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Abstract. Probabilistic independence, as a fundamental concept of
probability, enables probabilistic inference to become computationally
feasible for increasing numbers of variables. By adding five more rules to
an existing sound, yet incomplete, system of rules of independence, Stu-
dený completed it for the class of structural semi-graphoid independence
relations over four variables. In this paper, we generalize Studený’s rules
to larger numbers of variables. We thereby contribute enhanced insights
in the structural properties of probabilistic independence. In addition,
we are further closing in on the class of probabilistic independence rela-
tions, as the class of relations closed under the generalized rules is a
proper subclass of the class closed under the previously existing rules.
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1 Introduction

Probabilistic independence is a subject of intensive studies from both a mathe-
matics and a computing-science perspective [1,2,10]. Pearl and his co-workers
were among the first to formalize properties of independence in a system of
qualitative rules [2], which characterizes the class of so-called semi-graphoid
independence relations. Although the semi-graphoid rules of independence are
probabilistically sound, they are not complete for probabilistic independence, as
was shown by Studený [4]. While the independences of any discrete multivariate
probability distribution adhere to the semi-graphoid rules, a set of indepen-
dence statements that is closed under these rules, may lack statements that are
probabilistically implied. As a consequence, the semi-graphoid rules allow inde-
pendence relations for which there are no matching probability distributions.

For proving incompleteness of Pearl’s system of rules, Studený formulated a
new rule for probabilistically implied independence using a proof construct based
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on the concept of multiinformation. He further defined the class of structural
semi-graphoid independence relations as the class of independence relations that
are closed under all rules that can be found through such a construct [6–9], and
presented a set of five rules that completes the existing rule system for structural
relations involving four variables. For an unlimited number of variables, no finite
rule system can fully characterize the class of structural semi-graphoid relations,
which implies that there is also no finite complete set of rules for the class of
probabilistic independence relations [5].

In this paper we generalize Studený’s rules of independence to larger num-
bers of variables. By doing so, we uncover combinatorial structures in rules of
probabilistic independence and enable further investigation of such structures.
We moreover arrive at an enhanced description of the class of structural semi-
graphoid independence relations and thereby close in on the class of probabilistic
independence relations, as the class of relations closed under the generalized rules
is a proper subclass of the class closed under the previously existing rule system.

2 Preliminaries

We review sets of independence rules and the classes of relations they govern.

2.1 Semi-graphoid Independence Relations

We consider a finite, non-empty set V of discrete random variables and use
(possibly indexed) capital letters A,B,C, . . . to denote subsets of V . We will
use concatenation to denote set union and will further abbreviate the union of
sets in our figures by concatenating their indices, that is, we write A123B12 for
A1A2A3B1B2. A triplet over V now is a statement of the form 〈A,B | C 〉, where
A,B,C ⊆ V are pairwise disjoint sets with A,B �= ∅. A triplet 〈A,B | C 〉 is
taken to state that the sets of variables A and B are independent given the
conditioning set C. Any set of triplets over V is called an independence relation.

Pearl introduced the class of so-called semi-graphoid independence relations
by formulating four rules of independence [2], which are summarized by [3]:

A1: 〈A,B | C 〉 ↔ 〈B,A | C 〉
A2: 〈A,BC | D〉 ↔ 〈A,B | CD〉 ∧ 〈A,C | D〉

These two rules are schemata in which the arguments A,B,C,D are to be instan-
tiated to mutually disjoint subsets of V upon application. The rules A1, A2 are
called the semi-graphoid rules of independence, and any independence relation
that is closed under these rules is coined a semi-graphoid independence relation;
in the sequel, we will use A = {A1,A2} to denote the system of semi-graphoid
rules. The set A constitutes a sound inferential system for independence rela-
tive to the class of discrete multivariate probability distributions. The two rules
in A do not constitute a complete system for independence in such probability
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distributions, however. The system’s incompleteness was shown by Studený [4],
who formulated the following additional rule:

A3 : 〈A,B | CD〉 ∧ 〈A,B | ∅〉 ∧ 〈C,D | A〉 ∧ 〈C,D | B〉 ↔
〈A,B | C〉 ∧ 〈A,B | D〉 ∧ 〈C,D | AB〉 ∧ 〈C,D | ∅〉

For constructing A3 and other new rules of independence, he built on the notion
of multiinformation, which we will review in the next section.

