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Abstract. In a recent work we have shown how to construct an infor-
mation algebra of coherent sets of gambles defined on general possibility
spaces. Here we analyze the connection of such an algebra with the set

algebra of subsets of the possibility space on which gambles are defined
and the set algebra of sets of its atoms. Set algebras are particularly im-
portant information algebras since they are their prototypical structures.
Furthermore, they are the algebraic counterparts of classical proposi-
tional logic. As a consequence, this paper also details how propositional
logic is naturally embedded into the theory of imprecise probabilities.

Keywords: Desirability · Information algebras · Order theory · Impre-
cise probabilities · Coherence.

1 Introduction and Overview

While analysing the compatibility problem of coherent sets of gambles, Miranda
and Zaffalon [13] have recently remarked that their main results could be ob-
tained also using the theory of information algebras [6]. This observation has
been taken up and deepened in some of our recent work [12,17]: we have shown
that the founding properties of desirability can in fact be abstracted into prop-
erties of information algebras. Stated differently, desirability makes up an infor-
mation algebra of coherent set of gambles.

Information algebras are algebraic structures composed by ‘pieces of infor-
mation’ that can be manipulated by operations of combination, to aggregate
them, and extraction, to extract information regarding a specific question. From
the point of view of information algebras, sets of gambles defined on a possibil-
ity space Ω are pieces of information about Ω. It is well known that coherent
sets of gambles are ordered by inclusion and, in this order, there are maximal
elements [4]. In the language of information algebras such elements are called
atoms. In particular, any coherent set of gambles is contained in a maximal set
(an atom) and it is the intersection (meet) of all the atoms it is contained in. An
information algebra with these properties is called atomistic. Atomistic informa-
tion algebras have the universal property of being embedded in a set algebra,
which is an information algebra whose elements are sets. This is an important
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representation theorem for information algebras, since set algebras are a special
kind of algebras based on the usual set operations. Conversely, any such set al-
gebra of subsets of Ω is embedded in the algebra of coherent sets of gambles
defined on Ω. These links between set algebras and the algebra of coherent sets
of gambles are the main topic of the present work.

After recalling the main concepts introduced in our previous work in Sec-
tions 2–4, in Section 5 we establish the basis to show that sets of atoms of the
information algebra of coherent sets of gambles, form indeed a set algebra. In
Section 6 we define the concept of embedding for information algebras and fi-
nally, in Section 7, we show the links between set algebras (of subsets of Ω and
of sets of atoms) and the algebra of coherent sets of gambles.

Since set algebras are algebraic counterparts of classical propositional logic,
the results of this paper details how the latter is formally part of the theory of
imprecise probabilities [16]. We refer also to [3] for another aspect of this issue.

2 Desirability

Consider a set Ω of possible worlds. A gamble over this set is a bounded function
f : Ω → R. It is interpreted as an uncertain reward in a linear utility scale. A
subject might desire a gamble or not, depending on the information they have
about the experiment whose possible outcomes are the elements of Ω. We denote
the set of all gambles on Ω by L(Ω), or more simply by L, when there is no
possible ambiguity. We also introduce L+(Ω) := {f ∈ L(Ω) : f ≥ 0, f 6= 0}, or
simply L+ when no ambiguity is possible, the set of non-negative non-vanishing
gambles. These gambles should always be desired, since they may increase the
wealth with no risk of decreasing it. As a consequence of the linearity of our
utility scale, we assume also that a subject disposed to accept the transactions
represented by f and g, is disposed to accept also λf + µg with λ, µ ≥ 0 not
both equal to 0. More generally speaking, we consider the notion of a coherent
set of gambles [16]:

Definition 1 (Coherent set of gambles). We say that a subset D of L is a
coherent set of gambles if and only if D satisfies the following properties:

D1. L+ ⊆ D [Accepting Partial Gains];
D2. 0 /∈ D [Avoiding Status Quo];
D3. f, g ∈ D ⇒ f + g ∈ D [Additivity];
D4. f ∈ D, λ > 0 ⇒ λf ∈ D [Positive Homogeneity].

So, D is a convex cone. Let us denote with C(Ω), or simply with C, the family
of coherent sets of gambles on Ω. This leads to the concept of natural extension.

Definition 2 (Natural extension for gambles). Given a set K ⊆ L, we call

E(K) := posi(K ∪ L+), where posi(K′) :=
{

∑r

j=1 λjfj : fj ∈ K′, λj > 0, r ≥ 1
}

,

for every set K′ ⊆ L, its natural extension.



Algebras of Sets and Coherent Sets of Gambles 3

The natural extension E(D) of a set of gambles D is coherent if and only if
0 6∈ E(D).

In [17] we showed that Φ(Ω) := C(Ω)∪{L(Ω)}, or simply Φ when there is no
possible ambiguity, is a complete lattice under inclusion [1], meet is intersection
and join is defined for any family of sets Di ∈ Φ as

∨

i∈I

Di :=
⋂

{

D ∈ Φ :
⋃

i∈I

Di ⊆ D

}

.

