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Abstract. We present two different strategies to extend the classical
multi-label chaining approach to handle imprecise probability estimates.
These estimates use convex sets of distributions (or credal sets) in order
to describe our uncertainty rather than a precise one. The main rea-
sons one could have for using such estimations are (1) to make cautious
predictions (or no decision at all) when a high uncertainty is detected
in the chaining and (2) to make better precise predictions by avoiding
biases caused in early decisions in the chaining. We adapt both strate-
gies to the case of the naive credal classifier, showing that this adapta-
tions are computationally efficient. Our experimental results on missing
labels, which investigate how reliable these predictions are in both ap-
proaches, indicate that our approaches produce relevant cautiousness on
those hard-to-predict instances where the precise models fail.

Keywords: imprecise probabilities · multi-label · classifier chains

Multi-label classification (MLC) is a generalization of traditional classifica-
tion (with a single label), as well as a special case of multi-task learning. This
approach is increasingly required in different research fields, such as the clas-
sification of proteins in bioinformatics [17], text classification in information
retrieval [10], object recognition in computer vision [3], and so on.

A classical issue in multi-label learning techniques is how to integrate the
possible dependencies between labels while keeping the inference task tractable.
Indeed, while decomposition techniques [17,10] such as Binary relevance or Cal-
ibrated ranking allow to speed up both the learning and inference tasks, they
roughly ignore the label dependencies, while using a fully specified model such
as in probabilistic trees [6] requires, at worst, to scan all possible predictions
(whose quantity grows exponentially in the number of labels). A popular tech-
nique, known as chaining [15] to solve this issue, at least for the inference task, is
to use heuristic predictions: they consists in using, incrementally, the predictions
made on previous labels as additional conditional features to help better predict
the relevance of a current label, rather than using the prediction probabilities.

To the best of our knowledge, there are only a few works on multi-label clas-
sification producing cautious predictions, such as the reject option [14], partial
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predictions [8,1] or abstaining labels [18], but none of these have studied this
issue in chaining (or classifier-chains approach).

In this paper, we consider the problem of extending chaining to the imprecise
probabilistic case, and propose two different extensions, as some predictive prob-
abilities are too imprecise to use predicted labels, henceforth called abstained
labels, in the chaining. The first extension treats the abstained labels in a robust
way, exploring all possible conditional situation in order not to propagate early
uncertain decisions, whereas the latter marginalizes the probabilistic model over
those labels, ignoring them in the predictive model.

Section 1 introduces the notations that we use for the multi-label setting,
and gives the necessary reminders about making inferences with convex sets
of probabilities. In Section 2, we recall the classical classifier-chains approach
and then we present our extended approaches based on imprecise probabilities.
Section 3 then shows that in the case of the naive credal classifier (NCC) [21],
those strategies can be performed in polynomial time.

Finally, in Section 4, we perform a set of experiments on real data sets, which
are perturbed with missing labels, in order to investigate how cautious (when
we abstain on labels difficult to predict) is our approach. In order to adhere
to the page limit, all proofs and supplementary experimental results have been
relegated to the appendix of an online extended version [4].

1 Problem Setting

In the multi-label problem, an instance x of an input space X =Rp is no longer
associated with a single label mk of an output space K={m1, . . . ,mm}, as in the
traditional classification problem, but with a subset of labels Λx⊆K often called
the set of relevant labels while its complement K\Λx is considered as irrelevant
for x. Let Y ={0, 1}m be a m-dimensional binary space and y=(y1, . . . , ym) ∈
Y be any element of Y such that yi =1 if and only if mi ∈ Λx.

From a decision theoretic approach (DTA), the goal of the multi-label prob-

lem is the same as usual classification. Given a probability distribution P̂ fitting
a set of i.i.d. observations D = {(xi,yi)|i = 1, . . . , N} issued from a (true) the-
oretical probability distribution P : X ×Y → [0, 1], DTA aims to minimize the
risk of getting missclassification with respect to a specified loss function `(·, ·):

R`(Y, h(X)) = min
h

EP̂ [`(Y,h(X))] . (1)

where h :X →Y is a m-dimensional vector function. If `(·, ·) is defined instance-
wise, that is ` : Y×Y → R, the solution of Equation (1) is obtained by minimizing
the conditional expected risk (cf. [7, eq. 3] and [9, eq. 2.21])

h(x) = arg min
y∈Y

EP̂Y |x
[`(Y,y)] = arg min

y∈Y

∑
y′∈Y

P̂ (Y =y′|X=x)`(y′,y) (2)
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or, equivalently, by picking the undominated elements of the order relation1 �
over Y ×Y for which y1�y2 (y1 is preferred to/dominates y2) iff

EP̂Y |x

(
`(y2, ·)− `(y1, ·)

)
= EP̂Y |x

(
`(y2, ·)

)
− EP̂Y |x

(
`(y1, ·)

)
≥ 0. (3)

This amounts to saying that exchanging y2 for y1 would incur a non-negative
expected loss (which is not desirable).

