
ar
X

iv
:2

10
7.

04
48

2v
1

 [
cs

.D
S]

 9
 J

ul
 2

02
1

PREVENTING SMALL (s, t)-CUTS BY PROTECTING EDGES

A PREPRINT

Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz∗, and Frank Sommer
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany

{niegru,komusiewicz,morawietz,fsommer}@informatik.uni-marburg.de

July 12, 2021

ABSTRACT

We introduce and study WEIGHTED MIN (s, t)-CUT PREVENTION, where we are given a
graph G = (V,E) with vertices s and t and an edge cost function and the aim is to choose an
edge set D of total cost at most d such that G has no (s, t)-edge cut of capacity at most a that is
disjoint from D. We show that WEIGHTED MIN (s, t)-CUT PREVENTION is NP-hard even on sub-
cubcic graphs when all edges have capacity and cost one and provide a comprehensive study of the
parameterized complexity of the problem. We show, for example W[1]-hardness with respect to d
and an FPT algorithm for a.

1 Introduction

Network interdiction is a large class of optimization problems with direct applications in operations research [8, 9,
21, 22, 23]. In these problems one player wants to achieve a certain goal (for example finding a short path between
two given vertices s and t), and another player wants to modify the network to prevent this. Given the enormous
importance of the maximum-flow/min-cut problem it comes as no surprise that two-player games where an attacker
wants to decrease the maximum (s, t)-flow of a network by deleting edges have been considered [8, 22]. We study an
inverse problem: an attacker wants to find an (s, t)-cut of capacity at most a and a defender wants to protect edges in
order to increase the capacity of any minimum (s, t)-cut in G to at least a + 1. Alternatively, we may think that the
defender increases the capacity of some edges to a + 1 in such a way that the maximum (s, t)-flow of the resulting
network exceeds the given threshold a.The formal problem definition reads as follows.

WEIGHTED MIN (s, t)-CUT PREVENTION (WMCP)
Input: A graph G = (V,E), two vertices s, t ∈ V , a cost function c : E → N, a capacity
function ω : E → N, and integers d and a.
Question: Is there a set D ⊆ E with c(D) :=

∑

e∈D c(e) ≤ d such that for every (s, t)-cut A ⊆
(E \D) in G we have ω(A) :=

∑

e∈A ω(e) > a?

The special case where we have only unit capacities and unit costs is referred to as MIN (s, t)-CUT PREVENTION

(MCP). A different problem also called MINIMUM st-CUT INTERDICTION has been studied recently [1] but in this
problem the graph is directed and the interdictor may freely choose the amount of increase in edge capacities. In
our formulation, the interdictor may only decide to fully protect an edge or to leave it unprocted. To the best of our
knowledge, this formulation of WMCP has not been considered so far. We study the classical complexity of WMCP
and its parameterized complexity with respect to a, d, and important structural parameterizations of the input graphG.

Related Work. Many interdiction problems have been studied from a (parameterized) complexity perspective: In
MATCHING INTERDICTION [23], one wants to remove vertices or edges to decrease the weight of a maximum-weight
matching. In the MOST VITAL EDGES IN MST problem, one aims to remove edges to decrease the weight of any
maximum spanning tree. In SHORTEST-PATH INTERDICTION [17], also known as SHORTEST PATH MOST VITAL

∗Supported by the Deutsche Forschungsgemeinschaft (DFG), project OPERAH, KO 3669/5-1.

http://arxiv.org/abs/2107.04482v1

Table 1: Parameter overview for WMCP and MCP. We write NP-h if the problem is NP-hard even if the correspond-
ing parameter is a constant.

a d ∆ d+∆ vc pw + fvs
WMCP FPT W[1]-h NP-h W[1]-h

if ∆ = 3
weakly NP-h
Thm. 8

weakly NP-h
Thm. 8

W[1]-h W[1]-h
Thm. 5 Lem. 4 Thm. 1 Thm. 1 Thm. 9 Thm. 9

MCP FPT W[1]-h NP-h FPT FPT W[1]-h
Thm. 5 Lem. 4 Thm. 3 Thm. 3 Thm. 7 Thm. 10

EDGES [3, 13] and MINIMUM LENGTH-BOUNDED CUT [2], one wants to remove edges to increase the length of a
shortest (s, t)-path above a certain threshold. All of these problems are NP-hard and the study of their classical and
parameterized complexity has received a lot of attention [3, 15, 13, 23].

Our Results. An overview of our results is given in Table 1. We show that WMCP and MCP are NP-hard even
on subcubic graphs. This motivates a parameterized complexity study with respect to the natural parameters defender
budged d and attacker budget a and with respect to structural parameters of the input graph G. Here, we consider the
structural parameters treewidth and vertex cover number of G as well as pathwidth and feedback vertex set number
of G. Our main results are as follows. MCP and WMCP are W[1]-hard with respect to the defender budget d and
FPT with respect to the attacker budget a. MCP and WMCP are W[1]-hard with respect to the combined parameter
pathwidth of G plus feedback vertex set number of G and thus also W[1]-hard with respect to the treewidth of G. The
hardness for these parameters motivates a study of the vertex cover number vc(G). We show that MCP is FPT with
respect to vc(G), whereas WMCP is weakly NP-hard even for vc(G) = 2 and W[1]-hard with respect to vc(G) even
when all capacities and costs are encoded in unary. Finally, we provide a polynomial kernel for WMCP parameterized
by vc(G) + a and complement this result by showing that MCP and WMCP do not admit polynomial kernels with
respect to the large combined parameter d+ a+tw(G) + lp(G) +∆(G) where lp(G) denotes the length of a longest
path in G and ∆(G) denotes the maximum degree. Overall, our results give a comprehensive complexity overview of
WMCP and MCP.

2 Preliminaries

For integers i and j with i ≤ j, we define [i, j] := {k ∈ N | i ≤ k ≤ j}.

An (undirected) graph G = (V,E) consists of a set of vertices V and a set of edges E ⊆
(

V
2

)

. Throughout this work,

let n := |V | and m := |E|. For vertex sets S ⊆ V and T ⊆ V we denote with EG(S, T) := {{s, t} ∈ E | s ∈
S, t ∈ T } the edges between S and T . Moreover, we define EG(S) := EG(S, S) and EG(v, S) := EG({v}, S)
for v ∈ V . For a vertex set S ⊆ V we denote with G[S] := (S,EG(S)) the induced subgraph of S in G. Moreover,
for an edge set D ⊆ E we let G − D := (V,E \ D) and G[D] := (V,D). For a vertex v ∈ V , we denote
with NG(v) := {w ∈ V | {v, w} ∈ E} the open neighborhood of v in G. Analogously, for a vertex set S ⊆ V ,
we define NG(S) :=

⋃

v∈S NG(S) \ S. If G is clear from the context, we may omit the subscript. A sequence of

distinct vertices P = (v0, . . . , vk) is a path or (v0, vk)-path of length k in G if {vi−1, vi} ∈ E(G) for all i ∈ [1, k].
We denote with V (P) the vertices of P and with E(P) the edges of P . Let s and t be distinct vertices of V . An edge
set A ⊆ E is an (s, t) (edge)-cut in G if there is no (s, t)-path in G−A. A graph G = (V,E) is connected if there is
an (a, b)-path in G for each pair of distinct vertices a, b ∈ V . Moreover, we call a vertex set S a connected component
of G if G[S] is connected and if there is no S′ ⊃ S such that G[S′] is connected.

2.1 Graph parameter

Let G = (V,E) be a graph. Moreover, we denote with ∆(G) := max{|NG(v)| | v ∈ V } the maximum degree of G.

A set S ⊆ V is a feedback vertex set for G if G− S is acyclic, that is, if for each pair of distinct vertices a, b ∈ V \ S
there is at most one (a, b)-path in G− S. The size of the smallest size feedback vertex set for G is denoted by fvs(G).

A path composition B for a graph G = (V,E) is a sequence of bags B1, . . . , Bq where Bj ⊆ V for each j ∈ [1, q],
such that:

1. for every vertex v ∈ V , there is at least one i ∈ [1, q] with v ∈ Bi,

2. for each edge e ∈ E, there is at least one i ∈ [1, q] such that e ⊆ Bi, and

2

3. if v ∈ Bi ∩Bj with i ≤ j, then v ∈ Bk for each k ∈ [i, j].

The width of a path decomposition B is the size of the largest bag in B minus one and the pathwidth of a graph G is
the minimal width of any path decomposition of G which is denoted by pw(G).

A tree decomposition of a graph G = (V,E) is a pair (T , β) consisting of a directed tree T = (V ,A, r) with
root r ∈ V and a function β : V → 2V such that

1. for every vertex v ∈ V , there is at least one x ∈ V with v ∈ β(x),

2. for each edge {u, v} ∈ E, there is at least one x ∈ X such that u ∈ β(x) and v ∈ β(x), and

3. for each vertex v ∈ V , the subgraph T [Vv] is connected, where Vv := {x ∈ V | v ∈ β(x)}.

We call β(x) the bag of x. The width of a tree decomposition is the size of the largest bag minus one and the treewidth
of a graphG is the minimal width of any tree decomposition of G denoted by tw(G).

We consider tree decompositions with specific properties. A node x ∈ V is called:

1. a leaf node if x has no child nodes in T ,

2. a forget node if x has exactly one child node y in T and β(y) = β(x) ∪ {v} for some v ∈ V \ β(x),

3. an introduce node if x has exactly one child node y in T and β(y) = β(x) \ {v} for some v ∈ V \ β(y), or

4. a join node if x has exactly two child nodes y and z in T and β(x) = β(y) = β(z).

A tree decomposition (T = (V ,A, r), β) is called nice if every node x ∈ V is either a leaf node, a forget node, an
introduce node, or a join node.

For a node x ∈ V , we define with Vx the union of all bags β(y), where y is reachable from x in T . Moreover, we
set Gx := G[Vx] and Ex := EG(Vx).

The tree-depth td(G) is the smallest height of any directed tree T = (V (G), A) with the property that for each
edge {u,w} ∈ E(G) either u is an ancestor of w in T or vice versa.