Note that, if the family of coherent sets Di has no upper bound in C, then its join
is simply L. Moreover, we defined the following closure operator [1] on subsets
of gambles.

C(D′) :=
⋂

{D ∈ Φ : D′ ⊆ D}. (1)

It is possible to notice that C(D) = E(D) if 0 6∈ E(D), that is if E(D) is coherent.
Otherwise we may have E(D) 6= L(Ω).

The most informative cases of coherent sets of gambles, i.e., coherent sets
that are not proper subsets of other coherent sets, are called maximal. The
following proposition provides a characterisation of such maximal elements [4,
Proposition 2].

Proposition 1 (Maximal coherent set of gambles). A coherent set of gam-
bles D is maximal if and only if

(∀f ∈ L \ {0}) f /∈ D ⇒ −f ∈ D.

We shall denote maximal sets withM to differentiate them from the general case
of coherent sets. These sets play an important role with respect to information
algebras (see Section 5). Another important class is that of strictly desirable sets
of gambles [16].3

Definition 3 (Strictly desirable set of gambles). A coherent set of gambles
D is said to be strictly desirable if and only if it satisfies

(∀f ∈ D \ L+)(∃δ > 0) f − δ ∈ D.

For strictly desirable sets, we shall employ the notation D+.

3 Stucture of Questions and Possibilities

In this section we review the main results about the structure of Ω [7,8,17]. With
reference to our previous work [17], we recall that coherent sets of gambles are
understood as pieces of information describing beliefs about the elements in Ω.

3 Strictly desirable sets of gambles are important because they are in a one-to-one
relation with coherent lower previsions; these are a generalization of the usual ex-
pectation operator on gambles. Given a coherent lower prevision P (·), D+ := {f ∈
L : P (f) > 0} ∪ L+ is a strictly desirable set of gambles [16, Section 3.8.1].
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Beliefs may be originally expressed relative to different questions or variables
that we identify by families of equivalence relations ≡x on Ω for x in some index
set Q. A question x ∈ Q has the same answer in possible worlds ω ∈ Ω and
ω′ ∈ Ω, if ω ≡x ω

′.
There is a partial order between questions capturing granularity: question y

is finer than question x if ω ≡y ω
′ implies ω ≡x ω

′. This can be expressed also
considering partitions Px, Py of Ω whose blocks are respectively, the equivalence
classes [ω]x, [ω]y of the equivalence relations ≡x, ≡y, representing possible an-
swers to x and y. Then ω ≡y ω

′ implies ω ≡x ω
′, meaning that any block [ω]y of

partition Py is contained in some block [ω]x of partition Px. If this is the case, we
say equivalently that: x ≤ y or Px ≤ Py.

4 Partitions Part(Ω) of any set Ω, form
a lattice under this order [5]. In particular, the partition sup{Px,Py} := Px∨Py

of two partitions Px,Py is, in this order, the partition obtained as the non-empty
intersections of blocks of Px with blocks of Py. It can be equivalently expressed
also as Px∨y. Definition of meet Px ∧ Py, or equivalently Px∧y, is somewhat
involved [5]. We usually assume that the set of questions Q analyzed, considered
together with their associated partitions denoted with Q := {Px : x ∈ Q}, is a
join-sub-semilattice of (Part(Ω),≤) [1]. In particular, we assume often that the
top partition in Part(Ω), i.e. P⊤ (where the blocks are singleton sets {ω} for
ω ∈ Ω), belongs to Q. A gamble f on Ω is called x-measurable, iff for all ω ≡x ω

′

we have f(ω) = f(ω′), that is, if f is constant on every block of Px. It could
then also be considered as a function (a gamble) on the set of blocks of Px. We
denote with Lx(Ω), or more simply with Lx when no ambiguity is possible, the
set of all x-measurable gambles.

We recall also the logical independence and conditional logical indipendence
relation between partitions [7,8].

Definition 4 (Independent Partitions). For a finite set of partitions P1, . . . ,Pn ∈
Part(Ω), n ≥ 2, let us define

R(P1, . . . ,Pn) := {(B1, . . . , Bn) : Bi ∈ Pi,∩
n
i=1Bi 6= ∅}.

We call the partitions independent, if R(P1, . . . ,Pn) = P1 × · · · × Pn.

Definition 5 (Conditionally Independent Partitions). Consider a finite
set of partitions P1, . . .Pn ∈ Part(Ω), and a block B of a partition P (contained
or not in the list P1, . . . ,Pn), then define for n ≥ 1,

RB(P1, . . . ,Pn) := {(B1, . . . , Bn) : Bi ∈ Pi,∩
n
i=1Bi ∩B 6= ∅}.

We call P1, . . . ,Pn conditionally independent given P, iff for all blocks B of P,
RB(P1, . . . ,Pn) = RB(P1)× · · · ×RB(Pn).

