” that focuses on
justifying the original outcome [21]. This, however, is not a challenge specific to
ML models only. In this paper we propose the persuasive contrastive explanation
in the context of Bayesian networks. This explanation provides an answer to the
question Why t instead of t′? posed by a user, where t is the outcome predicted
as most likely by the Bayesian network and t′ is the output expected (or desired)
by the user. We will provide a contrastive explanation based upon an interpreta-
tion of counterfactuals by Wachter et al. [24]. Counterfactuals, however, do not
serve to justify outcome t. To provide a more complete answer to the Why. . . ?
question, we will try to persuade the user into believing that in fact t is the
correct outcome. To this end, we propose to include the evidence that suffices
to conclude t in the explanation as well. After presenting some properties of our
explanations, we propose an algorithm for their computation.

This paper is organised as follows. In Sect. 2 we introduce our new type of
explanation and some of its properties. In Sect. 3 we present a search structure
for explanations that is exploited by the algorithm detailed in Sect. 4. We review
more related work in Sect. 5 and conclude the paper in Sect. 6.

2 Persuasive Contrastive Explanations

In this section we propose our new type of explanation in the context of Bayesian
networks. A Bayesian network (BN) represents a joint probability distribution
Pr over a set of discrete random variables [8]. We denote such variables V by
capital letters and use Ω(V ) to represent their domain. We write v as shorthand
for a value assignment V = v, v ∈ Ω(V ). (Sub)sets of variables are denoted by
bold-face capital letters V and their joint value combinations, or configurations,
by bold-face small letters v; Ω(V) is taken to represent the domain of all config-
urations of V. We write v′ ⊆ v to denote that v′ is a configuration of V′ ⊆ V
that is consistent with v; we call v′ a sub-configuration of v. Moreover, for a
given configuration v, we write v to indicate a configuration for V in which
every Vi ∈ V takes on a value from Ω(Vi) that is different from its value in v.
Note that v is unique only if all variables in V are binary-valued.

We are interested in the probabilities Pr(T | e) that can be computed from
the Bayesian network for a target variable T ∈ V and evidence e for a set of
variables E ⊆ V \ {T}. We assume that the most likely value of T given e, i.e.
arg maxt∗∈Ω(T ){Pr(t∗ | e)} = arg maxt∗∈Ω(T ){Pr(t∗e)}, is conveyed to the user
as the network’s output. We refer to this as the mode of T given e, written
�(T |e). We now define the explanation context used throughout the paper.

Definition 1. An explanation context is a tuple
〈
e, t, t′

〉
where t = �(T |e)

and t �= t′ ∈ Ω(T ).1

1 In case �(T |e) is not unique, we assume all modes are output to the user and that
t′ is not among these.
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The explanation context describes the context for answering the question Why t
instead of t′?. We will answer this question with a contrastive explanation that
combines a sufficient explanation for t with a counterfactual explanation for t′.

Definition 2. Consider explanation context
〈
e, t, t′

〉
. A persuasive contrastive

explanation is any pair [s, c] where s ∈ Ω(S), c ∈ Ω(C), S,C ⊆ E, and

• s ⊆ e is a sufficient explanation for t, i.e. �(T |sẽ′) = t for all ẽ′ ∈ Ω(E′),
E′ = E \ S, and there is no s′ ⊂ s for which this property holds; and

• c ⊆ e is a counterfactual explanation for t′, i.e. �(T |e′c) = t′ for e′ ⊆ e,
e′ ∈ Ω(E′), E′ = E \ C, and there is no c′ ⊂ c for which this property holds.

Since e is taken to represent observations in the real world, it is common practice
to assume that Pr(e) > 0. For computing the modes in the above definition
it is required that Pr(sẽ′) > 0 and Pr(e′c) > 0. As it does not make sense
for explanations to include impossible combinations of observations, any zero-
probability configuration for E can be disregarded.