In this paper, we are also interested in making set-valued predictions when
uncertainty is too high (e.g. due to insufficient evidence to include or discard
a label as relevant, see Example 1). The set-valued prediction will here be de-
scribed as a partial binary vector y∗∈ Y where Y={0, 1, ∗}m is the new output
space with a new element ∗ representing the abstention. For instance, a par-
tial prediction y∗=(∗, 1, 0) corresponds to two plausible binary vector solutions
{(0, 1, 0), (1, 1, 0)}⊆Y . To obtain such predictions, we will use imprecise prob-
abilities as a well-founded framework.

1.1 Notions about Imprecise Probabilities

Imprecise probabilities consist in representing our uncertainty by a convex set of
probability distributions PX [19,2] (i.e. a credal set [12]), defined over a space
X rather than by a precise probability measure PX [16]. Given such a set of
distributions PX and any measurable event A ⊆ X , we can define the notions
of lower and upper probabilities as:

PX(A) = inf
P∈PX

P (A) and PX(A) = sup
P∈PX

P (A) (4)

where PX(A) = PX(A) only when we have sufficient information about event
A. The lower probability is dual to the upper [2], in the sense that PX(A) =
1−PX(Ac) where Ac is the complement of A. Many authors [19,21] have argued
that when information is lacking or imprecise, considering credal sets as our
model of information better describes our actual uncertainty.

However, such an approach comes with extra challenges in the learning and
inference step, especially in combinatorial domains. In this paper, we will con-
sider making a chain of binary inferences, each inference influenced by the pre-
vious one. If we consider Y = {0, 1} as the output space and Y as a univariate
random variable on Y, a standard way to take a decision with abstention given
a credal set P on Y is

ŷ =


1 if Px(Y =1) > 0.5,

0 if Px(Y =1) < 0.5,

∗ if 0.5 ∈
[
Px(Y =1), Px(Y =1)

] . (5)

The next example illustrates such notions on a multi-label example

Example 1. We consider an output space of two labels K = {m1,m2}, a single

binary feature x1 and Table 1 with imprecise estimations of P̂(Y1, Y2|X1).

1 A complete, transitive, and asymmetric binary relation
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y1 y2 x1 P̂Y1,Y2|X1=0 y1 y2 x1 P̂Y1,Y2|X1=1

0 0 0 [0.4,0.7] 0 0 1 0.00
0 1 0 [0.3,0.6] 0 1 1 0.00
1 0 0 0.00 1 0 1 [0.6,0.8]
1 1 0 0.00 1 1 1 [0.2,0.4]

Table 1. Estimated conditional probability distributions P̂(Y1, Y2|X1) ∈ P̂Y1,Y2|X1
.

Based on the probabilities of Table 1, we have that P̂0(y1 = 0) := P̂ (y1 =
0|x1 = 0) = 1 and P̂0(y2 = 0)∈ [0.4, 0.7], therefore not knowing whether P̂0(y2 =
0) > 0.5. This could lead us to propose as a prediction ŷ∗= (0, ∗). On the con-
trary, the imprecision on the right hand-side is such that P̂1(y2 = 0)∈ [0.6, 0.8],
leading to the precise prediction ŷ∗=(1, 0).

2 Multilabel Chaining with Imprecise Probabilities

Solving (2) can already be computationally prohibitive in the precise case [6],
which is why heuristic to approximate inferences done on the full joint models
such as the chain model have been proposed. This section recalls its basics and
presents our proposed extension. To do so, we will need a couple notations: we
will denote by I subsets of label indices and by JjK = {1, . . . , j} the set of the
first j integers. Given a prediction made in the j first labels, we will denote by

1. (relevant labels) I j
R ⊆ JjK the indices of the labels predicted as relevant

among the j first, i.e. ∀i ∈ I j
R, yi = 1,

2. (irrelevant labels) I j
I ⊆ JjK,I j

I ∩I j
R = ∅ the indices of the labels predicted

as irrelevant among the j first, i.e. ∀i ∈ I j
I , yi = 0, and

3. (abstained labels) I j
A = JjK\(I j

R ∪ I j
I ) the indices of the labels on which

we abstained among the j first, i.e. ∀i ∈ I j
A, yi = {0, 1} := ∗,

and of course I j =I j
A ∪I j

R ∪I j
I = JjK. Besides, for the sake of simplicity, we

will use the notation

P Jj−1K
x (Yj =1) := P (Yj =1|YI j−1= ŷI j−1 , X = x), (6)

where ŷI j−1 is a (j−1)-dimensional vector that contains the previously inferred
precise and/or abstained values of labels having indices I j−1.

2.1 Precise Probabilistic Chaining

Classifier chains is a well-known approach exploiting dependencies among labels
by fitting at each step of the chain (see Figure 1) a new classifier model hj :
X × {0, 1}j−1 → {0, 1} predicting the relevance of the jth label. This classifier
combines the original input space attribute and all previous predictions in the
chain in order to create a new input space X ∗

j−1 = X × {0, 1}j−1, j ∈ N>0. In
brief, we consider a chain h = (h1, . . . , hm) of binary classifiers resulting in the
full prediction ŷ obtained by solving each single classifier as follows

ŷj := hj(x) = arg max
y∈{0,1}

P Jj−1K
x (Yj =y). (7)
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The classical multi-label chaining then works as follows:

1. Random label ordering. We randomly pick an order between labels and
assume that the indices are relabelled in an increasing order.