This relation holds if and only if Bi ∩ B 6= ∅ for all i = 1, . . . , n, implies that
B1 ∩ . . . ∩ Bn ∩ B 6= ∅. In this case we write ⊥{P1, . . . ,Pn}|P or, for n = 2,

4 In the literature usually the inverse order between partitions is considered. However,
this order better corresponds to our natural order of questions by granularity.
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P1⊥P2|P . Px⊥Py|Pz can be indicated also with x⊥y|z. We may also say that
P1⊥P2|P if and only if ω ≡P ω′ implies the existence of an element ω′′ ∈ Ω
such that ω ≡P1∨P ω′′ and ω′ ≡P2∨P ω′′. The three-place relation P1⊥P2|P is,
in particular, a quasi-separoid [7], a retract of the concept of separoid [1].

Theorem 1. Given P ,P ′,P1,P2 ∈ Part(Ω), we have:

C1 P1⊥P2|P2;
C2 P1⊥P2|P implies P2⊥P1|P;
C3 P1⊥P2|P and P ′ ≤ P2 imply P1⊥P ′|P;
C4 P1⊥P2|P implies P1⊥P2 ∨ P|P.

From these properties, it follows that Px ⊥ Py|Pz ⇐⇒ Px∨z ⊥ Py∨z|Pz, which
we use very often later on.

4 Information Algebra of Coherent Sets of Gambles

In [17] we showed that Φ with the following operations:

1. Combination: D1 · D2 := C(D1 ∪ D2),
2. Extraction: ǫx(D) := C(D ∩ Lx) for x ∈ Q,

is a domain-free information algebra that we call the domain-free information
algebra of coherent sets of gambles. Combination captures aggregation of pieces
of belief, and extraction describes filtering the part of information relative to a
question x ∈ Q. Information algebras are particular valuation algebras as defined
by [14] but with idempotent combination. Domain-free versions of valuation
algebras have been proposed by Shafer [18]. Idempotency of combination has
important consequences, such as the possibility to define an information order,
atoms, approximation, and more [6,7]. It also offers—the subject of the present
paper—important connections to set algebras.

Here we remind the characterizing properties of the domain-free information
algebra Φ together with a system of questions Q and a family E of extraction
operators ǫx : Φ→ Φ for x ∈ Q:

1. Semigroup: (Φ, ·) is a commutative semigroup with a null element 0 = L(Ω)
and a unit 1 = L+(Ω).

2. Quasi-Separoid: (Q,≤) is a join semilattice and x⊥y|z with x, y, z ∈ Q, a
quasi-separoid.

3. Existential Quantifier: For any x ∈ Q, D1,D2,D ∈ Φ:
(a) ǫx(0) = 0,
(b) ǫx(D) · D = D,
(c) ǫx(ǫx(D1) · D2) = ǫx(D1) · ǫx(D2).

4. Extraction: For any x, y, z ∈ Q,D ∈ Φ, such that x∨z⊥y∨z|z and ǫx(D) = D,
we have:

ǫy∨z(D) = ǫy∨z(ǫz(D)).

5. Support: For any D ∈ Φ there is an x ∈ Q so that ǫx(D) = D, i.e. a support
of D [17], and for all y ≥ x, y ∈ Q, ǫy(D) = D.
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When we need to specify all the constructing elements of the domain-free in-
formation algebra Φ, we can refer to it with the tuple (Φ,Q,≤,⊥, ·, E), where
E is the family of the extraction operators constructed starting from x ∈ Q or,
equivalently, from partitions in Q.5 When we do not need this degree of accu-
racy, we can refer to it simply as Φ. Analogous considerations can be made for
other domain-free information algebras. Notice that, in particular, (Φ, ·) is an
idempotent, commutative semigroup. So, a partial order is defined by D1 ≤ D2

if D1 · D2 = D2. Then D1 ≤ D2 if and only if D1 ⊆ D2. This order is called an
information order [17]. This definition entails the following facts: ǫx(D) ≤ D for
every D ∈ Φ, x ∈ Q; given D1,D2 ∈ Φ, if D1 ≤ D2, then ǫx(D1) ≤ ǫx(D2) for
every x ∈ Q [6].

5 Atoms and Maximal Coherent Sets of Gambles

Maximal coherent sets M are atoms in the information algebra of coherent sets
of gambles [17]. This is a well-known concept in (domain-free) information alge-
bras. We remind the following elementary properties of atoms [6], immediately
derivable from the definition. If M,M1 and M2 are atoms of Φ and D ∈ Φ, then

1. M · D =M or M · D = 0,
2. either D ≤M or M · D = 0,
3. either M1 =M2 or M1 ·M2 = 0.

We indicate with At(Φ) the set of all atoms of Φ, and with At(D) the set of all
atoms M which dominate D ∈ Φ, that is, At(D) := {M ∈ At(Φ) : D ⊆ M}.
Furthermore, Φ is atomic [6], i.e. for any D 6= 0 the set At(D) is not empty, and
atomistic, i.e. for any D 6= 0, D =