The sufficient explanation explains how the evidence relates to the outcome of
the network by giving the user a sub-configuration of the evidence that results
in the same outcome, regardless of which values are observed for the remain-
ing evidence variables. The sufficient explanation generalizes the PI-explanation
that was introduced for explaining naive Bayesian classifiers with binary-valued
target variables [16], and more recently referred to as sufficient reason when
used in explaining Bayesian network classifiers (BNCs) with both binary-valued
target and evidence variables [4]. The word ‘counterfactual’ has various interpre-
tations; in our case, a counterfactual explanation details how the evidence should
be different to result in the outcome expected by the user. Our definition is a
formalisation of the one by Wachter et al. [24], tailored to our specific context.

We will call a set S with which a sufficient explanation is associated a suf-
ficient set ; a counterfactual set is defined analogously. Sufficient sets and coun-
terfactual sets have a number of properties that we will exploit to enable their
computation. All properties assume an explanation context

〈
e, t, t′

〉
. The first

property addresses the extent to which sufficient explanations are unique and
follows directly from Definition 2.

Proposition 1. A set S ⊆ E has at most one associated sufficient explanation
s. Sets S,S′ ⊂ E for which neither S ⊂ S′ nor S′ ⊂ S can both be sufficient sets.

The next property addresses the relation between the type of evidence variables
(binary or non-binary) and counterfactual explanations.

Proposition 2. A counterfactual set C ⊆ E can have multiple associated
counterfactual explanations c, unless all variables in C are binary-valued. Sets
C,C′ ⊂ E with C ⊂ C′ can both be counterfactual sets, unless all variables in
C are binary-valued.

Proof. If all variables in C are binary-valued then c ⊆ e is unique; in this
case, by Definition 2, no subset of C can be a counterfactual set. Otherwise,
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e is not unique and there exist multiple configurations c ⊆ e for C. Consider
two such configurations c1 �= c2. Then both can adhere to Definition 2 and
be counterfactual explanations, but this is not necessary. Assume that c1 is a
counterfactual explanation and that c2 is not, and consider a configuration c′ ⊃
c2 for a set C′ ⊃ C. Then c′ �⊃ c1 so c′ could be a counterfactual explanation,
in which case both C and C′ would be counterfactual sets. �	
We conclude that a given explanation context can be associated with multi-
ple persuasive contrastive explanations. Finally we establish a relation between
sufficient sets and counterfactual sets.

Proposition 3. Consider a set S ⊆ E, and let C = E \ S. If S is a sufficient
set, or is a superset of a sufficient set, then C cannot be a counterfactual set.

Proof. If S is a sufficient set with sufficient explanation s ⊆ e then by Defini-
tion 3, �(T |sc) = t for all c ∈ Ω(C). Since t′ �= t, no c can be a counterfactual
explanation and hence C is not a counterfactual set. Now let S′ ⊂ S be a suffi-
cient set with sufficient explanation s′ and consider configuration s = s′d ⊆ e for
d ∈ S\S′. Then dc ∈ Ω(C′), where C′ = E\S′ and c ∈ Ω(C). Since S′ is a suffi-
cient set, �(T |s′c′) = t for all c′ ∈ Ω(C′). As a result, �(T |s′dc) = �(T |sc) = t
for all c ∈ Ω(C). Hence, C is not a counterfactual set. �	

3 Explanation Lattice

To find all sufficient and counterfactual explanations for a given explanation
context

〈
e, t, t′

〉
, we can typically do better than naively looping through all

possible configurations ẽ for E and computing all distributions Pr(T | ẽ). In order
to exploit the properties from Propositions 1–3 in our search for explanations,
we propose to organise the search space using an annotated lattice.

Definition 3. Consider context
〈
e, t, t′

〉
and lattice L = (P(E),⊆), for power-

set P(E) of E. An explanation lattice for this context is the lattice L in which
each lattice element S ⊆ E is annotated with the tuple (s,MS, lS) such that

– s ⊆ e is the configuration of S consistent with e;
– if S = E then MS = {(∅, t)}; otherwise, MS = {(c, t∗) | t∗ = �(T |sc), with

c ∈ Ω(C),C = E \ S and c ⊆ e};
– lS ∈ {true, exp, oth}, where lS = true if t∗ = t for all (c, t∗) ∈ MS, lS = exp

if t∗ = t′ for all (c, t∗) ∈ MS, and lS = oth, otherwise.