2. Prediction jth label. For a label yj and the previous predictions on labels

y1, . . . , yj−1 and let I j−1
R ,I j−1

I ⊆ Jj−1K be set of indices of relevant and

irrelevant labels with I j−1
R ∩I j−1

I =∅. Then, the prediction of ŷj (or hj(x))
for a new instance x is

ŷj =

{
1 if Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0) = P

Jj−1K
x (Yj =1) ≥ 0.5

0 if Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0) = P
Jj−1K
x (Yj =1) < 0.5

(8)

Figure 1 summarizes the procedure presented above, as well as the obtained
predictions for a specific case (in bold red predicted labels and probabilities).

Y1 = 1

(1,1)Px(Y2 =1|Y1 =1)=0.6

(1, 0)Px(Y2 =0|Y1 =1)=0.4Px(Y1 = 1)=0.6

Y1 = 0

(0, 1)Px(Y2 =1|Y1 =0)=0.1

(0, 0)Px(Y2 =0|Y1 =0)=0.9

Px(Y1 = 0) = 0.4

(a) Chaining with {Y1, Y2}

Y2 = 1

(1, 1)Px(Y1 =1|Y2 =1)=0.9

(0, 1)Px(Y1 =0|Y2 =1)=0.1Px(Y2 = 1)=0.4

Y2 = 0

(1, 0)Px(Y1 =1|Y2 =0)=0.4

(0,0)Px(Y1 =0|Y2 =0)=0.6

Px(Y2 = 0) = 0.6

(b) Chaining with {Y2, Y1}

Fig. 1. Precise chaining

Figure 1 shows that using this heuristic can lead to strong biases, as two
different orderings of the same joint model can lead to shift from one prediction to
its opposite. Intuitively, adding some robustness and cautiousness in the process
could help to avoid unwarranted biases.

In what follows, we propose two different extensions of precise chaining based
on imprecise probability estimates, in which the final prediction belongs to the
output space Y of partial bianry vectors.

2.2 Imprecise Probabilistic Chaining

We now consider that the estimates P
Jj−1K
x (Yj = 1) can become imprecise, that

is, we now have [P
Jj−1K
x ](Yj = yj) := [P Jj−1K

x (Yj = yj), P
Jj−1K
x (Yj = yj)]. The basic

idea of using such estimates is that in the chaining, we should be cautious when
the classifier is unsure about the most probable prediction. In this section, we
describe two different strategies (or extensions) in a general way, and we will
propose an adaptation of those strategies to the NCC in the next section.

Let us first formulate the generic procedure to calculate the probability bound
of the jth label,

1. Random label ordering. As in the precise case.
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2. Prediction jth label. For a given label yj , we assume we have (possily

imprecise) predictions for y1, . . . , yj−1 such that I j−1
A are the indices of

labels on which we abstained {∗} so far, and I j−1
R and I j−1

I remain the

indices of relevant and irrelevant labels, such that I j−1
A ∪ I j−1

R ∪ I j−1
I =

I j−1. Then, we calculate [P
Jj−1K
x ](Yj =1) in order to predict the label ŷj as

ŷj =


1 if P Jj−1K

x (Yj = 1) > 0.5,

0 if P
Jj−1K
x (Yj = 1) < 0.5,

∗ if 0.5 ∈ [P Jj−1K
x (Yj = 1), P

Jj−1K
x (Yj = 1)],

(9)

where this last equation is a slight variation of Equation (5) by using the
new input space X ∗

j−1.

We propose the following two different extensions of how to calculate [P
Jj−1K
x ](Yj =

1) at each inference step of the imprecise chaining.

Imprecise Branching The first strategy treats unsure predictions in a robust
way, considering all possible branchings in the chaining as soon as there is an

abstained label. Thus, the estimation of [P Jj−1K
x (Yj = 1), P

Jj−1K
x (Yj = 1)] (for

Yj = 0, it directly obtains as P Jj−1K
x (Yj = 0) = 1− P Jj−1K

x (Yj = 1), and similarly
for the upper bound) comes down to computing

P Jj−1K
x (Yj = 1)= min

y∈{0,1}|I
j−1
A |

Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0, YI j−1
A

= y),

P
Jj−1K
x (Yj = 1)= max

y∈{0,1}|I
j−1
A |

Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0, YI j−1
A

= y).
(IB)

So we consider all possible replacements of variables for which we have abstained
so far. This corresponds to a very robust version of the chaining, where every
possible path is explored. It will propagate imprecision along the tree, and may
produce quite imprecise evaluations, especially if we abstain on the first labels.