⋂

At(D). It is a general result of atomistic
information algebras that the subalgebras ǫx(Φ) are also atomistic [11]. Moreover,
in [17], we showed that At(ǫx(Φ)) = ǫx(At(Φ)) = {ǫx(M) : M ∈ At(Φ)} for any
x ∈ Q and, therefore, we call ǫx(M) for M ∈ At(Φ) and x ∈ Q local atoms for
x. Local atoms Mx = ǫx(M) for x induce a partition Atx of At(Φ) with blocks
At(Mx). If M and M ′ belong to the same block, we say that M ≡x M

′.
Let us indicate with Part(At(Φ)) the set of these partitions. As for Part(Ω),

we can introduce a partial order on Part(At(Φ)) defined as: Atx ≤ Aty if M ≡y

M ′ implies M ≡x M ′, for every M,M ′ ∈ At(Φ). Part(At(Φ)) forms a lattice
under this order where, in particular, Atx ∨ Aty is the partition obtained as
the non-empty intersections of blocks of Atx with blocks of Aty [5]. We claim
moreover that these partitions of At(Φ) mirror the partitions Px ∈ Q. Before
stating this main result, we need the following lemma.

Lemma 1. Let us consider M,M ′ ∈ At(Φ) and x ∈ Q. Then

M ≡x M
′ ⇐⇒ ǫx(M) = ǫx(M

′) ⇐⇒ M,M ′ ∈ At(ǫx(M)).

Hence, Atx ≤ Aty if and only if At(ǫx(M)) ⊇ At(ǫy(M)) for every M ∈ At(Φ).
5 When we need to be explicit about partitions, we can indicate the extraction operator
ǫx also as ǫPx

, where Px ∈ Q is the partition associated to the question x ∈ Q.
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Proof. If M ≡x M
′, there exists a local atom Mx such that M,M ′ ∈ At(Mx).

Therefore, M,M ′ ≥ Mx and ǫx(M), ǫx(M
′) ≥ Mx [17, Lemma 15, item 3].

However, ǫx(M), ǫx(M
′) and Mx are all local atoms, hence ǫx(M) = ǫx(M

′) =
Mx. The converse is obvious.

For the second part, let us suppose At(ǫy(M)) ⊆ At(ǫx(M)) for every M ∈
At(Φ), and consider M ′,M ′′ ∈ At(Φ) such that M ′ ≡y M ′′. Then M ′,M ′′ ∈
At(ǫy(M

′)) and hence M ′,M ′′ ∈ At(ǫx(M
′)), which implies M ′ ≡x M ′′. Vice

versa, consider Atx ≤ Aty and M ′ ∈ At(ǫy(M)) for some M,M ′ ∈ At(Φ). Then,
M ≡y M

′, hence M ≡x M
′ and so M ′ ∈ At(ǫx(M)).

Now we can state the main result of this section.

Theorem 2. The map Px 7→ Atx, from the lattice of partitions (Part(Ω),≤)
of Ω to the lattice partitions (Part(At(Φ)),≤) of At(Φ), preserves order and
join. Furthermore it preserves also conditional independence relations, that is,
Px⊥Py|Pz implies Atx⊥Aty|Atz.

Proof. If x ≤ y, then ǫx(M) ≤ ǫy(M) for any atom M ∈ At(Φ) [17, Lemma 15,
item 4]. Therefore, At(ǫx(M)) ⊇ At(ǫy(M)) for any M ∈ At(Φ), hence Atx ≤
Aty. The converse is also true: indeed, if Atx ≤ Aty, then At(ǫx(M)) ⊇ At(ǫy(M))
for any M ∈ At(Φ). This implies in particular that ǫx(M) = ∩At(ǫx(M)) ⊆
∩At(ǫy(M)) = ǫy(M) for any M ∈ At(Φ), thanks to the fact that At(Φ) is
atomistic. Now, for any D coherent, consider the family {Mj}j∈J := At(D).
Then we have:

ǫx(D) = ǫx(∩j∈JMj) = ∩j∈J ǫx(Mj) ⊆ ∩j∈J ǫy(Mj) = ǫy(∩j∈JMj) = ǫy(D),

thanks to [17, Theorem 17]. Therefore we have ǫx(D) ⊆ ǫy(D) also for any
D ∈ C. Applying it to D := E({f}) for every f ∈ Lx \ (L+

x ∪ {f ∈ Lx : f ≤ 0}),
we obtain that Lx ⊆ Ly, from which it follows that x ≤ y [17, Section 3]. So the
map Px 7→ Atx is an order isomorphism [1, Def. 1.34], therefore it also preserves
joins [1, Prop. 2.19].

For the second part, recall that x⊥y|z if and only if x ∨ z⊥y ∨ z|z. Consider
then local atoms Mx∨z,My∨z and Mz so that

At(Mx∨z) ∩ At(Mz) 6= ∅, At(My∨z) ∩ At(Mz) 6= ∅.