The elements of lattice L are all subsets of E and hence represent potential
sufficient sets S with associated sufficient explanation s. For each lattice element
S, the set C = E \ S is a potential counterfactual set. To determine if c is a
counterfactual explanation, we need to know the corresponding outcome; these
pairs are stored in M. Label l summarises whether or not all sc configurations
associated with a lattice element result in the same outcome, with true indicating
that this is always the originally predicted outcome t and exp indicating that this
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Fig. 1. A partially annotated explanation lattice for the evidence in the Child network:
elements S ⊆ E = {H,O,C,X} are annotated with label lS. Numbers between brackets
indicate the fraction of modes actually computed. See Example 1 for further details.

is always the expected output t′. Note that if all variables in E are binary-valued
then each MS contains a single pair (c, t∗). If the target variable T is binary-
valued, then lS = oth can only occur with non-binary evidence variables. Figure 1
shows a partially annotated lattice, which is further explained in Sect. 4.3.

For a lattice element S we will use the term ancestors to refer to all supersets
of S in the lattice, and parents to refer to the supersets of size |S|+1; the parent
set will be denoted S⇑. Similarly, the term descendants is used to refer to all
subsets of S in the lattice, and a child is a subset of size |S| − 1; the set of all
children will be denoted S⇓. The lattice now provides all information necessary
for determining whether or not a lattice element represents a sufficient set.

Lemma 1. Consider context
〈
e, t, t′

〉
and explanation lattice L with lattice ele-

ment S ⊆ E. Then for any possible configuration ẽ′ ∈ Ω(E′) for E′ = E \ S,
output �(T |sẽ′) is available from the annotation of S or one of its ancestors.

Proof. From Definition 3 we have that MS contains �(T |se′) for all e′ ∈ Ω(E′)
with e′ ⊆ e. Now consider a configuration de+ ∈ Ω(E′) where d ⊆ e and
e+ ⊆ e for some set E+. Then S+ = E \ E+ is a superset of S, annotated
with s+ = sd and outcome �(T |sde+). We conclude that the outcomes for all
remaining ẽ′ ∈ Ω(E′) are found in the annotations of all supersets S+ of S,
which are exactly the ancestors of S. �	
The exact way to establish a sufficient set from the lattice is given by the fol-
lowing proposition.

Proposition 4. Consider context
〈
e, t, t′

〉
and lattice element S ⊆ E in expla-

nation lattice L. Set S is a sufficient set iff all of the following hold:

1. S and each of its ancestors S+ is annotated with label lS = lS+ = true, and
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2. for each child S− ∈ S⇓, either lS− �= true, or S− has an ancestor S+ with
label lS+ �= true.

Proof. From Definition 3 and Lemma 1 we have that the first property holds iff
�(T |sẽ′) = t for any possible configuration ẽ′ ∈ Ω(E′) for E′ = E\S. Therefore,
by Definition 2 S is a sufficient set, unless there exists a subset S− ⊂ S, i.e.
a lattice descendant, that adheres to the first property. This case is covered
by the second property. Consider a child S− ∈ S⇓ of S in the lattice. Then
lS− �= true iff there exists a configuration e+ ∈ Ω(E+) for E+ = E \ S− such
that �(T |s−e+) �= t. Hence neither S−, nor any of its descendants, can represent
a sufficient set. Now suppose that lS− = true then S− can only be sufficient if
all its ancestors S+ have lS+ = true. If there exists an ancestor with lS+ �= true,
then none of the descendants of S+, which include S− and its descendants, can
represent a sufficient set. �	
The next proposition provides the means for determining counterfactual expla-
nations from the lattice.

Proposition 5. Consider context
〈
e, t, t′

〉
and lattice element S ⊆ E in expla-

nation lattice L. Configuration c for set C = E\S is a counterfactual explanation
for t′ iff (c, t′) ∈ MS and for none of the ancestors S+ of S there exists a c′ ⊂ c
with (c′, t′) ∈ MS+ .