2.2 Multiinformation and Rules of Independence

A well-known measure for the amount of information shared by two (sets of)
variables A, B given a third (set of) variables C in the context of a discrete
multivariate probability distribution Pr, is the conditional mutual information
(see for example [12]), which is defined as:

I(A;B | C || Pr) =
∑

abc

Pr(abc) · log
Pr(ab | c)

Pr(a | c) · Pr(b | c)

where abc ranges over all possible value combinations for the variables in ABC
with Pr(a | c),Pr(b | c) �= 0. We have that I(A;B |C || Pr) ≥ 0 for any A,B,C
and Pr, and note that the mutual-information measure is related to independence
through the following property: I(A;B |C || Pr) = 0 iff the triplet 〈A,B |C〉 is a
valid independence statement in Pr. In the sequel, we omit Pr from the notation
as long as no ambiguity arises and take the sets A, B, C to be mutually disjoint.

For studying rules of independence, Studený exploited the notion of multiin-
formation [4,11], which is a function M: 2V → [0,∞) over all subsets of variables
V with I(A;B |C) = M(ABC)+M(C)−M(AC)−M(BC); for details, we refer
to [11]. The multiinformation function thereby has the following properties:

• M(ABC) + M(C) − M(AC) − M(BC) ≥ 0;

• M(ABC) + M(C) − M(AC) − M(BC) = 0 iff 〈A,B | C〉.
The relation between the conditional mutual-information measure and the notion
of multiinformation now enables elegant soundness proofs for rules of indepen-
dence: a rule is sound if all its multiinformation terms ‘cancel out’, that is, if the
multiinformation terms of its set of premise triplets equal the multiinformation
terms of its set of consequent triplets. In the sequel, we will refer to this type of
proof as a multiinformation proof construct.

2.3 Structural Semi-graphoid Independence Relations

Building on the multiinformation concept, Studený introduced the class of struc-
tural semi-graphoid independence relations [6–9] where, roughly stated, a struc-
tural semi-graphoid relation is an independence relation that is closed under all
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possible rules whose soundness derives from a multiinformation proof construct.
In addition to rule A3 stated above, Studený formulated four more rules for
probabilistic independence found through such proof constructs [6]. We state
these rules here in their original form, with their original numbering:

A4 : 〈A,B | CD〉 ∧ 〈A,D | B〉 ∧ 〈C,D | A〉 ∧ 〈B,C | ∅〉 ↔
〈A,B | D〉 ∧ 〈A,D | BC〉 ∧ 〈C,D | ∅〉 ∧ 〈B,C | A〉

A5 : 〈A,C | D〉 ∧ 〈B,D | C〉 ∧ 〈B,C | A〉 ∧ 〈A,D | B〉 ↔
〈A,C | B〉 ∧ 〈B,D | A〉 ∧ 〈B,C | D〉 ∧ 〈A,D | C〉

A6 : 〈A,B | C〉 ∧ 〈A,C | D〉 ∧ 〈A,D | B〉 ↔
〈A,B | D〉 ∧ 〈A,C | B〉 ∧ 〈A,D | C〉

A7 : 〈A,B | CD〉 ∧ 〈C,D | AB〉 ∧ 〈A,C | ∅〉 ∧ 〈B,D | ∅〉 ↔
〈A,B | ∅〉 ∧ 〈C,D | ∅〉 ∧ 〈A,C | BD〉 ∧ 〈B,D | AC〉

In the sequel, we will use S to denote the rule system {A1, . . . , A7}. We note that,
while all triplets in the rules A1, A2 respectively, share a fixed same conditioning
(sub-)set of variables, the rules A3, . . . ,A7 do not. To equally accommodate
additional conditioning variables, the latter five rules can each be enhanced by
adding an extra set of variables X to the conditioning parts of its triplets. In
phrasing the generalizations of these rules, we will omit such additional sets to
conform to the literature.