Two instances I and I ′ of the same decision problem L are equivalent if I is a yes-instance of L if and only if I ′ is a
yes-instance of L. A reduction rule for a decision problem L is an algorithm A that transforms any instance I of L
into another instance A(I) of L. We call A safe, if for each instance I of L, I and A(I) are equivalent instances of L.
A reduction rule A is exhaustively applied for an instance I if A(I) = I .

For details on parameterized complexity, we refer to the standard monograph [10].

The two further variants of WMCP that we study are defined as follows.

ZERO-WEIGHT MIN (s, t)-CUT PREVENTION (ZWMCP)
Input: A graph G = (V,E), two vertices s, t ∈ V , a cost function c : E → N, a capacity
function ω : E → N ∪ {0}, and integers d and a.
Question: Is there a set D ⊆ E with c(D) :=

∑

e∈D c(e) ≤ d such that for every (s, t)-cut A ⊆
(E \D) in G it holds that ω(A) :=

∑

e∈A ω(e) > a?

MIN (s, t)-CUT PREVENTION (MCP)
Input: A graph G = (V,E), two vertices s, t ∈ V , and integers d and a.
Question: Is there an edge set D ⊆ E of size at most d such that every disjoint (s, t)-cut A ⊆
(E \D) in G has size more than a?

Informally, we search for a cheap set of edges S such that every disjoint (s, t)-cut M is expensive.

Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of any of the above problems (in the case of MCP, c(e) :=
ω(e) := 1 for all e ∈ E). We call an edge set D ⊆ E a solution of I if every (s, t)-cut A ⊆ E \ D has capacity
at least a + 1 according to ω. A solution D of I is called a minimum solution of I , if there is no solution D′ of I
with c(D′) < c(D).

2.2 Basic Observations

We assume without loss of generality that G is connected and that c(e) ≤ d + 1 and ω(e) ≤ a + 1 for each
edge e ∈ E(G), as otherwise we can decrease these weights accordingly. Furthermore, we can assume that d ≤ c(E)
where c(E) denotes the total sum of edge-costs. Analogously, we can assume that a ≤ ω(E).

3

Fact 1. Let G = (V,E) be a graph, let ω : E → N be a capacity function, and let D ⊆ E. Then, in nO(1) time we
can compute an (s, t)-cut A ⊆ E \D with ω(A) ≤ a or report that no such (s, t)-cut exists.

Proof. We define a capacity function ω′ : E → N by ω′(e) := a+ 1 if e ∈ D and ω′(e) := ω(e) otherwise. We then

compute a min (s, t)-cut A in G with respect to the new capacity function ω′ in nO(1) time. If ω′(A) ≤ a, then we
return A. Otherwise, we report that no such (s, t)-cut exists.

Observe that if ω′(A) ≤ a, then A ⊆ E \D, since ω′(e) = a + 1 for every e ∈ D. Otherwise, if ω′(A) > a, then
every (s, t)-cut in G either contains an edge from D or has capacity bigger than a. Thus, the algorithm is correct.

Lemma 1. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of ZWMCP and let e∗ = {v∗, w∗} ∈ E with c(e∗) >
1. Moreover, let I ′ := (G′ = (V ′, E′), s, t, c′, ω′, d, a) be the instance of ZWMCP obtained by replacing e∗ by
an (v∗, w∗)-path with c(e∗) edges of cost 1 and capacity ω(e∗). Then, I and I ′ are equivalent instances of ZWMCP
and I ′ can be computed in O(c(e∗) · |I|) time.

Proof. The running time bound follows immediately by the construction. It remains to prove the correctness.
Let E∗ := E′ \ E be the edges of the (v∗, w∗)-path in G′ that replaces the edge e∗.

We show that I is a yes-instances of ZWMCP if and only if I ′ is a yes-instances of ZWMCP.

(⇒) Let D be a solution of I of cost at most d.

Case 1: e∗ ∈ D. We set D′ := D \ {e∗} ∪ E∗. Note that c′(D′) ≤ d. We show that D′ is a solution of I ′. Assume
towards a contradiction that there is an (s, t)-cut A′ ⊆ E′ \D′ in G′ with ω(A′) ≤ a. By definition of D′ it follows
that A′ ⊆ E \ {e∗} with ω(A′) ≤ a. Moreover, since we obtained G′ from G by replacing e∗ with a path consisting
of the edges E∗ and A′ is disjoint to E∗, it follows that A′ is an (s, t)-cut in G, a contradiction.

Case 2: e∗ /∈ D. Note that D ⊆ E′ and that c′(D) ≤ d. We show that D is a solution of I ′. Assume towards a
contradiction that there is an (s, t)-cut A′ ⊆ E′ \D in G′ with ω(A′) ≤ a.

IfA′∩E∗ = ∅, thenA′ is also an (s, t)-cut disjoint toD inGwith ω(A′) ≤ a. A contradiction. Otherwise,A′∩E∗ 6=
∅. Hence, A := A′ \ E∗ ∪ {e∗} is an (s, t)-cut disjoint to D in G with ω(A) ≤ a, a contradiction.

(⇐) Let D′ be a solution of I ′.

Case 1: E∗ ⊆ D′. We set D := D′ \ E∗ ∪ {e∗}. Note that c(D) ≤ d. We show that D is a solution of I . Assume
towards a contradiction that there is an (s, t)-cut A ⊆ E \ A in G with ω(A) ≤ a. By definition of D, it holds
that A ⊆ E′ \ D′. Moreover, since we obtained G′ from G by replacing e∗ with a path consisting of the edges E∗

and A is disjoint to E∗, it follows that A is an (s, t)-cut in G′ with ω′(A) ≤ a, a contradiction.

Case 2: E∗ 6⊆ D′. We set D := D′ \ E∗. Note that c(D) ≤ d. We show that D is a solution of I . Assume towards a
contradiction that there is an (s, t)-cut A ⊆ E \D in G with ω(A) ≤ a.

If e∗ /∈ A, then A is also an (s, t)-cut disjoint to D′ in G′ with ω′(A) ≤ a. A contradiction. Otherwise, e∗ ∈ A.
Hence, A′ := A \ {e∗} ∪ {e′} for some e′ ∈ E∗ \ D′ is an (s, t)-cut disjoint to D′ in G′ with ω′(A′) ≤ a, a
contradiction.

Lemma 2. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of ZWMCP and let e∗ = {v∗, w∗} ∈ E with ω(e∗) >
1. Moreover, let I ′ := (G′ = (V ′, E′), s, t, c′, ω′, d, a) be the instance of ZWMCP obtained by updating the capacity
of e∗ to 1 and by adding ω(e∗) − 1 many (v∗, w∗)-paths with two edges of cost c(e∗) and capacity 1 each. Then, I
and I ′ are equivalent instances of ZWMCP and I ′ can be computed in O(ω(e∗) · |I|) time.

Proof. The running time bound follows immediately by the construction. It remains to prove the correctness.
By V ∗ := V ′ \ V we denote the vertices and by E∗ := E′ \ E we denote the edges added to G to obtain the
graph G′. We prove that I is a yes-instance of ZWMCP if and only if I ′ is a yes-instance for ZWMCP.

(⇒) Let D ⊆ E be a solution of I of cost at most d.

Case 1: e∗ ∈ D. We set D′ := D. Clearly, c(D′) ≤ d. We show that D′ is a solution of I ′. Assume towards a
contradiction that there is an (s, t)-cut A′ ⊆ E′ \D′ in G′ with ω(A′) ≤ a. Recall that each edge in E∗ is on a path
between v∗ and w∗. Since e∗ ∈ D′, we conclude that A′ ∩ E∗ = ∅. Hence, A′ is also an (s, t)-cut of capacity at
most a in G, a contradiction.

Case 2: e∗ /∈ D. Observe that D ⊆ E′ and that c′(D) ≤ d. We show that D is a solution of I ′. Assume towards a
contradiction that there is an inclusion-minimal (s, t)-cut A′ ⊆ E′ \D in G′ with ω(A′) ≤ a.

4

IfA′∩E∗ = ∅, thenA′ is also an (s, t)-cut disjoint toD inGwith ω(A′) ≤ a, a contradiction. Otherwise,A′∩E∗ 6= ∅.
Recall that all edges in E∗ are on paths with two edges between v∗ and w∗. Thus, A′ is also an (v∗, w∗)-cut in G′.
Hence, {v∗, w∗} ∈ A′ and for each vertex z ∈ V ∗ at least one adjacent edge is contained in A′. Since |V ∗| =
ω(e∗) − 1, we conclude that |A′ ∩ E∗| ≥ ω(e∗) − 1. Thus, A′ \ E∗ is an (s, t)-cut of cost at most a in G, a
contradiction.

(⇐) Let D′ be a solution of I ′ of cost at most d. By Pz we denote the path (v∗, z, w∗) for some vertex z ∈ V ∗.

Case 1: E(Pz) ⊆ D′ for some z ∈ V ∗ or e∗ ∈ D′. We set D := D′ \ E∗ ∪ {e∗}. Note that since c(e) = c(e∗) for
each edge e ∈ E∗ we obtain c(D) ≤ d. We show that D′ is a solution of I . Assume towards a contradiction that there
is an (s, t)-cut A ⊆ E \D in G with ω(A) ≤ a. By definition of D, we observe that A ⊆ E′ \D′. Moreover, since
we obtainedG′ fromG by adding ω(e∗)− 1 paths consisting of the edgesE∗, and the fact that A is disjoint to E∗, we
conclude that A is an (s, t)-cut in G′ with ω′(A) ≤ a, a contradiction.

Case 2: E(Pz) * D′ for each z ∈ V ∗ and e∗ /∈ D′. We set D := D′ \ E∗. Note that c(D) ≤ d. We show that D is
a solution of I . Assume towards a contradiction that there is an (s, t)-cut A ⊆ E \D in G with ω(A) ≤ a.