Hence, there is an atomM ′ ∈ At(Mx∨z)∩At(Mz) and an atomM ′′ ∈ At(My∨z)∩
At(Mz). Therefore, Mx∨z = ǫx∨z(M

′), My∨z = ǫy∨z(M
′′) and Mz = ǫz(M

′) =
ǫz(M

′′). Now, thanks to the Existential Quantifier axiom, we have:

ǫz(Mx∨z ·My∨z ·Mz) = ǫz(Mx∨z ·My∨z) ·Mz.

Thanks to [17, Theorem 16] and [17, Lemma 15, item 6],6 we obtain

ǫz(Mx∨z ·My∨z) ·Mz = ǫz(ǫx∨z(M
′)) · ǫz(ǫy∨z(M

′′)) ·Mz = ǫz(M
′) · ǫz(M

′′) ·Mz 6= 0.

6 [17, Theorem 16, item 2] indeed, can be rewritten also as follows: let D1,D2 ∈ Φ

and x, y, z ∈ Q, if D1 has support x ∨ z, D2 has support y ∨ z and x⊥y|z ,then
ǫz(D1 · D2) = ǫz(D1) · ǫz(D2).
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Therefore Mx∨z · My∨z · Mz 6= 0 [17, Lemma 15, item 2] and hence, since
the algebra is atomic, there is an atom M ′′′ ∈ At(Mx∨z · My∨z · Mz). Then
Mx∨z,My∨z,Mz ≤M ′′′, whence M ′′′ ∈ At(Mx∨z) ∩At(My∨z) ∩At(Mz) and so
Atx⊥Aty|Atz.

6 Information Algebras Homomorphisms

We are interested in homomorphisms between algebras:

Definition 6 (Domain-free information algebras homomorphism). Let
(Ψ,Q,≤Ψ ,⊥Ψ , ·Ψ , E) and (Ψ ′,Q′,≤Ψ ′ ,⊥Ψ ′, ·Ψ ′ , E′) be two domain-free informa-
tion algebras, where E := {ǫP , P ∈ Q} and E′ := {ǫ′P′ , P ′ ∈ Q′} are respectively
the families of the extraction operators of the two algebras. A tuple (f, h, g) of
maps f : Ψ → Ψ ′, h : Q → Q′ and g : E 7→ E′ defined as g : ǫP → ǫ′

h(P), is

an homomorphism between (Ψ,Q,≤Ψ ,⊥Ψ , ·Ψ , E) and (Ψ ′,Q′,≤Ψ ′ ,⊥Ψ ′, ·Ψ ′ , E′) if
and only if:

1. f(ψ ·Ψ φ) = f(ψ) ·Ψ ′ f(φ), for every φ, ψ ∈ Ψ ;
2. f(0Ψ ) = 0Ψ ′ and f(1Ψ ) = 1Ψ ′ , if we indicate with 0Ψ , 1Ψ and 0Ψ ′, 1Ψ ′ respec-

tively, the 0 and the 1 elements of Ψ and Ψ ′;
3. if P1 ≤Ψ P2 then h(P1) ≤Ψ ′ h(P2), for every P1,P2 ∈ Q;
4. h(P1 ∨Ψ P2) = h(P1) ∨Ψ ′ h(P2) for every P1,P2 ∈ Q, if we indicate with

P1 ∨Ψ P2, the join of P1,P2 with respect to ≤Ψ and with h(P1) ∨Ψ ′ h(P2),
the join of h(P1), h(P2) with respect to ≤Ψ ′ ;

5. P1⊥ΨP2|P implies h(P1)⊥Ψ ′h(P2)|h(P) for every P1,P2,P ∈ Q;
6. f(ǫP(ψ)) = g(ǫP)(f(ψ)), for all ψ ∈ Ψ and ǫP ∈ E with P ∈ Q.

If the maps are one-to-one, then (Ψ,Q,≤Ψ ,⊥Ψ , ·Ψ , E) is said to be embedded
into (Ψ ′,Q′,≤Ψ ′,⊥Ψ ′ , ·Ψ ′ , E′). If they are also bijiective, the homomorphism is
said to be an isomorphism between the two algebras.

This definition is an extension of the information algebras homomorphism
given in [7],7 for domain-free information algebras for which Q is potentially
different from Q′. If Q = Q′, or equivalently Q = Q′, it collapses to the simpler
definition in [7].

7 Set Algebras

Archetypes of information algebras are so-called set algebras, where the elements
are subsets of some universe, combination is intersection, and extraction is re-
lated to so-called saturation operators. Starting with the set Ω of possibilities,
representing possible worlds, pieces of information may be given by subsets S
of Ω, meaning that the unknown world must be an element of S. As before,
questions x ∈ Q are modeled by partitions Px or equivalence relation ≡x, where

7 In [7] the set of questions Q is used in place of the set of partitions Q. Here we need
to be more explicit about partitions.
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ω ≡x ω
′ means that question x has the same answer in possible worlds ω and ω′.

We first specify the set algebra of subsets of Ω and show then that this algebra
may be embedded into the information algebra of coherent sets. Conversely, we
show that the algebra Φ of coherent sets of gambles may itself be embedded into
a set algebra of its atoms, so is, in some precise sense, itself a set algebra. This
is a general result for atomistic information algebras [6,11].