Any structural semi-graphoid independence relation is closed under the rule
system S by definition. As any semi-graphoid relation is closed under the system
of rules A, and A does not imply the additional rules in S, we have that the class
of structural semi-graphoid independence relations is a proper subclass of the
class of semi-graphoid relations. The system S was shown to fully characterize
the class of structural semi-graphoid relations over at most four variables [6],
that is, the system is both sound and complete for this class. Although sound,
the system is not complete for the class of structural independence relations
over more than four variables. Studený proved in fact that there is no finite
axiomatization of probabilistic independence [5,11], by providing the following
rule for all n ≥ 2 (reformulated):

〈A,B0 | B1〉 ∧ . . . ∧ 〈A,Bn−1 | Bn〉 ∧ 〈A,Bn | B0〉 ↔ (1)
〈A,B0 | Bn〉 ∧ 〈A,B1 | B0〉 ∧ . . . ∧ 〈A,Bn | Bn−1〉

We note that this rule is a generalization of rule A6 in the system S . From
the structure of this rule, it is readily seen that any complete system of rules
for a fixed number of k variables, will not be complete for k + 1 variables. The
hierarchy of independence relations is depicted in Fig. 1(a).
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Fig. 1. The existing hierarchy of semi-graphoid, structural semi-graphoid, and proba-
bilistic independence relations (a) and the hierarchy extended with our results (b).

3 Generalizing Inference Rules

For the class of structural semi-graphoid relations, the new rules A3–A7 of inde-
pendence have been formulated, involving four sets of variables each (disregard-
ing any fixed additional conditioning context in all triplets). We now reconsider
these rules and generalize them to larger numbers of variable sets. By doing so,
we arrive at an enhanced characterization of the class of structural semi-graphoid
relations and at further insights in the combinatorial structures of independence
rules. Because of space restrictions, we cannot detail full soundness proofs for
the new rules; instead, we provide brief proof sketches in the appendix.

We begin with formulating our generalization of rule A5. The idea underlying
its generalization is analogous to the idea of rule A6. Informally stated, the rule
takes a sequence of sets of variables and moves it (up to symmetry) over the
three argument positions of the triplets involved.

Proposition 1. Let A0, . . . , An, n ≥ 2, be non-empty, mutually disjoint sets of
variables. Then,

∧

i∈{0,...,n}
〈Ai, Aµ(i+1) | Aµ(i+2)〉 ↔

∧

i∈{0,...,n}
〈Ai, Aµ(i+1) | Aµ(i−1)〉

with μ(x) := x mod (n + 1).

The property stated in the proposition is taken as the independence rule G5.
Note that in the case of n = 2, the rule reduces to a tautology. G5 further
embeds rule A5 as a special case with n = 3, as is seen by setting A0 ← C,
A1 ← A, A2 ← D and A3 ← B. As an example of the generalization, rule G5 is
now detailed for n = 4:

〈A0, A1 | A2〉 ∧ 〈A1, A2 | A3〉 ∧ 〈A2, A3 | A4〉 ∧ 〈A3, A4 | A0〉 ∧ 〈A4, A0 | A1〉 ↔
〈A0, A1 | A4〉 ∧ 〈A1, A2 | A0〉 ∧ 〈A2, A3 | A1〉 ∧ 〈A3, A4 | A2〉 ∧ 〈A4, A0 | A3〉

Note that the rule’s consequent cannot be derived from its premise using the
existing rule system S considered thus far. For n + 1 sets of variables, rule G5
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Fig. 2. The combinatorial structure of rule G5, for n ≥ 2.

includes n + 1 premise triplets and n + 1 consequent triplets. When proceeding
from n+1 to n+2 sets of variables therefore, both the number of premise triplets
and the number of consequent triplets increase by one. Throughout this section,
the combinatorial structures of the generalized rules are illustrated by schematic
visualizations. The structure of rule G5 is shown in Fig. 2. Each labeled line
X Z Y in the figure depicts a triplet 〈X,Y | Z〉, with the line’s label cor-
responding with the triplet’s conditioning set. The left-hand side of the figure
summarizes the joint premise of the rule and the right-hand side its joint conse-
quent. The figure is readily seen to reflect the rule’s sliding structure.