If e∗ /∈ A, then A is also an (s, t)-cut disjoint to D′ in G′ with ω′(A) ≤ a, a contradiction. Otherwise, e∗ ∈ A.
LetA′ := A\{e∗}∪{{v∗, z} | z ∈ V ∗}. Note that for each e ∈ E∗∪{e∗}we haveω(e) = 1 and that |V ∗| = ω(e∗)−1.
Hence, A′ is an (s, t)-cut disjoint to D′ in G′ with ω′(A′) ≤ a, a contradiction.

Recall that we can assume c(e) ≤ d+ 1 and ω(e) ≤ a+ 1 for each edge e ∈ E. Hence, the subsequent application of
Lemmas 1 and 2 leads to the following.

Corollary 1. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP. Then, one can compute in (n + a +
d)O(1) time an equivalent instance I ′ = (G′, s′, t′, d, a) of MCP.

The next definition will be a useful tool in several proofs in this work.

Definition 1. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP, and let e = {u,w} ∈ E. The merge
of u and w in I is the instance I ′ obtained from I by removing u and w from G and adding a new vertex v{u,w}

which is adjacent to N({u,w}). The cost and capacity for each edge in E ∩E′ are set to the corresponding cost and
capacity in E, and for each x ∈ N({u,w}),

• c′({v{u,w}, x}) = min{c(e′) | e′ ∈ E(x, {u,w})}, and

• ω′({v{u,w}, x}) =
∑

e′∈E(x,{u,w}) ω(e
′).

Rule 1. If G contains an edge e∗ = {u∗, w∗} ∈ E which is not contained in any inclusion-minimal (s, t)-cut of
capacity at most a in G, then merge u∗ and w∗.

Lemma 3. Rule 1 is safe and can be applied exhaustively in polynomial time.

Proof. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP and let I ′ = (G′ = (V ′, E′), s′, t′, c′, ω′, d, a)
be the merge of u∗ and w∗ in I . We show that I and I ′ are equivalent instances of WMCP.

(⇒) Let D ⊆ E be a solution of I of cost at most d.

Claim 1. The set D∗ := D \ {e∗} is a solution of I .

Proof. Assume towards a contradiction that D∗ is not a solution of I . Then, there is an inclusion-minimal (s, t)-
cut A ⊆ E \D∗ of capacity at most a in G. By the condition of Rule 1, it holds that e∗ 6∈ A. Note that A avoids D∗.
This contradicts the fact that D∗ is a solution. �

Due to Claim 1 we can assume that e∗ 6∈ D. We set D′ := (D ∩E′)∪ {{ve∗ , x} | {u∗, x} ∈ D or {w∗, x} ∈ D}. By
definition of c′ it follows that D′ has cost at most c(D). Hence, it remains to show that D′ is a solution of I ′.

Assume towards a contradiction that D′ is not a solution of I ′. Then, there is an (s′, t′)-cut A′ ⊆ E′ \D′ of capacity
at most a in G′. We set A := (A′ ∩ E) ∪ {e ∈ E(x, e∗) | {ve∗ , x} ∈ A′}. Note that A ⊆ E \ D. By definition
of ω′, we obtain that ω(A) = ω′(A′) ≤ a. Since {x, ve∗} ∈ A′ if and only if E(x, e∗) ⊆ A, and A and A′ agree
on E ∩ E′, we obtain that A is an (s, t)-cut in G which contradicts the fact that D is a solution of I . Consequently, I
is a yes-instance of WMCP.

(⇐) Let D′ ⊆ E′ be a solution of I ′ of cost at most d. We set D := (D′ ∩E) ∪ {ex | {ve∗ , x} ∈ D′}, where ex is an
edge in E(x, e∗) with minimal cost. By definition of c′ it follows that c(D) ≤ c′(D′). It remains to show that D is a
solution of I .

5

Assume towards a contradiction that D is not a solution of I . Then, there is an (s, t)-cut A∗ ⊆ E \D of capacity at
most a in G. Since e∗ is not contained in any inclusion-minimal (s, t)-cut of capacity at most a, there is an inclusion-
minimal (s, t)-cutA ⊆ A∗\{e∗} of capacity at most a inG. We setA′ := (E′∩A)∪{{ve∗ , x} ∈ E′ | E(x, e∗) ⊆ A}.
By definition of ω′, we obtain ω′(A′) ≤ ω(A) ≤ a. Since {x, ve∗} ∈ A′ if and only if E(x, e∗) ⊆ A and A and A′

agree on E ∩ E′, we obtain that A′ is an (s′, t′)-cut in G which contradicts the fact that D′ is a solution of I ′.
Consequently, I is a yes-instance of WMCP.

It remains to bound the running time. Each application of Rule 1 reduces the number of vertices by one, and each such
application can be performed in polynomial time, we obtain that, Rule 1 can be exhaustively applied in polynomial
time.

3 NP-hardness and Parameterization by the Defender Budget d

In this section we prove that MCP is NP-hard and we analyze parameterization by d and ∆(G). In particular, we
provide a complexity dichotomy for ∆(G).

Lemma 4. WMCP is NP-complete and W[1]-hard when parameterized by d even if G is bipartite, ω(e) = 1,
and c(e) ∈ O(|G|) for all e ∈ E.

Proof. We describe a parameterized reduction from a variant of INDEPENDENT SET which is known to be W[1]-hard
when parameterized by k [10, 11].

REGULAR-INDEPENDENT SET

Input: An r-regular graph G = (V,E) for some integer r and an integer k.
Question: Is there an independent set S ⊆ V of size at least k in G?

Let I := (G = (V,E), k) be an instance of r-REGULAR-INDEPENDENT SET. We describe how to construct an in-
stance I ′ := (G′ = (V ′, E′), s, t, c, ω, d, a) of WMCP in polynomial time such that I is a yes-instance of REGULAR-
INDEPENDENT SET if and only if I ′ is a yes-instance of WMCP.

We start with an empty graph G′ and add all vertices of V to G′. For each vertex v ∈ V we also add an additional
vertex v′. Furthermore, for each edge e ∈ E we add a vertexwe, and two new vertices s and t toG′. Moreover, we add
the edges {s, v}, {v, v′} and {v′, t} toG′ for each vertex v ∈ V . Next, we add the edges {u,we}, {v, we}, and {we, t}
to G′ for each edge e = {u, v} ∈ E. Now, we set ω(e′) := 1 for all e′ ∈ E′. Furthermore, for each e′ ∈ E′, we
set c(e′) := 1 if s ∈ e′ and c(e′) := k + 1 otherwise. Finally, we set d := k and a := n + kr − 1 where n := |V |.
This completes the construction of I ′. Observe that G′ is bipartite with one partite set being {t} ∪ V . Note that only
the edges incident with s can be protected, since all other edges have cost exactly d+ 1.

Next, we show that I is a yes-instance of REGULAR-INDEPENDENT SET if and only if I ′ is a yes-instance of WMCP.

(⇒) Let S ⊆ V be an independent set of G of size exactly k = d. We set D′ := {{s, v} | v ∈ S}. Note that D′ has
cost exactly d. It remains to show that D′ is a solution of I ′. To this end, we provide a + 1 many paths whose edge
sets may only intersect in D′.

Note that for each vertex v ∈ V \ S we have a path (s, v, v′, t). These are n− k many. Next, consider a vertex v ∈ S.
Observe that (s, v, v′, t) and {(s, v, we, t) | e ∈ E, v ∈ e} are r + 1 paths only sharing the edge {s, v} ∈ D′.
Since |S| = k and G is r-regular, these are kr + k many paths. Moreover, since S is an independent set no two
vertices u, v ∈ S have a common neighborwe inG′ for e = {u, v}. Hence, there are n−k+kr+k = n+kr = a+1
many (s, t)-paths in G′ whose edge sets only intersect in D′.

(⇐) Suppose that I ′ is a yes-instance of WMCP. LetD′ be a solution with cost at most d of I ′. Recall that c(e) = d+1
for each edge e′ ∈ E′ with s /∈ e′. Hence, D′ ⊆ {{s, v} | v ∈ V }. If |D′| < d, then we add exactly d − |D′| many
edges of the form {s, v} which are not already contained in D′ to D′. Note that D′ remains a solution of I ′. Thus, in
the following we can assume that |D′| = d = k. Let S := {v | {s, v} ∈ D′}. We prove that S is an independent set
in G.

Assume towards a contradiction that S is no independent set in G and let e∗ be an edge of G[S]. In the following, we
construct an (s, t)-cutA ⊆ (E′ \D′) inG′ of size at most a. LetAV \S := {{s, v} | v /∈ S},AS := {{v, v′} | v ∈ S},

andAE := {{v, we} ∈ E′ | v ∈ S, e 6= e∗}. We show thatA := AV \S ∪AS ∪AE ∪{{we∗ , t}} is an (s, t)-cut of size

at most a in G′. Note that |AV \S |+ |AS | = n. Moreover, since |S| = k and each vertex v ∈ V has degree exactly r
in G, |AE | ≤ kr − 2. Hence, A has capacity at most n+ kr − 1 = a since ω(e′) = 1 for each e′ ∈ E′. It remains to
show that A is an (s, t)-cut in G′. Let G∗ := G′ −A. Note that NG∗(s) = S and NG∗(v) = {s} for each v ∈ S \ e∗.

6

Moreover, note that NG∗(v) = {s, we∗} for each v ∈ e∗ and NG∗(we∗) = e∗. Hence, A is an (s, t)-cut in G′ with
capacity at most a. A contradiction.

Consequently, S is an independent set of size k in G and, therefore, I is a yes-instance of REGULAR-INDEPENDENT

SET.

By applying Corollary 1, we can extend the hardness results to MCP. Note that if k is odd, Corollary 1 replaces an
edge with costs k+1 by a path of even length and thus the resulting instance of MCP is not bipartite. Hence, to obtain
W[1]-hardness in case of odd k, we set c(e) = k + 2 for edges not containing s.

Corollary 2. MCP is NP-complete and W[1]-hard when parameterized by d, even on bipartite graphs.

Next, we provide a complexity dichotomy for the classical complexity with respect to the maximum degree of the
graph.

Lemma 5. ZWMCP can be solved in polynomial time on graphs of maximum degree two.