Proof. From Definition 3 we have that (c, t′) ∈ MS iff �(T |sc) = t′. Therefore,
by Definition 2, c is a counterfactual explanation for t′, unless there exists a
c′ ⊂ c that also results in outcome t′. Such a c′ can only be found for a set
C′ = E \ S+ where S+ is a superset of S and hence a lattice ancestor. �	

4 Computing Sufficient and Counterfactual Explanations

We will use a breadth first search on the explanation lattice to return the suffi-
cient and counterfactual explanations. During the search, the lattice is annotated
dynamically in order to minimize the number of mode computations, since not
all lattice elements need necessarily be visited. As a result, lS = ∅ as long as a
lattice element has not been processed during search, and the modes in MS are
unknown (unkn) until actually computed. We will first present two algorithms
for separately computing the two types of explanation. We will then illustrate
the combined search and discuss further optimisations.

4.1 Searching the Lattice for Sufficient Explanations

The breadth-first search for sufficient explanations (bfs-sfx) is described in
pseudo code in Algorithm 1. Since sufficient explanations are set-minimal, it
may seem most optimal to start the search at the bottom of the explanation
lattice. However, to decide whether a lattice element represents a sufficient set,
we require the labels of its lattice ancestors (see Proposition 4). Hence we start
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Algorithm 1: bfs-sfx for computing sufficient explanations.
Input : BN B, context

〈
e, t, t′

〉
and explanation lattice L

Output: Set S with all sufficient explanations
1 SQ ← E; PotS ← ∅
2 while SQ not empty do
3 S ← Dequeue(SQ);
4 if lS = ∅ and ∀S+ ∈ S⇑: lS+ = true then
5 ComputeModesAndLabel(L, S);
6 if lS = true then
7 PotS ← PotS ∪{S};
8 for all S− ∈ S⇓ do Enqueue(SQ, S−);
9

10 end

11 end

12 end
13 S ← {s ⊆ e | S ∈ PotS, s ∈ Ω(S), ∀S− ∈ S⇓ : lS− 	= true};
14

15 return S

the search at the top of the explanation lattice. We add an unvisited set S to
the set PotS of potential sufficient sets if all its lattice parents (if any) are in
PotS and �(T |sc) = t for all configurations c for C = E \ S with c ⊆ e. Line
5 of the algorithm (ComputeModesAndLabel) serves for computing modes from
the Bayesian network and for recording them, together with the summarising
label, in the explanation lattice. For a given explanation context, the algorithm
returns sufficient explanations for all sufficient sets that adhere to the properties
stated in Proposition 4.

Proposition 6. Consider context
〈
e, t, t′

〉
and explanation lattice L. Algo-

rithm 1 returns all sufficient explanations for t.

Proof. Queue SQ is initially filled with the top lattice element S = E, which is
subsequently processed since it wasn’t visited and does not have any parents.
ComputeModesAndLabel gives ME = {(∅, t)} and lE = true. Since all modes
associated with this lattice element equal t, it is added to the set PotS of potential
sufficient sets and its lattice children are enqueued in SQ. Subsequently, labels are
only computed for lattice elements S for which all parents are potential sufficient
sets, and only if lS = true will its children be enqueued in SQ. As a result, a
lattice element is in PotS iff it adheres to the first property in Proposition 4.
The algorithm now returns (line 14) only explanations for the sets in PotS for
which the children S− in the lattice are labelled lS− = exp or lS− = oth, or for
which lS− = ∅. The former two cases clearly adhere to the second property from
Proposition 4. If lS− = ∅, we have not computed the modes and label for S−, so
we could still have that in fact lS− should be true. However, during search the
label for a set S− remains undetermined if it has a parent that is not in PotS;
in that case it has an ancestor S+ with label lS+ = exp or lS+ = oth. So with
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Algorithm 2: bfs-cfx for computing counterfactual explanations.
Input : BN B, context

〈
e, t, t′

〉
, explanation lattice L

Output: Set C with all counterfactual explanations
1 CQ ← E; C ← ∅
2 while CQ not empty do
3 S ← Dequeue(CQ);
4 if lS = ∅ and ∀S+ ∈ S⇑: lS+ 	= exp then
5 potc ← {c | (c, unkn) ∈ MS,¬∃c′ ∈ C : c′ ⊂ c};
6 if potc 	= ∅ then
7 ComputeModesAndLabel(L, S, potc);
8 if lS 	= true then
9 C ← C ∪ {c ∈ potc | (c, t′) ∈ MS};