Before addressing our generalization of rule A6 from S, we recall that Studený
already generalized this rule from pertaining to four sets of variables, to an
arbitrary number of variable sets; we recall this rule as Eq. (1) from Sect. 2.3.
Where Eq. (1) included just a single variable set Bi in a triplet’s conditioning
part, our generalization has conditioning parts including multiple such sets per
triplet. More specifically, the rule takes a sequence of variable sets B0, . . . , Bn,
just like rule G5 above, and moves it sliding over a triplet, yet now over just
its second and third argument positions, with the first argument fixed to an
unrelated set A. The number of sets that are included in the conditioning parts
of the rule’s triplets, is governed by a parameter k.

Proposition 2. Let A,B0, . . . , Bn, n ≥ 0, be non-empty, mutually disjoint sets
of variables. Then, for all k ∈ [0, n],

∧

i∈{0,...,n}
〈A,Bi | Bk

i+〉 ↔
∧

i∈{0,...,n}
〈A,Bi | Bk

i−〉

where Bk
i+ = Bµ(i+1) · · · Bµ(i+k), Bk

i− = Bµ(i−k) · · · Bµ(i−1), taking Bk
i+ ,Bk

i− :=
∅ for k = 0, and where μ(x) := x mod (n + 1) as before.

The property stated in the proposition is taken as the independence rule G6.
Note that for k = 0, k = n, n = 0 and n = 1 the rule reduces to a tautology. G6
further embeds rule A6 as a special case with n = 2, k = 1, as is seen by setting
B0 ← B, B1 ← C and B2 ← D. Equation (1) is embedded as the cases with
k = 1 and any n ≥ 2. As an example of the generalization, rule G6 is detailed
for n = 3 and k = 2 below:

〈A,B0 | B1B2〉 ∧ 〈A,B1 | B2B3〉 ∧ 〈A,B2 | B3B0〉 ∧ 〈A,B3 | B0B1〉 ↔
〈A,B0 | B2B3〉 ∧ 〈A,B1 | B3B0〉 ∧ 〈A,B2 | B0B1〉 ∧ 〈A,B3 | B1B2〉
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Fig. 3. The combinatorial structure of rule G6, for n ≥ 2 and k = 2.

We observe that the rule’s joint consequent cannot be derived from its joint
premise using the original rules from the system S. For n + 2 sets of variables,
rule G6 includes n + 1 premise triplets and n + 1 consequent triplets. When
proceeding from n+2 to n+3 variable sets therefore, both the number of premise
triplets and the number of consequent triplets increase by one; the parameter k
does not affect the numbers of triplets involved. The combinatorial structure of
rule G6 is shown in Fig. 3. The figure highlights the rule’s star-shaped structure
that originates from the fixed set A as the first argument of all triplets involved.

The idea underlying our generalization of rule A4 from S, is somewhat less
intuitive. Informally phrased, the generalized rule takes two fixed sets of variables
A, B, and associates these sets with an ordered sequence C of sets Ci. Each Ci

occurs as the second argument in two triplets, one with A for its first argument
and one with B for its first argument. The two subsequences that remain after
removing Ci from C are each positioned in the conditioning part of one of these
triplets. In the case of an odd index i, moreover, the triplet involving A has the
conditioning part extended with the set B, and vice versa. In the case of an even
index, the conditioning parts of the triplets are not extended.

Proposition 3. Let A,B,C1, . . . , Cn, with n ≥ 2 even, be non-empty, mutually
disjoint sets of variables. Then,

∧

i∈{1,3,...,n−1}
[ 〈A,Ci | Ci− B 〉 ∧ 〈B,Ci | Ci+ A 〉 ] ∧∧

i∈{2,4,...,n}
[ 〈A,Ci | Ci−〉 ∧ 〈B,Ci | Ci+〉 ] ↔

∧

i∈{1,3,...,n−1}
[ 〈A,Ci | Ci+ B 〉 ∧ 〈B,Ci | Ci− A 〉 ] ∧∧

i∈{2,4,...,n}
[ 〈A,Ci | Ci+〉 ∧ 〈B,Ci | Ci−〉 ]

where Ci− = C1 · · · Ci−1 and Ci+ = Ci+1 · · · Cn, taking Cj · · · Cj−1 := ∅.