Illustrations providing some intuition about this strategy can be seen in Fig-
ure 2(b) where we have abstained on labels (Y2, Y4) and we want to compute
lower and upper probability bounds of the label Y5 = 1.

Y1 = 1
(1, 1)Px(Y2 =1|Y1 =1)=0.6

(1, 0)Px(Y2 =0|Y1 =1)=0.4[P̂x](Y1=1)[0.45, 0.7]

Y1 = 0
(0, 1)Px(Y2 =1|Y1 =0)=0.1

(0, 0)Px(Y2 =0|Y1 =0)=0.9

[P̂x](Y1=0)[0.3,
0.55]

(a) Imprecise chain on labels {Y1, Y2}

0

1

1

1
1 (0, 1, 1, 1, 1)

0
1 (0, 1, 1, 0, 1)

0

1

1
1 (0, 0, 1, 1, 1)

0
1 (0, 0, 1, 0, 1)

(b) Evaluating Y5 =1 label with {0, ∗, 1, ∗, ?}

Fig. 2. Imprecise branching strategy
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In Figure 2(a), we will consider the previous example (see Figure 1) in or-

der to study in detail how we should calculate probability bounds [P Jj−1K
x (Yj =

1), P
Jj−1K
x (Yj = 1)]. For the sake of simplicity, we assume that probabilities about

Y2 are precise and that the probability bounds for Y1 = 1 is P̂
J0K
x (Y1 = 1) ∈

[0.45, 0.70]. Taking all possible paths (bold on Figure 2(a)) for which Y2 = 1, we
get

P J1K
x (Y2 = 1) = min

y1∈{0,1}
Px(Y2 = 1|Y1 = y1) = min(0.1, 0.6) = 0.1,

P
J1K
x (Y2 = 1) = max

y1∈{0,1}
Px(Y2 = 1|Y1 = y1) = max(0.1, 0.6) = 0.6,

which means that in this case we would abstain on both labels, i.e. (ŷ1, ŷ2)=(∗, ∗).

Marginalization The second strategy simply ignores unsure predictions in the
chaining. Its interest is that it will not propagate imprecision in the tree. Thus, we
begin by presenting the general formulation (which will after lead to the formula-
tion without unsureness) which takes into account unsure predicted labels condi-

tionally, so the estimation of probability bounds [P Jj−1K
x (Yj = 1), P

Jj−1K
x (Yj = 1)]

comes down to computing

P Jj−1K
x (Yj =1)=Px(Yj = 1|YI j−1

R
=1, YI j−1

I
=0, YI j−1

A
={0, 1}|I

j−1
A |),

P
Jj−1K
x (Yj =1)=Px(Yj = 1|YI j−1

R
=1, YI j−1

I
=0, YI j−1

A
={0, 1}|I

j−1
A |),

(MAR)

where I j−1
A = {i1, . . . , ik} denotes the set of indices of abstained labels and the

last conditional term of probability bounds can be defined as(
YI j−1
A

= {0, 1}|I
j−1
A |

)
:=(Yi1 = 0 ∪ Yi1 = 1) ∩ · · · ∩ (Yik = 0 ∪ Yik = 1). (10)

The MAR formulation can be reduced by using Bayes’s theorem in conjunc-
tion with the law of total probability. That is, for instance, given abstained labels
(Y1 = ∗, Y3 = ∗) and the precise prediction (Y2 = 1), inferring Y4 = 1 comes
down to computing Px(Y4 =1|(Y1 =0∪Y1 =1), Y2 =1, (Y3 =0∪Y3 =1)) as follows∑
y3,y1∈{0,1}2

Px(Y4 =1, Y1 =y1, Y2 =1, Y3 =y3)∑
y3,y1∈{0,1}2

Px(Y1 =y1, Y2 =1, Y3 =y3)
=
Px(Y4 =1, Y2 =1)

Px(Y2 =1)
=Px(Y4 =1|Y2 =1),

An illustration providing some intuition about this last example can be seen in
Fig. 3(a), in which we draw the possible path to infer the label Y4 (considering
a third branch in the chain to represent abstained labels).

The results of the last example can easily be generalized, and hence, MAR
comes down to calculating the new formulation called (MAR*)

P Jj−1K
x (Yj = 1) = minP∈P∗ Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0), (11)

P
Jj−1K
x (Yj = 1) = maxP∈P∗ Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0). (12)
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where P∗ is simply the set of joint probability distributions described by the
imprecise probabilistic tree (we refer to [5] for a detailed analysis). (MAR) comes
down to restrict the conditional chain model to consider only those labels on
which we have not abstained (for which we have sufficient reliable information).
In general, both (IB) and (MAR) can lead to burdensome computations. In the
next section, we propose to adapt their principle to the NCC, showing that this
can be done efficiently.

Remark 1. Note that another strategy that would be computationally efficient
would be to simply considers all precise chaining paths consistent with local
intervals, pruning dominated branches. However, this would also mean that each
explored branch would have all previous predicted labels as conditioning features,
thus still being impacted by the bias of picking those predictions.