10 end
11 if lS 	= exp then
12 for all S− ∈ S⇓ do Enqueue(CQ, S−);
13 end

14 end

15 end

16 end
17 return C

lS− = ∅, S− also adheres to property 2 of Proposition 4. Hence set S contains
all sufficient explanations for t. �	

4.2 Searching the Lattice for Counterfactual Explanations

The breadth-first search for counterfactual explanations (bfs-cfx) is described
in pseudo code in Algorithm 2. The search again starts at the top of the explana-
tion lattice, processing an unvisited set S if it can potentially have counterfactual
explanations associated with it. Whereas the extent of the search for sufficient
explanations is independent of variable type (binary vs non-binary), the search
for counterfactual explanations can become quite more extensive for non-binary
variables. For a given explanation context, Algorithm 2 returns all counterfactual
explanations that adhere to the properties stated in Proposition 5.

Proposition 7. Consider context
〈
e, t, t′

〉
and explanation lattice L. Algo-

rithm 2 returns all counterfactual explanations for t′.

Proof. First note that if a set S ⊆ E is a potential sufficient set (PotS) according
to Algorithm 1, then set C = E \S cannot be a counterfactual set (see Proposi-
tion 3). Therefore, only if we encounter a set S with lS �= true can C possibly be a
counterfactual set. Since the search starts at the top of the lattice, any potential
counterfactual set is encountered earlier in the search than any of its supersets.
Therefore, the first c with (c, t′) ∈ MS found is in fact a counterfactual explana-
tion and added to the set C of counterfactual explanations. As result, no c′ ⊃ c
can be a counterfactual explanation (see Proposition 5) and set potc prevents
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such c′ from being added to C (line 5). If potc is empty then all configurations
c associated with the current lattice element S are already covered by C so nei-
ther S nor its descendants can have an associated true counterfactual set C. If
potc is non-empty, then the computation of modes and the resulting label can
be restricted to configurations in potc (see ComputeModesAndLabel’s optional
argument). Now any c ∈ potc with (c, t′) ∈ MS is a counterfactual explanation.
If there also exists a c ∈ potc with (c, t∗) ∈ MS such that t∗ �= t′, then this c
could be part of a counterfactual explanation associated with a superset of C in
one of the descendants of S. Hence the children of S are enqueued in CQ. If such
a child has a parent S+ for which lS+ = exp then all possible configurations for
C− = E \ S+ are counterfactual explanations or are covered by counterfactual
explanations in ancestors; hence, the child is not processed further. We conclude
that once queue CQ is empty, set C contains all counterfactual explanations. �	

4.3 Combining the Search for Explanations

Both algorithms bfs-sfx and bfs-cfx do a breadth first search through the
explanation lattice and can easily be combined to compute both types of expla-
nation in a single search. Recall that Algorithm 1 goes through the lattice until it
encounters lattice elements that cannot be sufficient sets. It is not until this point
that the search for counterfactual explanations needs to start (Proposition 3).
Rather than starting bfs-cfx at the top of the lattice, we could therefore have
Algorithm 1 initialize set C and queue CQ. The following additions to Algo-
rithm 1 serve for checking for counterfactual explanations upon encountering
an element S that cannot be sufficient, adding those to C and, if necessary,
enqueueing the children of S in queue CQ:

� line 1, add: CQ ← ∅; C ← ∅
� for lS �= true, fill in blank line 9 with:

9 else C ← C ∪ {c | (c, t′) ∈ MS};
9a

∣∣ if lS �= exp then
9b

∣
∣ | for all S− ∈ S⇓ do Enqueue(CQ, S−);

9c
∣∣ end

If all variables are binary-valued then any lattice element S has only a single
associated (c, t∗) ∈ MS; if t∗ = t′ and this c is added to C, then none of the
descendants of S can contain counterfactual explanations. In this case, therefore,
the above adaptation leaves queue CQ empty. As a result, once all sufficient
sets are found, set C contains all counterfactual explanations and we are done.
An example of computing sufficient and counterfactual explanations from the
well-known Asia network2 with only binary-valued variables is given in the first
author’s MSc. thesis [9]. In case the target variable and/or the evidence variables
are non-binary, queue CQ will probably be non-empty and the search can now
fully focus on finding any remaining counterfactual explanations by continuing