To any partition Px of Ω there corresponds a saturation operator defined for
any subset S ⊆ Ω by

σx(S) := {ω ∈ Ω : (∃ω′ ∈ S) ω ≡x ω
′}. (2)

The following are well-known properties of saturation operators.

Lemma 2. For all S, T ⊆ Ω and any partition Px of Ω:

1. σx(∅) = ∅,
2. S ⊆ σx(S),
3. σx(σx(S) ∩ T ) = σx(S) ∩ σx(T ),
4. σx(σx(S)) = σx(S),
5. S ⊆ T ⇒ σx(S) ⊆ σx(T ),
6. σx(σx(S) ∩ σx(T )) = σx(S) ∩ σx(T ).

Proof. Items 1, 2, 4, 5 are obvious. For item 6, consider ω ∈ σx(σx(S)∩ σx(T )).
Then there is a ω′ ∈ σx(S) ∩ σx(T ) so that ω ≡x ω

′. In particular, ω′ ∈ σx(S),
hence ω ∈ σx(σx(S)) = σx(S) by item 4. At the same time, ω′ ∈ σx(T ), hence
ω ∈ σx(σx(T )) = σx(T ). Then ω ∈ σx(S)∩ σx(T ). By item 2 we must then have
equality. Regarding item 3, σx(σx(S) ∩ T ) ⊆ σx(S) ∩ σx(T ) by item 2, 5 and 6.
So consider an element ω ∈ σx(S)∩σx(T ). Then, there exist ω′ ∈ S and ω′′ ∈ T
such that ω ≡x ω

′ and ω ≡x ω
′′. By transitivity it follows that ω′′ ≡x ω

′ so that
ω′′ ∈ σx(S). But then ω ≡x ω

′′ ∈ σx(S) ∩ T implies ω ∈ σx(σx(S) ∩ T ) and this
proves item 3.

Note that the first three items of this theorem imply that σx is an existential
quantifier relative to intersection as combination. This is a first step to construct
a domain-free information algebra of subsets of Ω. Then we limit possible ques-
tions to the same join semilattice (Q,≤) considered in the previous sections.
Moreover, we consider on it the quasi-separoid three-place relation: x ⊥ y|z with
x, y, z ∈ Q, defined before.

Now, we want the support axiom to be satisfied. Hence, if P⊤ belongs to Q,
then we have σ⊤(S) = S for all S ⊆ Ω. Otherwise, we must limit ourselves to
the subsets of Ω for which there is a support x ∈ Q. We call these sets saturated
with respect to some x ∈ Q, and we indicate them with PQ(Ω) or more simply
with PQ when no ambiguity is possible. Clearly, if the top partition belongs to
Q, PQ(Ω) = P (Ω), the power set of Ω. So in what follows we can refer more
generally to sets in PQ(Ω). Note that in particular Ω, ∅ ∈ PQ(Ω) for every join
semilattice (Q,≤). At this point the support axiom is satisfied. Indeed, if x ≤ y
with x, y ∈ Q, then ω ≡y ω

′ implies ω ≡x ω
′, so that σy(S) ⊆ σx(S). Then, if x
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is a support of S, we have S ⊆ σy(S) ⊆ σx(S) = S, hence σy(S) = S. Moreover
(PQ(Ω),∩) is a commutative semigroup with the empty set as the null element
and Ω as the unit. Indeed, the only property we need to prove, is that PQ(Ω) is
closed under intersection. Then, let us consider S and T , two subsets of Ω with
support x ∈ Q and y ∈ Q respectively. Then they have also both supports x ∨ y
that belongs to Q, because it is a join semilattice. Therefore, thanks to Lemma
2, we have

σx∨y(S ∩ T ) = σx∨y(σx∨y(S) ∩ σx∨y(T )) = σx∨y(S) ∩ σx∨y(T ) = S ∩ T.

So, PQ(Ω) is closed under intersection. It remains only to verify the extraction
property to conclude that PQ(Ω) forms a domain-free information algebra.

Theorem 3. Given x, y, z ∈ Q, suppose x∨z⊥y∨z|z. Then, for any S ∈ PQ(Ω),

σy∨z(σx(S)) = σy∨z(σz(σx(S))).

Proof. From σz(σx(S)) ⊇ σx(S) we obtain σy∨z(σz(σx(S)) ⊇ σy∨z(σx(S)). Con-
sider therefore an element ω ∈ σy∨z(σz(σx(S))). Then there are elements µ, µ′

and ω′ so that ω ≡y∨z µ ≡z µ
′ ≡x ω

′ and ω′ ∈ S. This means that ω, µ belong
to some block By∨z of partition Py∨z, µ, µ

′ to some block Bz of partition Pz

and µ′, ω′ to some block Bx of partition Px. It follows that Bx ∩ Bz 6= ∅ and
By∨z ∩Bz 6= ∅. Then x ∨ z⊥y ∨ z|z implies, thanks to properties of a separoid,
that x⊥y ∨ z|z. Therefore, we have Bx ∩ By∨z ∩ Bz 6= ∅, and in particular,
Bx ∩ By∨z 6= ∅. So there is a λ ∈ Bx ∩ By∨z such that ω ≡y∨z λ ≡x ω

′ ∈ S,
hence ω ∈ σy∨z(σx(S)). So we have σy∨z(σx(S)) = σy∨z(σz(σx(S))).