Proof. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of ZWMCP where G has degree at most two. Recall that
we can assume without loss of generality that G is connected. Observe that sinceG has degree at most two,G is either
a path or a cycle.

G is a path. Let P be the unique (s, t)-path in G and let EA := {ei ∈ E(P) | ω(ei) ≤ a} be the set of edges of
capacity at most a. Since {ei} is an (s, t)-cut of capacity at most a in G for every ei ∈ EA, we conclude that EA

is a subset of every solution of I . Consequently, I is a yes-instance of ZWMCP if and only if d ≥ c(EA), since
every (s, t)-cut M ⊆ E \ EA has capacity larger than a.

G is a cycle. Let P1 and P2 be the unique (s, t)-paths in G. Moreover, let EA := {{e1i , e
2
j} | e1i ∈ E(P1), e

2
j ∈

E(P2), ω(e
1
i)+ω(e

2
j) ≤ a} be the set of minimal (s, t)-cuts of capacity at most a inG. Note that every other (s, t)-cut

of capacity at most a is a superset of any (s, t)-cut in EA. Hence, I is a yes-instance of ZWMCP if and only if there
is a set S ⊆ E(P1) ∪ E(P2) with c(S) ≤ d such that S ∩ e 6= ∅ for all e ∈ EA. This is equivalent to the question
if the graph G′ with bipartition (E(P1), E(P2)) and edges EA has a vertex cover of capacity at most d with c as the
capacity function. This can be done in polynomial time.

Consequently, ZWMCP can be solved in polynomial time on graphs of degree at most two.

Lemma 6. WMCP is NP-hard andW[1]-hard when parameterized by d even on subcubic graphs and even if c(e) = 1
and ω(e) ∈ O(|G|) for all e ∈ E.

Proof. We reduce from MCP which is W[1]-hard when parameterized by d due to Corollary 2. Let I =
(G = (V,E), s, t, d, a) be an instance of MCP. Next, we construct an equivalent instance I ′ = (G′ =
(V ′, E′), s′, t′, c′, ω′, d′, a′) of WMCP as follows.

For each vertex v ∈ V we add a path Pu consisting of |N(u)| vertices to G′. We denote the vertices of Pu

by p1u, . . . p
|N(u)|
u . In the following, we assume an arbitrary but fixed ordering onN(u). Thus, the i-th-vertex of N(u)

is associated with vertex piu ∈ Pu. Furthermore, if v is the i-th neighbor of u we also write pvu instead of piu to access
neighbor v more conveniently. We set c′(e) = 1 and ω′(e) = a + 1 for each edge e ∈ E(Pu). Furthermore, for
each edge {u, v} ∈ E(G) we add the edge {pvu, p

u
v} to G′ with cost and capacity equal to one. Next, we set s′ := p1s

and t′ := p1t . Finally, we set a′ := a and d′ := d.

Since each vertex in Pu has exactly one neighbor which is not in Pu, the graph G′ is subcubic. Next, we prove that I
is a yes-instance of MCP if and only if I ′ is a yes-instance of WMCP.

Let v ∈ V and let e be an edge of Pv. By the fact that ω′(e) = a + 1, e is not contained in any (inclusion-
minimal) (s′, t′)-cut of capacity at most a. Thus, by merging the endpoints of e, we obtain an equivalent instance
of WMCP due to Lemma 3.

Let I∗ = (G∗ = (V ∗, E∗), s∗, t∗, c∗, ω∗, d′, a′) be the instance of WMCP we obtain after merging the endpoints of all
edges contained in any path Pv. Note that by Definition 1 it follows thatG∗ is isomorphic toG and ω∗(e) = c∗(e) = 1
for each e ∈ E∗. Thus, I is a yes-instance of MCP if and only if I∗ is a yes-instance of WMCP.

By Lemma 5 and Lemma 6 we obtain the following.

Theorem 1. WMCP can be solved in polynomial time on graphs of maximum degree two. WMCP is NP-hard and
W[1]-hard when parameterized by d even on subcubic graphs and even if c(e) = 1 and ω(e) ∈ O(|G|) for all e ∈ E.

7

Next, we strengthen the NP-hardness of WMCP on subcubic graphs to MCP.

Lemma 7. MCP is NP-complete even on subcubic graph.

Proof. We reduce from MCP. Let I = (G = (V,E), s, t, d, a) be an instance of MCP. We first prove the statement for

WMCP where ω(e) = 1 and c(e) ∈ nO(1). We do this intermediate step to emphasize the main idea of the reduction.
Second, we apply Corollary 1 to each edge in the instance of WMCP to obtain an equivalent instance of MCP. Note
that since Corollary 1 replaces an edge by a path, the resulting instance of MCP is also subcubic. Hence, it remains to
prove the statement for the restricted version of WMCP.

Next, we construct an equivalent instance I ′ = (G′ = (V ′, E′), s′, t′, c′, ω′, d′, a′) of WMCP as follows. For each

vertex v ∈ V we add a path Pu consisting of N(u) vertices to G′. We denote the vertices of Pu by p1u, . . . p
|N(u)|
u . In

the following, we assume an arbitrary but fixed ordering on N(u). Thus, the i-th-vertex of N(u) is associated with
vertex piu ∈ Pu. Furthermore, if v is the i-th neighbor of u we also write pvu instead of piu to access neighbor v more
convenient. We set c′(e) := ω′(e) := 1 for each edge e ∈ E(Pu). Furthermore, for each edge {u, v} ∈ E(G) we add
the edge {pvu, p

u
v} to G′ and set its costs to n2 and its capacity to one. Next, we set s′ := p1s and t′ := p1t . Finally, we

set a′ := a and d′ := dn2 + n(n− 1).

Since each vertex in Pu has exactly one neighbor which is not in Pu, the graph G′ is subcubic. Next, we prove that I
is a yes-instance of MCP if and only if I ′ is a yes-instance of WMCP.

(⇒) Let D ⊆ E be a solution with cost at most d of I . In the following, we construct a solution D′ ⊆ E′ with cost at
most d′ of I ′.

For each edge {u, v} ∈ D we add the corresponding edge {pvu, p
u
v} in G′ to D′. Since each of these edges has cost n2,

and |D| ≤ s, these edges contribute at most dn2 to to cost ofD′. Furthermore, we add each edge in Pu for each u ∈ V
to D′. Since Pu has at most n− 1 edges and each edge in Pu has cost one, all these edges contribute at most n(n− 1)
to the total costs. Hence, |D′| ≤ d′. Assume towards a contradiction that G′ has an (s′, t′)-cut A′ ⊆ E′ \ D′

with ω′(A′) ≤ a′. Since E(Pu) ⊆ D′ for each u ∈ V , the (s, t)-cut A′ contains only edges of the form {pvu, p
u
v}

between two different paths. We define the set A as the set of corresponding edges of A′ in G. Since |A′| ≤ a we
obtain |A| ≤ a. Since there is no (s, t)-cut of capacity at most a inG\D andA∩D = ∅, we conclude that there exists
an (s, t)-path (s, w1, . . . , wℓ, t) inG\A. Observe that (p1s, . . . , p

w1
s , psw1

, . . . , pw2
w1
, pw1

w2
, . . . , pwℓ

t , p1t) is an (s′, t′)-path

in G′ −A′, a contradiction to the assumption that A′ is an (s′, t′)-cut in G′.

(⇐) Let D′ ⊆ E′ be a solution with cost at most d′ of I ′. In the following, we construct a solution D ⊆ E with cost
at most d of I .

Since d′ = dn2 + n(n − 1), c′(e) = n2 for each edge e /∈ E(Pu) and each u ∈ V in G′, and c(e) = 1 for
each edge e ∈ E(Pu) for some u ∈ V in G′, we can assume without loss of generality that E(Pu) ⊆ D′ for
each u ∈ V . We start with an empty set D. For an edge {pvu, p

u
v} ∈ D′ between two different paths, we add

the edge {u, v} to D. Assume towards a contradiction that G has an (s, t)-cut A ⊆ E \ D with ω(A) ≤ a. We
define the set A′ as the set of corresponding edges of A in G′. Note that since ω(e) = 1 for each edge e ∈ E′ we
have |A′| ≤ a = a′. Since there is no (s′, t′)-cut of capacity at most a in G′ \D′ and A′ ∩D′ = ∅, we conclude that
there exists an (s′, t′)-path (p1s, . . . , p

w1
s , psw1

, . . . , pw2
w1
, pw1

w2
, . . . , pwℓ

t , p1t) in G′. Thus, (s, w1, . . . , wℓ, t) is an (s, t)-
path in G \A, a contradiction to the assumption that A is an (s, t)-cut in G.

Theorem 2. WMCP can be solved in ad · nO(1) time.

Proof. Let J := (G, s, t, c, ω, d, a) be an instance of WMCP. We prove the theorem by describing a simple search
tree algorithm, that we initially call with D := ∅, where D represents the choice of the defender:

If c(D) > d, then return no. Otherwise, use the algorithm behind Lemma 1 to compute an (s, t)-cut A =
{e1, . . . , ez} ⊆ E \D for some z ≤ |A| with ω(A) ≤ a. If no such (s, t)-cut exists, then return yes. Otherwise, we
branch into the cases where D := D ∪ {ei} for each i ∈ [1, z].

The correctness of the algorithm follows from the fact that for every (s, t)-cut A ⊆ E \ D with ω(A) ≤ a, at least
one of the edges ofA must be contained in any solution of J . It remains to consider the running time of the algorithm.
We have ω(e) ≥ 1 for every edge e in any WMCP instance. Hence, |A| ≤ a and therefore, the search tree algorithm
branches into at most a cases. Furthermore, after every branching step, c(D) increases by at least 1, since we add one
additional edge to D and we have c(e) ≥ 1 for every edge e. Thus, the depth of the search tree is at most d. Together

with the running time from Lemma 1, we obtain a total running time of adnO(1).

8

Lemma 8. MCP can be solved in ((d/2 + 1) ·∆(G))d · nO(1) time, where ∆(G) denotes the maximum degree of the
input graph.