3 Imprecise Chaining with NCC

NCC extends the classical naive Bayes classifier (NBC) on a set of distributions.
NCC preserves the assumption of feature independence made by NBC, and re-
lies on the Imprecise Dirichlet model (IDM) [20] to estimate class-conditional
imprecise probabilities, whose imprecision level is controlled through a hyper-
parameter s ∈ R. Therefore, the class-conditional probability bounds evaluated
for Yj = 1 (Yj = 0 can be directly calculated using duality) can be calculated as
follows2

P (Yj =1|X=x,YI j−1= ŷI j−1)=

(
1+

P (Yj =0)P 0(X=x)P 0(YI j−1= ŷI j−1)

P (Yj =1)P 1(X=x)P 1(YI j−1= ŷI j−1)

)−1

, (13)

P (Yj =1|X=x,YI j−1= ŷI j−1)=

(
1+

P (Yj = 0)P 0(X=x)P 0(YI j−1= ŷI j−1)

P (Yj =1)P 1(X = x)P 1(YI j−1= ŷI j−1)

)−1

. (14)

where conditional upper probabilities of [P 1, P 1] and [P 0, P 0] are defined as

P a(X=x) :=

p∏
i=1

P (Xi =xi|Yj =a) and P a(Y
I j−1=y

I j−1) :=

j−1∏
k=1

P (Yk = ŷk|Yj =a), (15)

where a ∈ {0, 1}. Conditional lower probabilities are obtained similarly. Using
Equations (13) and (14), we now propose efficient procedures to solve the afore-
mentioned strategies.

3.1 Imprecise Branching

In the specific case where we use the NCC, we can efficiently reduce the op-
timization problems of Equations (IB), as expressed in the proposition below.

2 For reviewer convenience, details are given in the supplementary material.
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Proposition 1. Optimisation problems of the imprecise branching (IB) can
be reduced by using probability bounds obtained from the NCC, namely Equa-
tions (13) and (14), as follows

P Jj−1K
x (Yj =1)∝max

y∈{0,1}|I
j−1
A |

P 0(YI j−1
A

=y)

P 1(YI j−1
A

=y)
and P

Jj−1K
x (Yj =1)∝ min

y∈{0,1}|I
j−1
A |

P 0(YI j−1
A

=y)

P 1(YI j−1
A

=y)
.

Besides, applying the equations derived from the imprecise Dirichlet model, we
have that the values of abstained labels for which the previous optimisation prob-
lems are solved are, respectively

ŷ
I j−1
A

:=arg max
y∈{0,1}|I

j−1
A |

∏
yi∈y

n(yi|yj =0)+s

n(yi|yj =1)
and ŷI j−1

A
:=arg min

y∈{0,1}|I
j−1
A |

∏
yi∈y

n(yi|yj =0)

n(yi|yj =1)+s
(16)

where I j−1
A is the set of indices of the (j − 1)th first predicted abstained labels,

n(·) is a count function that counts the number of occurrences of the event yi|yj
and n(yi|yj =1) is always strictly positive.

Proposition 1 says that it is not necessary to know the original input features
X and neither the (j − 1)th first precise predicted labels, in order to get the
lower and upper probability bound of Equations (IB). However, it is necessary
to keep track of the estimates made on all abstained labels, which is consistent
with the fact that we want to capture the optimal lower and upper bounds of
the conditional probability over all possible paths on which we have abstained.

Proposition 1 allows us to propose an algorithm below that can calculate
Equations (16) linearly in the number of abstained labels.

Proposition 2. The chain of labels ŷ
I j−1
A

and ŷI j−1
A

can be obtained in a time

complexity of O(|I j−1
A |).

The following proposition provides the time complexity of the inference step
of the imprecise branching strategy, jointly with the NCC and previous results.

Proposition 3. The global time complexity of the imprecise branching strat-
egy in the worst-case is O(m2) and in the best-case is O(m).

3.2 Marginalization

When the NCC is considered, nothing needs to be optimized in the marginal-
ization strategy, thanks to the assumption of independence applied between the
binary conditional models of the chain.

We recall that the marginalization strategy needs to compute the conditional
models described in Equations (MAR). These latter can be solved by simply
ignoring the abstained labels in Equations (13) and (14) of the NCC. We thus
focus on adapting Equation (14) (Equation (13) can be treated similarly), in
order to show that the abstained labels can be removed of the conditioning and
to get the expression presented in Equation (12). Based on Equation (14), we can
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only focus on the conditional upper probability on labels, namely Equation (15),
and rewrite it as follows:

P 0(YI j−1 = ŷI j−1) := P 0(YI j−1
∗

= ŷI j−1
∗

,YI j−1
A

= {0, 1}|I
j−1
A |) (17)

where I j−1
∗ = I j−1

R ∪ I j−1
I is the set of indices of relevant and irrelevant

inferred labels, and the right side of last equation can be stated as

max
P∈

{
PYk|Yj

,PYa|Yj

}
k∈I j−1

∗ ,a∈I j−1
A

∏
k∈I j−1

∗

P (Yk = ŷk|Yj =0)
∏

a∈I j−1
A

P (Ya = 0 ∪ Ya = 1|Yj =0).