The property stated in the proposition is taken as the independence rule G4.
Note that G4 embeds rule A4 as a special case with n = 2, as is seen by setting
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Fig. 4. The combinatorial structure of rule G4, for n = 6.

A ← D, B ← B, C1 ← A and C2 ← C, where each set from G4 is assigned a
set from rule A4. As an example of the generalization, rule G4 is now detailed
for n = 4:

〈A,C1 | B〉 ∧ 〈A,C3 | C1C2B〉 ∧ 〈B,C1 | C2C3C4A〉 ∧ 〈B,C3 | C4A〉 ∧
〈A,C2 | C1〉 ∧ 〈A,C4 | C1C2C3〉 ∧ 〈B,C2 | C3C4〉 ∧ 〈B,C4 | ∅〉 ↔
〈A,C1 | C2C3C4B〉 ∧ 〈A,C3 | C4B〉 ∧ 〈B,C1 | A〉 ∧ 〈B,C3 | C1C2A〉 ∧
〈A,C2 | C3C4〉 ∧ 〈A,C4 | ∅〉 ∧ 〈B,C2 | C1〉 ∧ 〈B,C4 | C1C2C3〉

Note that the rule’s consequent is not derivable from its premise using the orig-
inal rules in S. For n + 2 sets of variables, rule G4 includes 2 · n premise triplets
and the same number of consequent triplets. When proceeding from n + 2 to
(n + 2) + 2 variable sets therefore, both the number of premise triplets and the
number of consequent triplets increase by four. The rule’s combinatorial struc-
ture is shown in Fig. 4, for n = 6. The rule has a bipartitely linked structure,
originating from the fixed sets A and B in the first argument positions per triplet
linking to the exact same sets from the sequence C. We further note that the
lines from A and from B to the same set Ci swap labels (replacing A by B and
vice versa) between the premise and consequent parts of the rule.

As the above generalization, our generalization of rule A3 takes two fixed
sets of variables A, B. Instead of being associated with a single sequence of sets,
A and B are now associated with two separate sequences C and D, respectively.
Each set Ci occurs as the second argument in two triplets, both with A as the
first argument. The two remaining subsequences of C after removing Ci, are each
positioned in the conditioning part of one of these triplets, supplemented with
a subsequence of D. A similar pattern is seen with the set B and its associated
sequence D. The triplet pairs with A and those with B as their first arguments,
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Fig. 5. The combinatorial structure of rule G3, for n = 3.

are again related through the inclusion of B in the conditioning part of one of
the triplet pairs with A, and vice versa.

Proposition 4. Let A,B,Ci,Di, i = 1, . . . , n, n ≥ 1, be non-empty, mutually
disjoint sets of variables, and let C = C1 · · · Cn and D = D1 · · · Dn. Then,

∧

i∈{1,...,n}
[ 〈A,Ci | Ci− Di++〉 ∧ 〈A,Ci | Ci+ Di−− B 〉 ∧
〈B,Di | Ci++ Di− A 〉 ∧ 〈B,Di | Ci−− Di+〉 ] ↔

∧

i∈{1,...,n}
[ 〈A,Ci | Ci− Di++ B 〉 ∧ 〈A,Ci | Ci+ Di−−〉 ∧
〈B,Di | Ci++ Di−〉 ∧ 〈B,Di | Ci−− Di+ A 〉 ]

where Zi− = Z1 · · · Zi−1, Zi+ = Zi+1 · · · Zn, Zi−− = Z1 · · · Zn−i+1 and Zi++ =
Zn−i+2 · · · Zn, taking Zj · · · Zj−1 := ∅, for Z = C,D.