Proof. Let J := (G, s, t, d, a) be an instance of MCP. We prove the theorem by showing that a ≤ d ·∆ in non-trivial
instances of MCP. Together with Theorem 2, we then obtain fixed-parameter tractability for d+∆.

If G contains an (s, t)-path with at most d edges, then J is a trivial yes-instance. Thus, we may assume that for
every D ⊆ E with |D| ≤ d, there is no (s, t)-path in G that contains only edges from D. We use this assumption to
prove the following claim.

Claim 2. If a ≥ (d/2 + 1) ·∆, then J is a no-instance.

Proof. Let D ⊆ E with |D| ≤ d. We prove that there exists an (s, t)-cut A ⊆ E of size at most a. To this end,
consider the graphGD := (V,D) consisting only of the edges inD. Since |D| ≤ dwe know that there is no (s, t)-path
in GD. Thus, s and t are in distinct connected componentsCs ⊆ V and Ct ⊆ V in GD. Furthermore, observe that in
at least one of the induced graphsGD[Cs] or GD[Ct], there are at most d/2 edges. Without loss of generality, assume
that this is the case forGD[Cs]. Then, |CD| ≤ d/2+1. We defineA :=

⋃

v∈CD
X(v), whereX(v) ⊆ E \D is the set

of all edges in E \D that are incident with v inG. Note thatA ⊆ E \D and that |A| ≤ |CD| ·∆ = (d/2+1) ·∆ ≤ a.
Moreover,A is an (s, t)-cut in G since t 6∈ Cs. �

By Claim 2, we conclude that for every non-trivial instnace of MCP, we have a ≤ d ·∆. Together with Theorem 2,

we obtain that MCP can be solved in ((d/2 + 1) ·∆)d · nO(1) time.

By Lemma 7 and Lemma 8 we obtain the following.

Theorem 3. MCP is NP-complete even on subcubic graphs. Furthermore, MCP can be solved in ((d/2+1)·∆(G))d ·
nO(1) time.

4 Parameterization by the Attacker Budget

In this section, we show that WMCP admits an FPT-algorithm for the parameter a. To this end, we first provide an

algorithm with a running time of af(tw(G)) · n for some computable function f , where tw(G) denotes the treewidth
of the graph. Afterwards, we show that for every instance of WMCP we can obtain an equivalent instance I ′ of
WMCP in polynomial time, where every edge is contained in an inclusion-minimal (s, t)-cut of size at most a in I ′.
Due to previous results [16, 20], the graph of I ′ then has treewidth at most g(a) for some computable function g. In
combination with the algorithm for a and tw(G), we thus obtain the stated FPT-algorithm for the parameter a.

The algorithm with a running time of af(tw(G)) · n relies on dynamic programming over a tree decomposition. Essen-
tially, what the attacker can achieve in the current subgraph is to disconnect specific parts of the bag and thus obtain a
cheap partition. Roughly speaking, the algorithm computes the minimum cost for an edge set D such that each choice
of the attacker to obtain any partition disjoint from D is expensive. Hence, before we describe the algorithm, we first
introduce some notations for partitions.

Let X be a set. We denote with B(X) the collection of all partitions of X . Let P ∈ B(X) be a partition of X and
let v ∈ X . Then, we define with P − v := {R \ {v} | R ∈ P} \ {∅} the partition of X \ {v} after removing v
from P . Analogously, for every w 6∈ X we define P + w := {P ′ ∈ B(X ∪ {w}) | P ′ − w = P}. Note
thatB(X \{v}) = {P −v | P ∈ B(X)} andB(X ∪{w}) = {P +w | P ∈ B(X)}. Moreover, we denote with P (v)
the unique set of P containing v for a partition P of X and an element v ∈ X .

Let (T := (V ,A, r), β) be a tree decomposition of a graph G. Recall that fora node x ∈ V , we define with Vx the
union of all bags β(y), where y is reachable from x in T , Gx := G[Vx], and Ex := EG(Vx).

Let P be a partition of β(x), then we call an edge set A ⊆ Ex a partition-cut for P in Gx if v and w are in different
connected components in Gx −A for every pair of distinct vertices {v, w} of β(x) with P (v) 6= P (w). Note that all
edges between distinct sets of P are contained in every partition-cut for P in Gx.

Theorem 4. Let tw(G) denote the treewidth of G. Then, ZWMCP can be solved in atw(G)O(tw(G))
· n+m time.

Proof. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of ZWMCP. In the following, we assume that there is no
edge {s, t} ∈ E since if c({s, t}) ≤ d, then {{s, t}} is a valid solution with cost at most d and, thus, I is a trivial
yes-instance of ZWMCP. Otherwise, this edge is contained in every (s, t)-cut and, thus, we can simply remove the
edge from the graph and reduce a by ω({s, t}).

9

We describe a dynamic programming algorithm on a tree decomposition. First, we compute a nice tree decomposi-
tion (T = (V ,A, r), β′) of G − {s, t} with |V| ≤ 4n such that the bag of the root and the bag of each leaf is the

empty set in twO(tw3) · n+m time [19, 4]. Next, we set β(x) := β′(x) ∪ {s, t} for each x ∈ V . Note that (T , β) is a
tree decomposition of width at most tw + 2 for G. Recall that for a node x ∈ V , the vertex set Vx is the union of all
bags β(y), where y is reachable from x in T , Gx := G[Vx], and Ex := EG(Vx).

The dynamic programming table T has entries of type T [x, fx, Dx] with x ∈ V , fx : B(β(x)) → [0, a+1], andDx ⊆
E(β(x)). Each entry stores the minimal cost of an edge set D ⊆ Ex with Dx := D ∩ E(β(x)) such that for
every P ∈ B(β(x)) the capacity of every partition-cutA ⊆ Ex \D of P in Gx is at least fx(P).

For each entry of T , we will sketch the proof of the correctness of its recurrence. The formal correctness proof is then
direct and thus omitted.

We start to fill the table T by setting for each leaf node ℓ of T :

T [ℓ, fℓ, ∅] :=

{

0 if fℓ({{s}, {t}}) = fℓ({{s, t}}) = 0,

∞ otherwise.
.

Recall that β(ℓ) = {s, t} and that we assumed that there is no edge between s and t in G. Hence, Gℓ contains no
edges and, thus, the empty set is a partition-cut for both {{s}, {t}} and {{s, t}}, and has capacity zero.

To compute the remaining entries T [x, fx, Dx], we distinguish between the three types of non-leaf nodes.

Forget node: Let x be a forget node with child node y and let v be the unique vertex in β(y)\β(x). Then we compute
the table entries for x by:

T [x, fx, Dx] := min
Ev⊆E(v,β(x))

T [y, fy, Dx ∪ Ev]

where fy(P) := fx(P − v) for each P ∈ B(β(y)).

The idea behind the definition of fy(P) is that every partition cut for P in Gy must be as expensive as the partition
cut of the unique partition of β(x) that agrees with P on β(x). By the fact that Gx = Gy , it follows that for each
partition P ∈ B(β(x)), an edge set A ⊆ Ex is a partition-cut for P in Gx if and only if A is also a partition-cut
for some P ′ ∈ P + v in Gx. Since we are looking for the minimal costs of an edge set D ⊆ Ex such that every
partition-cut disjoint from D for P − v in Gx has capacity at least fx(P − v), it is thus necessary and sufficient that
every partition-cut for P in Gy has capacity at least fx(P − v).

Introduce node: Let x be an introduce node with child node y and let v be the unique vertex in β(x) \ β(y). Then we
compute the table entries for x by:

T [x, fx, Dx] := T [y, fy, Dx ∩ E(β(y))] + c(Dx \ E(β(y)))

where fy(P) := max({0}∪ {fx(P ′)− ω(AP ′) | P ′ ∈ (P + v), Dx ∩AP ′ = ∅}) for each P ∈ B(β(y)) and AP ′ :=
E(v, β(y) \ P ′(v)).

The idea behind the definition of fy(P) is that, since every partition in P +v agrees with P in β(y), every partition cut
for P inGy must be sufficiently large to ensure that every partition cut for any partition in P+v is as least as expensive
as desired. Since we are looking for the minimum cost of an edge setD ⊆ Ex which intersects withE(β(x)) in exactly
the set Dx, the cost ofD is exactly c(D∩E(β(y)))+ c(Dx \E(β(y))). Let P ′ ∈ B(β(x)). Note that AP ′ is a subset
of every partition-cut for P ′ in Gx. Hence, if Dx ∩ AP ′ = ∅, then fy(P

′ − v) has to be at least fx(P
′) − ω(AP ′).

Otherwise, if Dx ∩ AP ′ 6= ∅, then there is no partition-cut for P ′ in Gx disjoint from D.

Join node: Let x be a join node with child nodes y and z. Then we compute the table entries for x by:

T [x, fx, Dx] := min
fy :B(β(y))→[0,a+1]

T [y, fy, Dx] + T [z, fz, Dx]− c(Dx)

where the mapping fz is given by

fz(P) := max (0,min (a+ 1, fx(P)− fy(P) + ω(E(β(x)) \ E(P))))

with E(P) := ∪R∈PE(R) for each P ∈ B(β(z)).

The idea behind the definition of fz(P) is that the no partition cut for P in Gz is more expensive than the sum of any
combination of partition cuts for P inGy andGz minus the capacity of the cut-edges in the current bag. Recall that we
are looking for the minimum cost of an edge setD ⊆ Ex such that for each partition P ∈ B(β(x)), every partition-cut
for P in Gx disjoint from D has capacity at least fx(P). Since Ey ∩ Ez = E(β(x)) it follows that the cost of D
is c(Sy)+c(Sz)−c(Dx), whereSy := Ey∩D and Sz := Ez∩D. Moreover, note that for every partitionP ∈ B(β(x)),

10

every partition-cutAα ⊆ Eα for P in Gα has to contain all edges of E(β(x)) \E(P), where α ∈ {x, y, z}. Thus, we
have to guarantee that fy(P) + fz(P)− ω(E(β(x)) \ E(P)) ≥ fx(P), fy(P) > fx(P), or fz(P) > fx(P).