Thanks to the product assumption in the NCC, each term can be treated sepa-
rately, making it possible to decouple the multiplication in two parts;

max
P∈PYk|Yj

k∈I j−1
∗

∏
k∈I j−1

∗

P (Yk = ŷk|Yj =0)× max
P∈PYa|Yj

a∈I j−1
A

∏
a∈I j−1

A

P (Ya = 0∪ Ya = 1|Yj =0),

where P (Ya=0∪Ya=1|Yj=0)=1, and hence the second part becomes 1. Replacing
this result in Equation (17), and then this latter in Equation (14), we get

P
Jj−1K
x (Yj = 1) = maxP∈PYj |YI

j−1
R

,Y
I

j−1
I

Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0).

Therefore, at each inference step, we can apply Equations (13) and (14) on the
reduced new formulation of the marginalization strategy (MAR*). An illustra-
tion providing some intuition about this reduction can be seen in Figure 3.

Applying NCC
(a)−→(b)

*

1 *

1 (∗, 1, ∗, ?)

Y1

Y2

Y3

Y4

(a)

1

1 (∗, 1, ∗, ?)

Y2

Y4

(b)

Fig. 3. Marginalization strategy applied to NCC for four labels {Y1, Y2, Y3, Y4}

4 Experiments

In this section, we perform experiments3 on 6 data sets issued from the MULAN
repository4 (c.f. Table 2), following a 10×10 cross-validation procedure.

Evaluation and Setting The usual metrics used in multi-label problems are
not adapted at all when we infer set-valued predictions. Thus, we consider appro-

3 Implemented in Python, see https://github.com/sdestercke/classifip
4 http://mulan.sourceforge.net/datasets.html

https://github.com/sdestercke/classifip
http://mulan.sourceforge.net/datasets.html
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Data set #Domain #Features #Labels #Instances #Cardinality #Density

emotions music 72 6 593 1.90 0.31
scene image 294 6 2407 1.07 0.18
yeast biology 103 14 2417 4.23 0.30
cal500 music 68 174 502 26.04 0.15

medical text 1449 45 978 1.25 0.03
enron text 1001 53 1702 3.38 0.06

Table 2. Multi-label data sets summary

priate to use the set-accuracy (SA) and completeness (CP) [8, §4.1], as follows

SA(ŷ,y) = 1(y∈ŷ) and CP (ŷ,y) =
|Q|
m
,

where ŷ is the partial binary prediction (i.e. the set of all possibles binary vectors)
and Q denote the set of non-abstained labels. When predicting complete vectors,
then CP = 1 and SA equals the 0/1 loss function and when predicting the
empty vector, i.e. all labels ŷi = ∗, then CP =0 and by convention SA =1. The
reason for using SA is that chaining is used as an approximation of the optimal
prediction for a 0/1 loss function.

Imprecise Classifier As mentioned in Section 3, we will use the naive credal
classifier (NCC). Note that NCC needs discretized input spaces, so we dis-
cretize data sets to z = 6 intervals (except for Medical and Enron data sets).
Besides, we restrict the values of the hyper-parameter of the imprecision to
s ∈ {0.0, 0.5, . . . , 4.5, 5.5} (when s = 0.0, NCC becomes the precise classifier
NBC). At higher values of s, the NCC model will make mostly vacuous predic-
tions (i.e. abstain in all labels ∀i, Yi =∗) for the data sets we consider here.

Missing Labels To simulate missingness during the training step, we uniformly
pick at random a percentage of labels Yj,i (the jth label of the ith instance),
which are then removed from the training data used to fit the conditional models
in the chain. In this paper, we set up five different percentages of missingness:
{0, 20, 40, 60, 80}%.

4.1 Experimental Results

Figure 4, we provide the results for 3 data sets, showing set-accuracy and com-
pleteness measures in average5(%) obtained by fitting the NCC model for dif-
ferent percentages of missing labels, respectively, applied to the data sets of
Table 2 and using the imprecise branching strategy (trends were similar for the
marginalization strategies, not displayed due to lack of space)6.

The results show that when the percentage of missing labels increases, the set-
accuracy (SA) increases (regardless of the amount of imprecision s we inject) as
we abstain more and more (as completeness decreases). This means that the more

5 The confidence intervals obtained on the experimental results are very small and we
therefore prefer not to display them in the figures in order not to overcharge them.

6 The supplementary results can be found in the online extend version [4]
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(c) Yeast

Fig. 4. Missing labels - Imprecise Branching Evolution of the average (%) set-
accuracy (top) and completeness (down) for each level of imprecision (a curve for each
one) and a discretization z = 6, with respect to the percentage of missing labels.

imprecise we get, the more accurate are those predictions we retain. However, a
high amount of imprecision is sometimes required to include the ground-truth
solution within the set-valued prediction (this may be due to the very restrictive
0/1 loss metric). For instance, with s=5.5 and 40% of missingness, we get a
>65% of set-accuracy versus a<50% of completeness, in the Emotions data set.