Hence, these algebras of sets, with intersection as combination and saturation
as extraction, form domain-free information algebras. Such algebras will be called
set algebras. A set algebra of subsets of Ω can be embedded in the information
algebra of coherent sets of gambles defined on Ω. For any set S ∈ PQ(Ω), define

DS := {f ∈ L(Ω) : inf
ω∈S

f(ω) > 0} ∪ L+(Ω).

If S 6= ∅, this is clearly a coherent set. The next theorem shows that the map S 7→
DS together with the map σx 7→ ǫx is an information algebra homomorphism,
according to the simpler definition given in [7]. It can be applied in fact, because
in this case the set of partitions/questions analyzed by the two information
algebras is the same.

Theorem 4. Let S, T ∈ PQ(Ω) and x ∈ Q. Then

1. DS · DT = DS∩T ,
2. D∅ = L(Ω), DΩ = L+(Ω),
3. ǫx(DS) = Dσx(S).

Proof. 1. Note that DS = L+ or DT = L+ if and only if S = Ω or T = Ω.
Clearly in this case we have immediately the result. The same is true ifDS = L or
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DT = L, which is equivalent to have S = ∅ or T = ∅. Now suppose DS , DT 6= L+

andDS , DT 6= L. If S∩T = ∅, then DS∩T = L(Ω). Consider f ∈ DS and g ∈ DT .
Since S and T are disjoint, we have f̃ ∈ DS and g̃ ∈ DT , where f̃ , g̃ are defined
in the following way:

f̃(ω) :=







f(ω) for ω ∈ S,
−g(ω) for ω ∈ T,
0 for ω ∈ (S ∪ T )c,

g̃(ω) :=







−f(ω) for ω ∈ S,
g(ω) for ω ∈ T,
0 for ω ∈ (S ∪ T )c.

However, f̃ + g̃ = 0 ∈ E(DS ∪DT ), hence DS ·DT = L(Ω) = DS∩T . Assume then
that S ∩ T 6= ∅. Note that DS ∪ DT ⊆ DS∩T so that DS · DT is coherent and
DS · DT ⊆ DS∩T . Consider then a gamble f ∈ DS∩T . Select a δ > 0 and define
two functions

f1(ω) :=















1/2f(ω) for ω ∈ (S ∩ T ),
δ for ω ∈ S \ T,
f(ω)− δ for ω ∈ T \ S,
1/2f(ω) for ω ∈ (S ∪ T )c,

f2(ω) :=















1/2f(ω) for ω ∈ (S ∩ T ),
f(ω)− δ for ω ∈ S \ T,
δ for ω ∈ T \ S,
1/2f(ω) for ω ∈ (S ∪ T )c.

Then f = f1 + f2 and f1 ∈ DS , f2 ∈ DT . Therefore f ∈ E(DS ∪ DT ) =
C(DS ∪ DT ) =: DS · DT , hence DS · DT = DS∩T .

2. Both have been noted above.
3. First of all it can be noticed that, if S ∈ PQ(Ω), then σx(S) ∈ PQ(Ω). So

Dσx(S) is well defined. Furthermore, if S is empty, then ǫx(D∅) = L(Ω) so that
item 3 holds in this case. Hence, assume S 6= ∅. Then we have

ǫx(DS) := C(DS ∩ Lx) = posi(L+(Ω) ∪ (DS ∩ Lx)).

Consider a gamble f ∈ DS ∩ Lx. We have infS f > 0 and f is x-measurable. If
ω ≡x ω

′ for some ω′ ∈ S and ω ∈ Ω, then f(ω) = f(ω′). Therefore infσx(S) f =
infS f > 0, hence f ∈ Dσx(S). Then C(DS ∩ Lx) ⊆ C(Dσx(S)) = Dσx(S). Con-
versely, consider a gamble f ∈ Dσx(S). Dσx(S) is a strictly desirable set of gam-
bles.8 Hence, if f ∈ Dσx(S), f ∈ L+(Ω) or there is δ > 0 such that f−δ ∈ Dσx(S).
If f ∈ L+(Ω), then f ∈ ǫx(DS). Otherwise, let us define for every ω ∈ Ω,
g(ω) := infω′≡xω f(ω

′)− δ. If ω ∈ S, then g(ω) > 0 since infσx(S)(f − δ) > 0. So
we have infS g ≥ 0 and g is x-measurable. However, infS(g+ δ) = infS g+ δ > 0
hence (g + δ) ∈ DS ∩ Lx and f ≥ g + δ. Therefore f ∈ C(DS ∩ Lx).