Then, there is a solutionD of cost at most d of I if and only if T [r, fr, ∅] ≤ d, where r is the root of T , fr({{s, t}}) = 0
and fr({{s}, {t}}) = a + 1. Moreover, the corresponding set D can be found via traceback. It remains to show the
running time.

For every node x of T , there are (a+2)|B(β(x))|·2|β(x)|
2

entries. Since (T , β) has at most 4n bags, each bag contains at

most k := tw+3 vertices, and |B(X)| ≤ |X ||X|, the dynamic programming table contains at most 4n ·(a+ 2)k
k

·2k
2

entries. Now, we bound the running times of the four types of bags.

• An entry for a leaf node can be computed in O(1) time.

• For a forget node, we can compute the function fy in kk · kO(1) time and iterate over all possible choices

for Ev in 2k time. Thus, an entry in kk · 2k · kO(1) time.

• For an introduce node, we can compute the function fy in kk · kO(1) time and thus the entry in the same
running time.

• For a join node, we have (a+ 2)k
k

possibilities for fy and for each of them, we can compute fz in kk · kO(1)

time. Hence, for a join node, we can compute an entry in (a+ 2)k
k

· kk · kO(1) time.

The join nodes have the worst running time for any entry. Thus, we can compute all entries of T in (a+ 2)2(tw+3)tw+3

·

(tw + 3)
tw+3 · 2(tw+3)2 · twO(1) · n time and obtain the stated running time.

Next, we show that we can use Theorem 4 to obtain an FPT-algorithm for WMCP when parameterized by a. To this
end, we first obtain the following corollary which follows from a result of Gutin et al. [16, Lemma 12].

Corollary 3. Let G = (V,E) be a graph, let s and t be distinct vertices of G, and let a be an integer. If every
edge e ∈ E is contained in an inclusion-minimal (s, t)-cut of size at most a, then tw(G) ≤ g(a) for some computable
function g.

Hence, to obtain an FPT-algorithm for WMCP with the parameter a, we only have to find an equivalent instance in
polynomial time where each edge is contained in some inclusion-minimal (s, t)-cut of size at most a. Since each edge
in an instance of WMCP has capacity at least one, by applying Rule 1 exhaustively we obtain an equivalent instance
of WMCP where each edge is contained in some inclusion-minimal (s, t)-cut of size at most a. Hence, we obtain the
following by combining Lemma 3, Corollary 3, and Theorem 4.

Theorem 5. WMCP is FPT when parameterized by a.

Note that this is not possible for ZWMCP due to Theorem 6.

Theorem 6. ZWMCP is W[1]-hard when parameterized by d+ a even if ω(e) ∈ {0, 1} for all e ∈ E.

Proof. We describe a parameterized reduction from BICLIQUE which is known to be W[1]-hard when parameterized
by k [10].

BICLIQUE

Input: A bipartite graph G = (X ∪ Y,E) with partite sets X and Y and an integer k.
Question: Does G contain a (k, k)-biclique?

Let I = (G = (X ∪ Y,E), k) be an instance of BICLIQUE. Now, we describe how to construct an instance I ′ =
(G′ = (V ′, E′), s, t, c, ω, d, a) of ZWMCP in polynomial time such that I is a yes-instance of BICLIQUE if and only
if I ′ is a yes-instance of ZWMCP.

The graph G′ contains the graph G as a copy together with two new vertices s and t and edges F := {{s, x} | x ∈
X} ∪ {{y, t} | y ∈ Y }. Furthermore, each edge {x, y} ∈ E is subdivided by a new vertex wxy in G′. Hence, the
graphG′ contains the edges {x,wxy} and {wxy, y} instead of the edge {x, y}. We defineEX := {{x,wxy} | x ∈ X}
and EY := {{wxy, y} | y ∈ Y }. We set d := (2k + 1)k2 + 2k = 2k3 + k2 + 2k and for each edge {x, y} ∈ E we
set c({x,wxy}) := d + 1, ω({x,wxy}) := 1, c({wxy, y}) := 2k + 1, and ω({wxy, y}) := 0. Furthermore, for each

edge e ∈ F we set c(e) := 1, and ω(e) := 0. Finally, we set a := k2 − 1 which completes the construction of I ′.

11

(⇒) Suppose that I is a yes-instance of BICLIQUE. Then there exist sets SX ⊆ X and SY ⊆ Y of size k each,
such that {x, y} ∈ E for all x ∈ SX and y ∈ SY . We set D := {{wxy, y} | x ∈ SX , y ∈ SY } ∪ {{s, x} | x ∈
SX} ∪ {{y, t} | y ∈ SY }. Observe that |D| = (2k + 1)k2 + 2k = d. Next, we show that D is a solution of I ′.

Consider for each x ∈ SX and for each y ∈ SY the (s, t)-path (s, x, wxy , y, t). Since {s, x} ∈ D, {wxy, y} ∈ D,
and {y, t} ∈ D, each (s, t)-cutA has to contain the edge {x,wxy}. By the fact that ω({x,wxy}) = 1 for each x ∈ SX

and each y ∈ SY we observe that ω(A) ≥ |SX × SY | = k2 = a+ 1. Hence, I ′ is a yes-instance of ZWMCP.

(⇐) Let D be a solution with cost at most d of I ′. Observe that for each edge e ∈ EX we have d(e) = d + 1.
Thus, EX ∩ D = ∅. Furthermore, observe that for each edge e ∈ EY we have d(e) = 2k + 1. Hence, for the
set ED := D ∩ EY we conclude that |ED| ≤ k2. Next, we define the vertex sets SX := {x | {s, x} ∈ D}, the set
of endpoints of edges in D incident with s, and SY := {y | {y, t} ∈ D}, the set of endpoints of edges in D incident
with t. In the following, we describe an (s, t)-cut A for G′ that avoids D. We partition A into two sets A0 and A1,
where A0 := (EY ∪ F) \D and A1 := {{x,wxy} | {wxy, y} ∈ ED}. Next, we show that A is an (s, t)-cut for G′:

Observe that every (s, t)-path contains at least one subpath (x,wxy , y) for a vertex x ∈ X and a vertex y ∈ Y as an
induced subgraph. If {wxy, y} ∈ ED then {x,wxy} ∈ A1, and otherwise if {wxy, y} /∈ DS then {wxy, y} ∈ A0.

Furthermore, observe that the (s, t)-cut A has capacity ω(A0) +ω(A1) = ω(A1) = |ED| ≤ k2. Since D is a solution
of I ′, we conclude that A has capacity at least a+ 1 = k2 and, thus, |ED| = ω(A) = k2. Thus, |D ∩ F | ≤ 2k.

Next, assume towards a contradiction that the set ED contains an edge {wxy, y} such that x /∈ SX or y /∈ SY .
Without loss of generality assume that y /∈ SY . We set A∗ := A \ {{x,wxy}} and show that A∗ is an (s, t)-cut in G′.
Since {y, t} ∈ A∗ and for each x′ ∈ NG(y) \ {x} either {x′, wx′y} ∈ A∗ or {wx′y, y} ∈ A∗, we obtain that A∗ is

an (s, t)-cut of capacity ω(A)−ω({x,wxy}) = k2 − 1 = a. A contradiction. Hence, for each edge {wxy, y} ∈ D we

have {s, x} ∈ D and {y, t} ∈ D. Since |ED| = k2, we conclude that |SX | = k = |SY |. Consequently, (SX , SY) is
a (k, k)-biclique in G and, thus, I is a yes-instance of BICLIQUE.

Together with Corollary 1 we obtain the following.

Corollary 4. ZWMCP is W[1]-hard when parameterized by d+ a even if c(e) = 1 and ω(e) ∈ {0, 1} for all e ∈ E.

5 Parameterization by Vertex Cover Number

We investigate the parameterization by the vertex cover number vc(G). Observing that for MCP the number of
protected edges d is at most 2vc(G) in nontrivial instances, eventually leads to the following FPT result.

Theorem 7. MCP can be solved in 2O(vc(G)2) · nO(1) time.

Proof. Let J := (G, s, t, d, a) be an instance of MCP, and let vc be the size of a minimum vertex cover of G. The
algorithm that we describe here is based on two observations which we formalize in two claims. The first claim states
that the defender budget d is upper bounded by 2 · vc.

Claim 3. If d ≥ 2 · vc, then J is a yes-instance.

Proof. Let S be a minimum vertex cover in G and let P be a shortest (s, t)-path in G. Then, for every pair v, w of
consecutive vertices on P at least one of v and w is contained in S. Consequently, there are at most 2 · vc(G) edges
on P . If d ≥ 2 · vc(G), then the set of edges on P is a solution of J of size at most d. Thus, J is a yes-instance. �

Let S be a minimum vertex cover in G, and let I := V \ S be the remaining independent set. With the next claim we
state that only a bounded number of vertices in I is needed to find a minimal solution of J . To this end we introduce
some notation: Given a subsetX ⊆ S, we let IX := {u ∈ I | NG(u) = X} ⊆ I denote the neighborhood class ofX .
Moreover, we let EX denote the set of edges between X and IX .

Claim 4. There exists a minimum solution D of J such that |D ∩EX | ≤ |X | for every X ⊆ D.

Proof. Let D be a solution of J . If |D ∩ EX | ≤ |X | for every X ⊆ S, nothing more needs to be shown. Thus,
consider some X ⊆ S such that |D ∩ EX | > |X |, and let u ∈ IX . We then define D′ := (D \ EX) ∪ E(u,X). It
then holds that |D′ ∩EX | = |X |. Moreover, observe that |D′| < |D| and D′ \ EX = D \ EX .

We next show thatD′ is a solution of J . LetA ⊆ E\D′ be an (s, t)-cut inG that is minimum among all (s, t)-cuts that
avoidD′. We first prove thatA∩EX = ∅. Obviously,E(u,X)∩A = ∅ sinceE(u,X) ⊆ D′. Consider u′ ∈ IX \{u}.
Then, since N(u′) = X , for every (s, t)-path P ′ containing u, there are two consecutive edges {x1, u′} and {u′, x2}

12

with x1, x2 ∈ X on P ′. Since N(u′) = N(u), replacing u′ with u defines another (s, t)-path P in G′. Then,
since {x1, u} and {u, x2} are not contained inA, there exists another edge on P that is an element ofA. Consequently,
on every (s, t)-path P ′ containing u′, there exists an edge inA that is not an element ofE(u′, X). Then, the fact thatA
is a minimum (s, t)-cut among all (s, t)-cuts that avoid D′ implies E(u′, X) ∩ A = ∅. Therefore,A ∩EX = ∅.