The property stated in the proposition is taken as the independence rule G3.
Note that G3 embeds rule A3 as a special case with n = 1, as is seen by setting
A ← A, B ← C, C1 ← B and D1 ← D, where each set from G3 is assigned a
set from rule A3. As an example of the generalization, rule G3 is now detailed
for n = 2:

〈A,C1 | ∅〉 ∧ 〈A,C1 | C2D1D2B〉 ∧ 〈B,D1 | A〉 ∧ 〈B,D1 | C1C2D2〉 ∧
〈A,C2 | C1D2〉 ∧ 〈A,C2 | D1B〉 ∧ 〈B,D2 | C2D1A〉 ∧ 〈B,D2 | C1〉 ↔
〈A,C1 | B〉 ∧ 〈A,C1 | C2D1D2〉 ∧ 〈B,D1 | ∅〉 ∧ 〈B,D1 | C1C2D2A〉 ∧
〈A,C2 | C1D2B〉 ∧ 〈A,C2 | D1〉 ∧ 〈B,D2 | C2D1〉 ∧ 〈B,D2 | C1A〉

We note that it is not possible to derive the rule’s consequent from its premise
by means of the rule system S. For 2 ·n+2 sets of variables, rule G3 includes 4 ·n
premise triplets and the same number of consequent triplets. When proceeding
from 2 ·n+2 to 2 · (n+1)+2 variable sets therefore, both the number of premise
triplets and the number of consequent triplets increase by four. The combinato-
rial structure of the rule is illustrated in Fig. 5, for n = 3. This structure consists
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Fig. 6. The combinatorial structure of rule G7, for n = 7.

of double-edged stars with the cardinalities of the conditioning sets of the paired
triplets adding up to 2 · n.

To conclude this section, we present our generalization of rule A7 from S.
The generalized rule involves a fixed sequence with an even number of sets of
variables Ai. Each set with an even index i is paired with each set with an odd
index i in the first two argument positions of a triplet. The conditioning part of
such a triplet includes either the intervening variables sets of the sequence or all
remaining variable sets.

Proposition 5. Let A0, . . . , An, with n ≥ 1 an odd number, be non-empty,
mutually disjoint sets of variables. Then,

∧

i ∈ {0, 2, . . . , n − 1},
k ∈ {1, 3, . . . , n}

〈Ai, Aµ(i+k) | Ai+〉 ↔
∧

i ∈ {0, 2, . . . , n − 1},
k ∈ {1, 3, . . . , n}

〈Ai, Aµ(i−k) | Ai−〉

where Ai+ = Aµ(i+1) · · · Aµ(i+k−1) and Ai− = Aµ(i−k+1) · · · Aµ(i−1), taking
Ai+ ,Ai− := ∅ for k = 1, and where μ(x) := x mod (n + 1), as before.

The property stated in the proposition is taken as the independence rule G7.
Note that for n = 1 the rule reduces to a tautology. G7 further embeds rule A7
as a special case with n = 3, as is seen by setting A0 ← A, A1 ← C, A2 ← D
and A3 ← B. As an example of the generalization, rule G7 is now detailed for
n = 5:
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〈A0, A1 | ∅〉 ∧ 〈A0, A3 | A1A2〉 ∧ 〈A0, A5 | A1A2A3A4〉 ∧
〈A2, A3 | ∅〉 ∧ 〈A2, A5 | A3A4〉 ∧ 〈A2, A1 | A3A4A5A0〉 ∧
〈A4, A5 | ∅〉 ∧ 〈A4, A1 | A5A0〉 ∧ 〈A4, A3 | A5A0A1A2〉 ↔
〈A0, A5 | ∅〉 ∧ 〈A0, A3 | A4A5〉 ∧ 〈A0, A1 | A2A3A4A5〉 ∧
〈A2, A1 | ∅〉 ∧ 〈A2, A5 | A0A1〉 ∧ 〈A2, A3 | A4A5A0A1〉 ∧
〈A4, A3 | ∅〉 ∧ 〈A4, A1 | A2A3〉 ∧ 〈A4, A5 | A0A1A2A3〉

We observe that it is not possible to derive the rule’s consequent from its premise
using the rule system S considered thus far. For n + 1 sets of variables, rule
G7 includes ((n + 1)/2)2 premise triplets and the same number of consequent
triplets. When proceeding from n+1 to n+3 sets of variables therefore, both the
number of premise triplets and the number of consequent triplets are increased
by n+2. The combinatorial structure of the rule is illustrated in Fig. 6 for n = 7.
The conditioning sets of a premise triplet are found on the outermost circle, in
between the sets of its first two arguments, going clockwise starting from its first
argument. For a consequent triplet a similar observation holds, now however the
conditioning sets are found going counterclockwise.