Overall, the results are those that we expect and are also sufficient to show
that cautious inferences with probability sets may provide additional benefits
when dealing with missing labels.

5 Conclusions

In this paper, we have proposed two new strategies to adapt the classical chain-
ing multi-label problem to the case of handling imprecise probability estimates.
Such strategies come with daunting challenges to obtain cautious and reliable
predictions, and have been successfully resolved using the NCC model.

While the NCC makes easy to solve the strategies thanks to its assumptions,
the same restrictive assumptions may also be the reason why the initial accuracy
is rather low (especially for Yeast). Indeed, it seems reasonable to think that
the independence assumptions somehow limit the benefits of including label
dependencies information through the chaining. It seems therefore essential, in
future works, to investigate other classifiers as well as to solve optimisation issues
in a general or approximative way.

Another open issue is how we can use or extend the existing heuristics of
probabilistic classifier approaches on our proposal strategies, such as epsilon-
approximate inference, A∗ and beam search methods [13,11].
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Appendix

A NCC derivation for multi-label chaining

As the purpose of the imprecise chaining is to compute binary conditional depen-
dence models, we need only get conditional probability bounds of the probability
P (Yj = yj |X = x, YI j−1= ŷI j−1), so by using Bayes’ theorem and naive Bayes’
attribute independence assumption, it can be written as follows

P (Yj = yj)
∏p

i=1 P (Xi = xi|Yj = yj)
∏j−1

k=1 P (Yk= ŷk|Yj = yj)∑
yl∈{0,1} P (Yj = yl)

∏p
i=1 P (Xi = xi|Yj = yl)

∏j−1
k=1 P (Yk= ŷk|Yj = yl)

. (18)

Computing lower and upper probability bounds [P , P ] over all possible marginals
PYj

and conditional distributions PXi|Yj
,PYk|Yj

can be performed by solving
the following minimization/maximization problem of Equation (18) as follows

P (Yj = yj |X=x, YI j−1= ŷI j−1) =

min
P∈PYj

min
P∈

{
PXi|Yj

,PYk|Yj

}
i=1,...,d

k=1,...,j−1

P (Yj = yj |X=x, YI j−1= ŷI j−1), (19)

P (Yj = yj |X=x, YI j−1= ŷI j−1) =

max
P∈PYj

max
P∈

{
PXi|Yj

,PYk|Yj

}
i=1,...,d

k=1,...,j−1

P (Yj = yj |X=x, YI j−1= ŷI j−1). (20)

In practice, we assume a precise estimation of the marginal distribution PYj

in lieu of a credal set PYj , so optimization problems over the credal set of
marginal distributions PYj

can be ignored. Therefore, one can easily show that
last equations evaluated to Yj = 1 (Yj = 0 can be directly calculated using
duality) are equivalent to

P (Yj =1|X=x, YI j−1 = ŷI j−1)=

(
1 +

P (Yj =0)P 0(X=x)P 0(YI j−1 = ŷI j−1)

P (Yj =1)P 1(X=x)P 1(YI j−1 = ŷI j−1)

)−1
(21)

P (Yj =1|X=x, YI j−1 = ŷI j−1)=

(
1 +

P (Yj = 0)P 0(X=x)P 0(YI j−1 = ŷI j−1)

P (Yj =1)P 1(X = x)P 1(YI j−1 = ŷI j−1)

)−1
(22)
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where probability bounds [P 1, P 1] and [P 0, P 0] of each different conditional event
are defined as follows

P 0(X = x) :=

p∏
i=1

P (Xi = xi|Yj =0) and P 0(YI j−1 = yI j−1) :=

j−1∏
k=1

P (Yk = ŷk|Yj =0),

(23)

P 1(X = x) :=

p∏
i=1

P (Xi = xi|Yj =1) and P 1(YI j−1 = yI j−1) :=

j−1∏
k=1

P (Yk = ŷk|Yj =1).

(24)

The last conditional probability bounds are derived using the Imprecise
Dirichlet model (IDM) [20]

P (Xi =xi|Yj =yj)=
n(xi|yj)
n(yj) + s

and P (Xi =xi|Yj =yj)=
n(xi|yj) + s

n(yj) + s
(25)

where n(·) is a count function that counts the number of occurrences of events
xi|yj and yj in the observed data set. For instance; n(xi|yj) is the number of
instances in the training set where Xi = xi and the label value is Yi = yi.

In the same way as precedent equations, we can obtain probability bounds
[P (Yk = ŷk|Yj = yj), P (Yk = ŷk|Yj = yj)].

Remark 2. The denominator of Equations (21) and (22) may in some cases (de-
pending on the training data) become zero, and therefore, the division would
not be defined. In these cases, we adopt the “Laplace smoothing” technique for
the precise probabilities P (Yj = 0) and P (Yj = 1). Furthermore, if we obtain an
undefined division, i.e. 0/0, we manually put 0.

Remark 3. Note that the choice of the marginal distribution PYj
in lieu of a

credal set PYj
does not change the theoretical results obtained in Proposition 1.