Then, since A ∩ EX = ∅ and D′ \ EX = D \ EX we have A ⊆ E \D. Consequently, |A| > a since D is a solution
of J .

Since D′ \ EX = D \ EX , the modification of D described above can be applied on all neighborhood classes IX
independently. Therefore, there exists a minimum solution of J that has the described property. �

Let X ⊆ S and IX := {v1, . . . , v|IX |}. We define I ′X by I ′X := IX if |IX | ≤ |X | and I ′X := {v1, . . . , v|X|},

otherwise. Due to Claim 4, there exists a minimum solution such that at most |X | vertices in IX are endpoints of
edges in S. Without loss of generality we may assume that all of these endpoints are from I ′X . Thus, we can assume
that there is a minimum solution D ⊆ E(S) ∪

⋃

X⊆S E(X, I ′X). We use this assumption for the algorithm that we

describe as follows.

1. If d ≥ 2 · vc(G), then return yes.

2. Otherwise, we compute a minimum vertex cover S. Iterate over every possible edge-set D ⊆ E(S ∪
⋃

X⊆S E(X, I ′X) with |D| ≤ d, and check with the algorithm behind Lemma 1 that every (s, t)-cutA ⊆ E\S
in G has size bigger than a. If this is the case, then return yes.

3. If for none of the choices of D the answer yes was returned in Step 2, then return no.

The correctness of the algorithm is implied by Claims 3 and 4. It remains to analyze the running time. Obviously,
Step 1 and Step 3 can be performed in linear time. Consider Step 2. A minimum vertex cover can be computed
in O(1.28vc + n · vc) time [7]. Next, observe that

|E(S ∪
⋃

X⊆S

I ′X)| ≤ vc2 +
vc
∑

i=0

(

vc

i

)

i2

≤ vc2(1 + 2vc−1).

Since d < 2 · vc, there are less than (vc2(1 + 2vc−1))2vc possible subsets D ⊆ E(S ∪
⋃

X⊆S I
′
X) with |D| ≤ d.

Together with the running time from Lemma 1, Step 2 can be performed in (vc2(1+2vc−1))2vc ·nO(1) time. Altogether,
the algorithm runs within the claimed running time.

Theorem 4 implies that WMCP can be solved in pseudopolynomial time on graphs with a constant treewidth and
therefore on graphs with a constant vertex cover number. With the next two theorems we show that significant im-
provements of this result are presumably impossible.

Theorem 8. WMCP is weakly NP-hard on graphs with a vertex cover of size two .

Proof. We describe a polynomial time reduction from KNAPSACK which is known to be weakly NP-hard [14].

KNAPSACK

Input: A set U , a size function f : U → N, a value function g : U → N, and two budgets B,C ∈
N.
Question: Is there a set of items S ⊆ U such that f(S) :=

∑

u∈S f(u) ≤ B and g(S) :=
∑

u∈S g(u) ≥ C?

Let I := (U, f, g, B,C) be an instance of KNAPSACK. We describe how to construct an equivalent instance I ′ :=
(G = (V,E), s, t, c, ω, d, a) of WMCP where G has a vertex cover of size two in polynomial time.

We set V := U ∪ {s, t} and E := {{s, u}, {u, t} | u ∈ U}. Note that {s, t} is a vertex cover of size two in G.
Next, we set d := B and a := |U | + C − 1. Finally, for every u ∈ U we set c({s, u}) := f(u), ω({s, u}) := 1,
c({u, t}) := d+ 1, and ω({u, t}) := g(u) + 1.

Next, we show that I is a yes-instance of KNAPSACK if and only if I ′ is a yes-instance of WMCP.

13

(⇒) Suppose that I is a yes-instance of KNAPSACK. Then, there is a set SU ⊆ U such that f(SU) ≤ B = d
and g(SU) ≥ C. We setD := {{s, u} | u ∈ SU}. By construction, we obtain that c(D) = f(SU) ≤ d. LetA ⊆ E\D
be an (s, t)-cut. We show that A has capacity larger than a.

Since {s, u} ∈ D for all u ∈ SU it holds that T := {{u, t} | u ∈ SU} ⊆ A. Note that ω(T) =
∑

u∈SU
(g(u) + 1) =

g(SU) + |SU |. Moreover, because of the path (s, u, t) for every u ∈ U \ SU we obtain that {s, u} ∈ A or {u, t} ∈ A.
Since both of these edges have capacity at least one, we obtain ω(A) ≥ ω(T) + |U \ SU | = g(SU) + |U | = a + 1.
Consequently, I ′ is a yes-instance of WMCP.

(⇐) Suppose that I ′ is a yes-instance of WMCP. Then, there is a solution D ⊆ E with c(D) ≤ d. By the fact
that c({u, t}) = d+ 1 for all u ∈ U , it follows that D ⊆ {{s, u} | u ∈ U}.

Let SU := {u ∈ U | {s, u} ∈ D}. By construction, f(SU) = c(D) ≤ d = B. We show that g(SU) ≥ C.
Let A ⊆ E \D be an (s, t)-cut of minimum capacity. Recall that ω(A) ≥ a+ 1 = |U |+ C. Since A is an (s, t)-cut
in G and disjoint to D, we know that {u, t} ∈ A for all u ∈ SU . Moreover, since ω({s, u}) = 1 ≤ ω({u, t}) for
all u ∈ U , we can assume without loss of generality, that {s, u} ∈ A for all u ∈ U \ SU . Hence, a+ 1 = |U |+ C ≤
ω(A) = |U \ SU | +

∑

u∈SU
(g(u) + 1) = g(SU) + |U |. Thus, C ≤ g(SU). Consequently, I is a yes-instance

of KNAPSACK.

Theorem 9. WMCP is W[1]-hard when parameterized by the vertex cover number vc(G) even if c(e)+ω(e) ∈ nO(1)

and the graph is a biclique.

Proof. We describe a parameterized reduction from BIN PACKING which is W[1]-hard when parameterized by k even
if the size of each item is polynomial in the input size [18].

BIN PACKING

Input: A set U of items, a size-function f : U → N, and integers B and k.
Question: Is there a k-partition (U1, . . . , Uk) of U with

∑

u∈Ui
f(u) = B for all i ∈ [1, k]?

Let I := (U, f,B, k) be an instance of BIN PACKING where the size of each item is polynomial in the input size.
We can assume without loss of generality that

∑

u∈U f(u) = Bk, as, otherwise, I is a trivial no-instance of BIN

PACKING. We construct an equivalent instance I ′ := (G = (V,E), s, t, c, ω, d, a) of WMCP where G has a vertex
cover of size k + 1. The graph G is a biclique with bipartition ({s} ∪ B, {t} ∪ U) where B := {b1, . . . , bk}. We
set d := |U |, and

c(e) :=

{

1 if e ∈ {{u, b} | u ∈ U, b ∈ B}, and

d+ 1 otherwise.

Let λ := 2B · |U |, we set

ω(e) :=

λ · f(u) if e = {s, u} with u ∈ U,

λ ·B if e = {t, b} with b ∈ B, and

1 otherwise.

Finally, we set a := |U | · k + λ(Bk − 1). This completes the construction of I ′. Figure 1 shows an example of the
construction. Note that {s} ∪ B is a vertex cover of G of size k+1. It remains to show that I is a yes-instance of BIN

PACKING if and only if I ′ is a yes-instance of WMCP.

(⇒) Suppose that I is a yes-instance of BIN PACKING. Then, there is a k-partition (U1, . . . , Uk) of U , such
that

∑

u∈Ui
f(u) = B for all i ∈ [1, k]. We set D := {{u, bi} | i ∈ [1, k], u ∈ Ui}. Note that c(D) = d. We

next show that D is a solution.

Let A ⊆ E \ D be an (s, t)-cut in G and let i ∈ [1, k]. Since for each u ∈ Ui, D contains the edge {u, bi},
the (s, t)-path Pu := (s, u, bi, t) can only be cut if {s, u} ∈ A or {bi, t} ∈ A. Consequently, {{s, u} | u ∈ Ui} ⊆ A
or {bi, t} ∈ A. Recall that

∑

u∈Ui
f(u) = B. Hence,

∑

u∈Ui
ω({s, u}) =

∑

u∈Ui
λf(u) = λB = ω({bi, t}).

Since Pu and Pw are edge-disjoint if u and w are in distinct parts of the k-partition, we obtain that ω(A) ≥ kλB > a
and, thus, I ′ is a yes-instance of WMCP.

(⇐) Suppose that I ′ is a yes-instance of WMCP. Then, there is a solution D ⊆ E with c(D) ≤ d. By construc-
tion, D ⊆ E(U,B), since all other edges have cost d+ 1.

Note that for each u ∈ U , there is some b ∈ B, such that {u, b} ∈ D, as, otherwise A := {{s, t}} ∪ {{s, u′} | u′ ∈
U \ {u}} ∪ {{u, b′} | b′ ∈ B}} is an (s, t)-cut in G with capacity λ(Bk − f(u)) + k + 1 < a. Since |D| ≤ d, we
obtain that for each u ∈ U , there is exactly one b ∈ B, such that {u, b} ∈ D.

14

s

u1

u2

u3

u4

b1

b2

b3

t

4λ

1λ

3λ

4λ

4λ

4λ

4λ

Figure 1: An example of the construction from the proof of Theorem 9 for a BIN PACKING instance with f(u1) =
f(u4) = 4, f(u2) = 1, f(u3) = 3, B = 4, and k = 3. The thick edges represent a minimum solution D. The
edge-labels represent all edge capacities that are bigger than one. Observe that every (s, t)-cut avoiding D contains
dashed edges that have a capacity sum of at least 12λ.