We now define G = A ∪ {G3, . . . ,G7} for the new system of independence
rules. Compared to the system S, system G further restricts the number of
relations closed under all known independence rules and thereby constitutes
an enhanced characterisation of the class of structural semi-graphoid relations.
Figure 1(b) positions the new system G into the hierarchy of independence rela-
tions.

4 Conclusions and Future Research

With existing rule systems for probabilistic independence being sound yet incom-
plete, we presented generalizations of the five rules for independence formulated
by Studený [6], to larger numbers of (sets of) variables. With these generalized
rules we uncovered combinatorial structures of probabilistic independence, and
thereby enable their further study. We also closed in on the class of probabilis-
tic independence relations, as the class of relations closed under the generalized
rules is a proper subclass of the class closed under the previously existing rule
system. By further exploiting multiinformation proof constructs, we hope to
uncover in future research further combinatorial structures of independence and
to formulate new generalized rules for probabilistic independence.

Acknowledgment. We would like to thank Milan Studený for his quick answers to
our questions related to his work.

Appendix: Sketches of Proofs

All propositions stated in Sect. 3 are proven through multiinformation proof
constructs. We find that the multiinformation equations of the four rules G3–
G6 share the property that each term occurs exactly twice. In these equations,
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moreover, any multiinformation term originating from a premise triplet has a
matching term, that occurs either in the rule’s consequent with the same sign or
in another premise triplet with the opposite sign. All terms therefore cancel out
of the equation. For the fifth rule G7 the same observation holds, except for the
terms M(∅) and M(A0 · · · An). These terms may occur more than twice, how-
ever both terms occur equally many times in the multiinformation expressions
of the rule’s premise and of the rule’s consequent and thus cancel out as well. In
the proof sketches per rule, we restrict ourselves to indicating how each multiin-
formation term from an arbitrarily chosen premise triplet is canceled out from
the multiinformation equation. Upon doing so, we abbreviate the multiinforma-
tion terms M(XY Z), M(Z), M(XZ) and M(Y Z) of a triplet θ = 〈X,Y | Z〉 as
MIθ, MIIθ, MIIIθ and MIVθ, respectively.

Proposition 1. Let θ = 〈Aj , Aµ(j+1) | Aµ(j+2)〉 be a premise triplet of rule
G5, for some index i = j. Then, the triplet θ′ = 〈Aµ(j+1), Aµ(j+2) | Aj〉, with
i = μ(j + 1), in the rule’s consequent, has MIθ

′ = MIθ and MIVθ′ = MIIIθ. The
consequent triplet θ′′ = 〈Aµ(j+3), Aµ(j+4) | Aµ(j+2)〉, with i = μ(j + 3), further
has MIIθ

′′ = MIIθ, and the consequent triplet θ′′′ = 〈Aµ(j+2), Aµ(j+3) |Aµ(j+1)〉,
with i = μ(j + 2), to conclude, has MIIIθ

′′′ = MIVθ. �

Proposition 2. Let θ = 〈A,Bj | Bk
j+〉 be a premise triplet of rule G6, for

some index i = j and some k. Then, the consequent triplet θ′ = 〈A,Bµ(j+k) |
Bk

µ(j+k)−〉, with i = μ(j + k), has MIθ
′ = MIθ and MIVθ′ = MIVθ. The conse-

quent triplet θ′′ = 〈A,Bµ(j+k+1) | Bk
µ(j+k+1)−〉, with i = μ(j + k + 1), further

has MIIθ
′′ = MIIθ and MIIIθ

′′ = MIIIθ. �

Proposition 3. Let θ = 〈A,Cj | C1 · · · Cj−1 B〉 be a premise triplet of rule G4,
for some index i = j. Then, the consequent triplet θ′ = 〈B,Cj | C1 · · · Cj−1 A〉,
with i = j, has MIθ