However, if the credal PY is considered, we can obtain a very small, but not
significant, improvement in the experimental results7.

B Proofs for our results

Proof (of Proposition 1). Let us begin to prove the optimization problem of
the lower probability of (IB) evaluated to Yj = 1

P Jj−1K
x (Yj = 1) = min

y∈{0,1}|I
j−1
A |

Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0, YI j−1
A

= y).

(26)
Let us to define I j−1

∗ = I j−1
R ∪ I j−1

I as the set of indices of relevant and
irrelevant predicted labels down to the (j−1)th index. By applying Equation (21)

7 Anyone can reproduce these results by using our online implementation.
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to the right side of last equation, we get

min
y∈{0,1}|I

j−1
A |

(
1 +

P (Yj = 0)P 0(X = x)P 0(YI j−1
∗

= ŷI j−1
∗

, YI j−1
A

= y)

P (Yj = 1)P 1(X = x)P 1(YI j−1
∗

= ŷI j−1
∗

, YI j−1
A

= y)

)−1
,

where ŷI j−1
∗

is the binary vector with predicted relevant and irrelevant values.

So, using the fact that minimizing 1
1+x is equal to maximizing x, we therefore

get

max
y∈{0,1}|I

j−1
A |

P (Yj = 0)P 0(X = x)P 0(YI j−1
∗

= ŷI j−1
∗

)P 0(YI j−1
A

= y)

P (Yj = 1)P 1(X = x)P 1(YI j−1
∗

= ŷI j−1
∗

)P 1(YI j−1
A

= y)
.

The first three terms of the numerator (and of the denominator) of the last
equation can be omitted from the optimization problem since they do not change
the optimal solution, and by applying Equations (23), (24) and (25), to the last
term, we get what we sought

max
y∈{0,1}|I

j−1
A |

P 0(YI j−1
A

= y)

P 1(YI j−1
A

= y)

⇐⇒ max
y∈{0,1}|I

j−1
A |

∏
k∈I j−1

A
P (Yk = yk|Yj =0)∏

k∈I j−1
A

P (Yk = yk|Yj =1)

⇐⇒ max
y∈{0,1}|I

j−1
A |

∏
k∈I j−1

A

n(yk|yj=0)+s
n(yj=0)+s∏

k∈I j−1
A

n(yk|yj=1)
n(yj=1)+s

⇐⇒ max
y∈{0,1}|I

j−1
A |

[
n(yj = 1) + s

n(yj = 0) + s

]|I j−1
A | i∈I j−1

A∏
yi∈y

n(yi|yj = 0) + s

n(yi|yj = 1)
,

in which it is easy see that: (1) the term [· · · ]|I
j−1
A | can be omitted, and hence,

we can get ŷ
I j−1
A

, and (2) using similar arguments as above we can easily get

the labels ŷI j−1
A

which maximise the upper probability Px(Yj = 1) of (IB).

Proof (of Proposition 2). This proof can be performed using a dichotomy
algorithm (equivalent to a binary search tree), starting with yk last abstained

label (i.e. k = |IA| − 1) and calculating the values n(yk=1|·)+s
n(yk=1|·) and n(yk=0|·)+s

n(yk=0|·) ,

then we retain the maximal value of these last two terms (or the minimal value,
whichever applies) and we go forward with second-to-last label yk−1, but this
time multiplied by the last term retained, and so on. After having obtained
the lower binary path ŷ

I j−1
A

(or the upper binary path ŷI j−1
A

), we can directly
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calculate the values P Jj−1K
x (Yj = 1) and P

Jj−1K
x (Yj = 1) (and by duality of the

lower and upper probability bounds [P Jj−1K
x (Yj = 0), P

Jj−1K
x (Yj = 0)]).

Proof (of Proposition 3). The proof for the best-case is straighforward, be-
cause if there is not any abstained labels, the time complexity is the same than
precise chaining O(m). The worst-case complexity, in which all inferred labels
are abstained, is also easy to calculate: the first label performs a single operation,
i.e. O(1), then the second label is also inferred in a single operation due to the
number of previous abstained labels being equal to 1 (c.f. Proposition 2), then
the third label takes into account two previous abstained labels and performs
two operations (c.f. Proposition 2), and the fourth label performs three opera-
tions, and so on. We therefore obtain O(m(m−1)/2 + 1) operations which is equal
to O(m2) asymptotically.
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C Supplementary results
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(c) Yeast
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(d) Scene
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(e) Medical
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(f) CAL500

Fig. 5. Missing labels - Marginalization Evolution of the average (%) set-accuracy
(top) and completeness (down) for each level of imprecision (a curve for each one) and
discretization z = 6, with respect the percentage of missing labels.
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(b) Medical
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(c) CAL500

Fig. 6. Missing labels - Imprecise Branching Evolution of the average (%) set-
accuracy (top) and completeness (down) for each level of imprecision (a curve for each
one) and a discretization z = 6, with respect to the percentage of missing labels.
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