2 All mentioned networks are available from https://www.bnlearn.com/bnrepository/.

https://www.bnlearn.com/bnrepository/
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the search with the already partially filled queue CQ and set C. That is, we add
the following to Algorithm 1:

� fill in blank line 14 with: GetRemainingCounterfactuals(L, C,CQ), which
executes lines 2–16 of bfs-cfx;

� line 15, add C.

We will use bfs-sfx-cfx to refer to Algorithm 1 with the four above changes to
include the computation of both types of explanation. We now illustrate their
computation with an example.

Example 1. We consider the Child Bayesian network [18] with 6-valued target
variable Disease(D) and four of its evidence variables: LVH Report (H) with 2
values, Lower Body O2 (O) with 3 values, CO2 Report (C) with 2 values and
X-ray Report (X) with 5 values. We enter the evidence e ≡ ‘H = yes ∧ O =
5-12 ∧ C = < 7.5 ∧ X = Oligaemic’. We find �(D |e) = PAIVS, whereas the
user instead expected outcome TGA ∈ Ω(D). Figure 1 now shows the elements
S ⊆ E in the explanation lattice for context

〈
e, PAIVS, TGA

〉
. In addition, the

figure shows the labels lS computed for each element and, between brackets, the
number of computed modes versus the total number of associated configurations.

Starting at the top of the lattice, bfs-sfx-cfx first searches for potential
sufficient sets. After computing modes for HOCX, HOC, HCX, HOX, OCX,
and HX (in total: 11), the algorithm has found all sufficient sets, resulting in
a single sufficient explanation: S = {‘H = yes ∧ X = Oligaemic’}. In the
process, set C is initialised to C = {‘X =Plethoric’}; had all variables been
binary-valued then we would have been done. Instead, queue CQ is initialised
with CQ= [HO,HC,OC,OX,CX] so the search for counterfactuals continues,
finally resulting in four counterfactual explanations: C = {‘X = Plethoric’,
‘X = Normal ∧ H = no’, ‘X = Grd Glass ∧ H = no’, ‘H = no ∧ O = < 5
∧ X = Asy/Patchy’}. The persuasive contrastive explanations for PAIVS are
now given by all four pairs [s, c] such that s ∈ S and c ∈ C. �	
We note that in the example we ultimately computed modes for 39 out of the 60
represented evidence configurations. The search for counterfactual explanations
continued all the way to the bottom of the lattice: since the target variable has
a large state-space, the majority of elements is labelled with oth, indicating that
possibly another counterfactual explanation is to be found. Two of the labels
in Fig. 1 have an exclamation mark (for HC and H). Here the computed labels
are in fact different from what they should be according to Definition 3. These
labels should be oth, since both modes PAIVS and TGA are found. However, the
configurations that would result in mode TGA in both cases are excluded from
potc due to ‘X = Plethoric’ ∈ C, leaving their modes unkn. As a result, the
computed labels are based only on configurations that result in mode PAIVS.
Note that this does not affect the outcome or correctness of the algorithm.

4.4 Complexity and Further Optimisations

The search for sufficient and counterfactual explanations is aborted as soon as
all explanations are guaranteed to be found. In worst case, however, bfs-sfx-
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cfx will visit and process all of the 2|E| lattice elements. In processing a lattice
element S, at most

∏
Ci∈E\S(|Ω(Ci)|−1) modes are computed. For Bayesian net-

works, these computations can be time-consuming, since in general probabilistic
inference in Bayesian networks is NP-hard [3], even if we prune computationally
irrelevant variables from the network [2]. The overall computational burden can
be reduced in at least two ways:

– We can do Bayesian network inference using so-called saturated junction
trees: a C-saturated junction tree will allow for computing all probabilities
Pr(TCs) through efficient local operations only [8].