Item 3. guarantees that, if S ∈ PQ(Ω), then there exists an x ∈ Q such that x
is a support of DS . Notice moreover that the two maps are one-to-one, therefore
it is in particular an embedding of the set algebra PQ(Ω) into Φ(Ω).

Next we construct a set algebra of subsets of At(Φ). For this purpose we
consider the set of partitions Atx with x ∈ Q. We denote them as PartQ(At(Φ)).
Moreover, we indicate with σx the related saturation operators defined similarly
to (2), and with AtQ(Φ) the subsets of At(Φ) saturated with respect to some
Atx ∈ PartQ(At(Φ)). By Theorem 2 restricted to Px with x ∈ Q, it is possible to

8 P (f) := infS(f) for every f ∈ L with S 6= ∅, is a coherent lower prevision [16].



12 Kohlas et al.

derive that, if (Q,≤) is a join semilattice, then (PartQ(At(Φ)),≤) is also a join
semilattice with Atx⊥Aty|Atz a quasi-separoid [7, Theorem 2.6]. So, thanks to
Lemma 2 and the reasoning below, also AtQ(Φ) is a set algebra with intersection
as combination and saturation relative to partitions Atx as extraction. Moreover,
thanks again to Theorem 2, we know that h : Px 7→ Atx, satisfies items 3, 4
and 5 of Definition 6. Therefore, we need only an analog of Theorem 4 for
f : D 7→ At(D) and g : ǫx 7→ σx, to conclude that (f, h, g) is an information
algebra homomorphism between Φ and AtQ(Φ).

Theorem 5. For any element D1,D2 and D of Φ and all x ∈ Q,

1. At(D1 · D2) = At(D1) ∩ At(D2),
2. At(L(Ω)) = ∅, At(L(Ω)+) = At(Φ),
3. At(ǫx(D)) = σx(At(D)).

Proof. Item 2 is obvious. If there is a an atom M ∈ At(D1 · D2), then M ≥
D1 · D2 ≥ D1,D2 and thus M ∈ At(D1) and M ∈ At(D2), hence M ∈ At(D1) ∩
At(D2). Conversely, ifM ∈ At(D1)∩At(D2), then D1,D2 ≤M , hence D1 ·D2 ≤
M and M ∈ At(D1 · D2). This shows that At(D1 · D2) = At(D1) ∩ At(D2).

Furthermore, if ǫx(D) = 0, then D = 0 and At(D) = ∅, hence σx(∅) = ∅ and
vice versa [17, Lemma 15, item 2]. Assume therefore At(D) 6= ∅ and consider
M ∈ σx(At(D)). There is then a M ′ ∈ At(D) so that ǫx(M) = ǫx(M

′). But D ≤
M ′, hence ǫx(D) ≤ ǫx(M

′) = ǫx(M) ≤ M . Thus M ∈ At(ǫx(D)). Conversely
consider M ∈ At(ǫx(D)). We claim that ǫx(M) · D 6= 0. Because otherwise
0 = ǫx(ǫx(M) · D) = ǫx(M) · ǫx(D) = ǫx(M · ǫx(D)), which is not possible since
ǫx(D) ≤ M . So there is an M ′ ∈ At(ǫx(M) · D) so that D ≤ ǫx(M) · D ≤ M ′.
We conclude that M ′ ∈ At(D). Furthermore, ǫx(ǫx(M) · D) = ǫx(M) · ǫx(D) ≤
ǫx(M

′). It follows that ǫx(M
′) ·ǫx(M) ·ǫx(D) 6= 0 and therefore ǫx(M) ·ǫx(M ′) 6=

0. But ǫx(M) · ǫx(M ′) = ǫx(M · ǫx(M ′)) so that M · ǫx(M ′) 6= 0 and therefore
ǫx(M

′) ≤M sinceM is an atom, and then ǫx(M
′) ≤ ǫx(M). Proceed in the same

way from ǫx(M) · ǫx(M ′) = ǫx(M
′ · ǫx(M)) to obtain ǫx(M) ≤ ǫx(M

′). So finally
ǫx(M) = ǫx(M

′), which together with M ′ ∈ At(D) tells us thatM ∈ σx(At(D)).
This means that At(ǫx(D)) = σx(At(D)).

Item 3. again guarantees that if D ∈ Φ, then At(D) ∈ AtQ(Φ). Moreover, since
Φ is atomistic, the maps f, h, g are all one-to-one and then the homomorphism
is an embedding. We can say therefore that Φ is in fact a set algebra.

8 Conclusions

This paper presents an extension of our work on information algebras related to
gambles on a possibility set that is not necessarily multivariate [17]. In particular,
here we analyze the relation between the domain-free version of the information
algebra of coherent sets of gambles and the archetypes of information algebras,
i.e., sets algebras. Specifically, we show that it is in fact a set algebra. These facts
could also be expressed equivalently in the labeled view of information algebras,
better adapted to computational purposes [6,17]. This is left for future work,
along with other aspects such as the question of conditioning.
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