′ = MIθ and MIIIθ
′ = MIIIθ. The consequent triplet θ′′ =

〈B,Cj+1 | C1 . . . Cj〉, with i = j + 1, has MIIIθ
′′ = MIVθ. For j > 1, the

consequent triplet θ′′′ = 〈B,Cj−1 | C1 . . . Cj−2〉, with i = j − 1, has MIθ
′′′ =

MIIθ. For j = 1, the term MIIθ is canceled out of the multiinformation equation
by the term MIII, with the opposite sign, of the premise triplet 〈B,Cn | ∅〉.
Similar arguments apply to the premise triplets of another form than θ. �

Proposition 4. Let θ = 〈A,Cj | C1 · · · Cj−1Dn−j+2 · · · Dn〉 be a premise triplet
of G3, for some index i = j. Then, the consequent triplet θ′ = 〈B,Dn−j+1 |
C1 · · · CjDn−j+2 · · · DnA〉, with i = n − j + 1, has MIIθ

′ = MIθ. The premise
triplet θ′′ = 〈B,Dn−j+1 | C1 · · · CjDn−j+2 · · · Dn〉, with i = n − j + 1, further
has MIIθ

′′ = −MIVθ. For all j > 1, the premise triplet θ′′′ = 〈B,Dn−j+2 |
C1 · · · Cj−1Dn−j+3 · · · Dn〉, with i = n − j + 2, has MIVθ′′′ = −MIIθ and the
consequent triplet θ′′′′ = 〈B,Dn−j+2 | C1 · · · Cj−1Dn−j+3 · · · DnA〉, also with
i = n − j + 2, has MIVθ′′′′ = MIIIθ. For j = 1 to conclude, the term MIIθ is
matched by the MII term of the consequent triplet 〈B,D1 | ∅〉 and the term
MIIIθ is canceled out by the term MII of opposite sign of the premise triplet
〈B,D1 | A〉, with i = 1. Similar arguments apply to premise triplets of other
form than θ. �



602 J. H. Bolt and L. C. van der Gaag

Proposition 5. Let θ = 〈Aj , Aµ(j+h) | Aµ(j+1) · · · Aµ(j+h−1)〉 be a premise
triplet of G7, for some indices i = j, k = h. The term MIIIθ is can-
celed out from the multiinformation equation by the term MIIIθ

′ of the con-
sequent triplet θ′ = 〈Aµ(j+h−1), Aµ(j−1) | Aj · · · Aµ(j+h−2)〉, with k = h,
i = μ(j + h − 1). The term MIVθ is canceled out by MIVθ′′ of the con-
sequent triplet θ′′ = 〈Aµ(j+h+1), Aµ(j+1) | Aµ(j+2) · · · Aµ(j+h)〉, with k = h,
i = μ(j + h + 1). For all k ≤ n − 2, the term MIθ is canceled out by the term
MIIθ

′′′ of the consequent triplet θ′′′ = 〈Aµ(j+h+1), Aµ(j−1) | Aµ(j) · · · Aµ(j+h)〉,
with k = h + 2, i = μ(j + h + 1); for k = n, the MI terms of all premise
and consequent triplets have MI· = M(A0 · · · An) and hence match. For all
k ≥ 3, the term MIIθ is canceled out by the term MIθ

′′′′ of the consequent
triplet θ′′′′ = 〈Aµ(j+h−1), Aµ(j+1) | Aµ(j+2) · · · Aµ(j+h−2)〉, with k = h − 2,
i = μ(j + h − 1); for k = 1, the MII terms of all premise and consequent triplets
have MII = M(∅) and thus match. �
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6. Studený, M.: Structural semigraphoids. Int. J. Gen. Syst. 22, 207–217 (1994)
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