– We can further reduce the number of mode computations by exploiting mono-
tonicity properties in the domain, such as monotonicity in distribution or in
mode [6]; this effectively serves for pruning the explanation lattice.

Assuming an ordering on the values of each variable, inducing a partial order on
configurations, the Bayesian network is for example monotonic in mode if higher
values of e result in a higher mode. In such a case, if we have observed the highest
value ê for some individual evidence variable Ei, then lower values for Ei will
never result in a higher mode. If t′ > t, then we can disregard the values of Ei

in our search for counterfactuals. Exploiting such properties can greatly reduce
the number of configurations bfs-sfx-cfx needs to consider. Further details on
how monotonicity can be exploited to this end, including example computations
on an adapted version of the Insurance network, can again be found in [9].

5 Related Work

As discussed in Sect. 2, our notion of sufficient explanation is similar to the
concept of PI-explanation introduced for explaining Bayesian network classi-
fiers. In the related research the Bayesian networks are assumed to be restricted
in topology (naive vs general) [13,16] and/or restricted in variable type (binary
vs non-binary) [4,16]. The algorithms used for computing the PI-explanations
all assume that the Bayesian network is used purely as a classifier and rely on
transforming the classifier into a tractable model, such as an Ordered (Binary)
Decision Diagram (O(B)DD) [4,16], an Extended Linear Classifier (ELC) [13],
or a representation in First Order Logic [7]. Some transformations either apply
only to naive Bayesian networks [13] or require NP-hard compilations [16].

In the past year, several papers have introduced a concept of counterfactual
explanation for Bayesian network classifiers, all using different definitions. A
common denominator in these definitions is that they determine counterfactual
explanations from PI-explanations or vice-versa. Examples include taking the
evidence that is common to all PI-explanations (critical influences) together with
taking the combined non-critical evidence from the PI-explanations (potential
influences) [1], or using PI-explanations to explain for which changes in evidence
the current mode will be left unchanged (‘even-if-because’) [4]. Ignatiev et al. [7]
prove a formal relationship between PI-explanations and counterfactual explana-
tions for ML models. Their definition of counterfactual explanation is also based
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on Wachter et al. [24], but assumes binary-valued evidence variables. In contrast,
our counterfactual explanation is defined for discrete variables in general and dif-
ferent counterfactual explanations can include the same evidence variables with
different counterfactual values. Moreover, PI-explanations do not provide any
information about our counterfactual explanations other than excluding some
configurations as possible counterfactuals.

6 Conclusions and Further Research

In this paper we introduced persuasive contrastive explanations for Bayesian
networks, detailed an algorithm for their computation and proved its correct-
ness. The new type of explanation combines a sufficient explanation for the
current most likely outcome of the network with a counterfactual explanation
that explains the changes in evidence that would result in the outcome expected
by the user. Sufficient explanations were introduced before as PI-explanations
and efficient algorithms for their computation exist for special cases. Counter-
factual explanations such as we define have, to the best of our knowledge, not
been used in this context before. We have demonstrated that for special cases
the counterfactual explanations are available as soon as the search for sufficient
explanations finishes; in general the search for counterfactuals then starts.

Our definitions and basic algorithm are in essence model-agnostic, albeit
that the required modes are computed from the Bayesian network. The modes,
however, could represent the output predicted by other types of model over
the same variables, since we do not exploit properties specific to the Bayesian
network. We can therefore employ the same concepts and algorithm for other
types of underlying model, as long as the number of different configurations for
a typical set of evidence variables is limited enough to process.

Since Bayesian network classifiers of arbitrary topology allowing non-binary
evidence and target variables can now be compiled into a tractable ODD [17],
it is worth investigating the suitability of ODDs for more efficiently computing
persuasive contrastive explanations in Bayesian network classifiers. When many
different explanations are found, it is necessary to make a selection to be pre-
sented to the user. Such a selection can for example be based on the cardinality
of the explanation. A benefit of directly using Bayesian networks rather than
compiled structures such as ODDs is that the computed probabilities can also
be exploited for selecting explanations to present to the user. In future we aim
to further study the use of probabilistic information for explanation selection.
In addition, we aim to further exploit the direct use of a Bayesian network by
introducing intermediate variables into the explanation.
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