We set Ui := {u ∈ U | {u, bi} ∈ D} for all i ∈ [1, k]. By the above, we obtain that (U1, . . . , Uk) is a k-partition
of U . We show that

∑

u∈Ui
f(u) = B for all i ∈ [1, k].

Assume towards a contradiction that
∑

u∈Ui
f(u) 6= B for some i ∈ [1, k]. This is the case if and only if there is

some j ∈ [1, k] with
∑

u∈Uj
f(u) < B. We setA := {{s, t}}∪{{s, u} | u ∈ Uj}∪{{b, t} | b ∈ B\{bj}}∪(E(U,B)\

D). Note that ω(A) = 1 + λ(
∑

u∈Uj
f(u)) + λB(k − 1) + |U | · (k − 1) ≤ λ(B − 1) + λB(k − 1) + |U | · k =

λ(Bk − 1) + |U | · k = a, since
∑

u∈Uj
f(u) < B. It remains to show that A is an (s, t)-cut in G. Observe

that NG−A(t) = bj . Since NG−A(bj) = {t} ∪ Uj and NG−A(u) = {bj} for each u ∈ Uj , we conclude that A is
indeed an (s, t)-cut in G. This contradicts the fact that there is no (s, t)-cut disjoint to D in G of capacity at most a.
As a consequence,

∑

u∈Ui
f(u) = B for all i ∈ [1, k] and, thus, I is a yes-instance of BIN PACKING.

We use Theorem 9 to extend the W[1]-hardness to pw(G) + fvs(G) and thus vc(G) in the running time stated in
Theorem 7 can presumably not be replaced by pw(G) + fvs(G). Hence, MCP is also W[1]-hard parameterized
by tw(G).

Theorem 10. MCP is W[1]-hard when parameterized by pw(G) + fvs(G), where pw(G) denotes the pathwidth of
the input graph and fvs(G) denotes the size of the smallest feedback vertex set of the input graph.

Proof. We reduce from WMCP which, due to Theorem 9, is W[1]-hard when parameterized by the vertex cover

number vc(G) even if c(e) + ω(e) ∈ nO(1) and the graph is a biclique.

Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP where c(e)+ω(e) ∈ nO(1) and the graph is a biclique.
Moreover, let I ′ = (G′ = (V ′, E′), s, t, d, a) be the equivalent instance of MCP we obtain obtain in polynomial time
by applying the construction leading to Corollary 1. We show that both the size of the smallest feedback vertex set
and the pathwidth of G′ are upper-bounded by a function only depending on vc(G).

Let (X,Y) be the bipartition of G and let X be the smaller part. Thus, vc(G) = |X |. Moreover, let x1, . . . , x|X| be

the elements of X and let y1, . . . , y|Y | be the elements of Y . Recall that we obtain I ′ by replacing every edge e =
{u, v} ∈ E by a subgraphGe = (Ve, Ee) which consists of vertex disjoint (u, v)-paths (besides u and v).

Note that Ge has a path decomposition Be of width at most three where each bag contains both endpoints of e. For
every y ∈ Y we set By := B{x1,y} · . . . · B{x|X|,y}. Note that By is a path decomposition of width at most three

for Gy = (
⋃

x∈X V{x,y},
⋃

x∈X E{x,y}).

Finally, let B := By1
· · · · · By|Y |

and let B′ be the sequence of bags we obtain from B by adding all vertices of X to

each of the bags of B. By construction, B′ is a path decomposition of width at most |X |+3 forG′. Hence, pw(G′) ≤
|X |+ 3 = vc(G) + 3.

It remains to show that fvs(G′) ≤ vc(G). Note thatG{x,y}−{x} is acyclic for each x ∈ X and y ∈ Y . Hence,G′−X
is acyclic since Y is an independent set in G and for each pair of distinct edges e1, e2 ∈ E it holds that Ve1 ∩ Ve2 =
e1∩e2. Consequently, fvs(G′) ≤ vc(G) and, thus, MCP is W[1]-hard when parameterized by pw(G′)+ fvs(G′).

15

6 On Problem Kernelization

6.1 A Polynomial Kernel for vc + a

On the positive side, we show that WMCP admits a polynomial kernel when parameterized by vc + a. The main tool
for this kernelization is the merge of vertices according to Definition 1.

Let J := (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP. We first provide two simple reduction rules that
remove degree-one vertices.

Rule 2. If s has exactly one neighbor w and ω({s, w}) ≤ a, then delete s, set s := w, and decrease d by c({s, w}).
Analogously, if t has exactly on neighbor v and ω({t, v}) ≤ a, then delete t, set t := v, and decrease d by c({t, v}).

The safeness of Rule 2 follows by the observation that, if s (or t, respectively) is incident with a unique edge e
with ω(e) ≤ a, this edge must be part of every solution, since M := {e} is an (s, t)-cut of capacity at most a.

Rule 3. If there exists a degree-one vertex v 6∈ {s, t}, then delete v.

It is easy to see that Rule 3 is safe. Since v 6= s and v 6= t, the single edge incident with v is not contained in any
inclusion-minimal (s, t)-cut and therefore not part of any minimal solution. The next reduction rule is the main idea
behind the problem kernelization.

Rule 4. If there are vertices u, v ∈ V such that a minimum (u, v)-cut has capacity at least a+1, then merge u and v.

Lemma 9. Rule 4 is safe.

Proof. Recall that due to Lemma 3 we can safely merge edges that are not contained in any inclusion-minimal (s, t)-
cut of capacity at most a. We show the safeness of Rule 4 by applying Lemma 3 on the vertex pair {u, v}. Note that u
and v are not necessarily adjacent in G. Thus, we first transform J into an instance J ′ by adding an edge {u, v} with
cost d + 1 and capacity a+ 1. Let c′ and ω′ be the cost functions and capacity functions of J ′. We next show that J
is a yes-instance if and only if J ′ is a yes-instance.

(⇒) Let S be a solution of J with c(S) ≤ d. Since adding an edge might only increase the size of a cut, S is a solution
of J ′.

(⇐) Let S′ be a solution of J ′ with c′(S) ≤ d. Then, {u, v} 6∈ S′ since c′({u, v}) = d + 1. We show that S′ is a
solution of J . LetM ⊆ E\S′ be an inclusion-minimal (s, t)-cut inG. We consider the corresponding partition (A,B)
of V . If u ∈ A and v ∈ B or vice versa, thenM is an (u, v)-cut in G and therefore ω(M) ≥ a+1 by the condition of
Rule 4. Otherwise, if u and v belong to the same partite set, then M is an (s, t)-cut in G′. Since S is a solution of J ′

we conclude ω(M) ≥ a+ 1.

Thus, the instances J and J ′ are equivalent. Note that ω′({u, v}) = a+ 1 implies that {u, v} is not contained in any
inclusion-minimal (s, t)-cut of capacity at most a. Then, Lemma 3 implies that u and v can safely be merged, which
proves the safeness of Rule 4.

We now assume that J is reduced regarding Rules 2–4. Before we show that the number of edges in G is at most 2 ·
vc(G) · a, we observe that there is no degree-one vertex in G: Since J is reduced regarding Rule 3, every vertex
in V \ {s, t} has degree at least two. Furthermore, since J is reduced regarding Rule 2 the vertices s and t are not
incident with a unique edge of capacity at most a. Finally, since J is reduced regarding Rule 4, the vertices s and t
are not incident with a unique edge {s, u} (or {t, v}, respectively) of capacity at least a+ 1 since the vertices u and v
(or t and v) would have been merged by Rule 4.

To show that the number of edges in J is at most 2 · vc(G) · a, we introduce cut trees which are special binary trees.
Throughout this section, given an inner vertex x of a binary tree, we let xℓ denote its left child and xr denote its right
child.

Definition 2. Let G = (V,E) be a graph with a capacity function ω : E → N, let S ⊆ V be a vertex cover of G.
Let T = (V , E) be a binary tree with root vertex r ∈ V and ψ : V → 2V . Then, (T, ψ) is a cut tree of G with respect
to S if

1. ψ(r) = V ,

2. for every vertex x ∈ V with |ψ(x)∩S| ≥ 2, there exist vertices u, v ∈ ψ(x)∩S and a minimum (u, v)-cutM
in G[ψ(x)] with partitions (A,B) such that ψ(xℓ) = A and ψ(xr) = B, and

3. every vertex x ∈ V with |ψ(x) ∩ S| = 1 is a leaf.

16

Recall that we consider a reduced instance J with input graph G. In the following, let S be a minimum vertex cover
of G. We consider a cut tree (T, ψ) of G with respect to S. Observe that there is no inner vertex of T that has exactly
one child, and that {ψ(x) | x is a leaf of T } is a partition of V , where each set of the partition contains exactly one
vertex from S. Thus, if S is a minimum vertex cover, then T consists of at most vc(G) inner vertices and vc(G) leaves.
Furthermore, note that for each inner vertex x, the tuple (ψ(xℓ), ψ(xr)) is a partition of ψ(x).

To give a bound on the number of edges of G, we associate an edge-set Ex with every x ∈ V . If x is an inner vertex
in T , then we define Ex := EG(ψ(xℓ), ψ(xr)). Otherwise, if x is a leaf, then we define Ex := EG(ψ(x)). Observe
that for every inner vertex x the edge-set Ex is a minimum (u, v)-cut in G for a pair of vertices u, v ∈ ψ(x). The size
bound of the number of edges mainly relies on the following lemma.

Lemma 10. Let (T = (V , E), ψ) be a cut tree of G = (V,E). Then, E =
⋃

x∈V Ex.

Proof. It clearly holds that
⋃

x∈V Ex ⊆ E since each Ex ⊆ E. It remains to proveE ⊆
⋃

x∈V Ex.

Let e = {u, v} ∈ E. If e ∈ Ex for some leaf vertex x, nothing more needs to be shown. Otherwise, consider the leaf
vertices x and y with u ∈ ψ(x) and v ∈ ψ(y) and let z be the first common ancestor of x and y. Then, u ∈ ψ(zℓ)
and v ∈ ψ(zr) or vice versa. Consequently, e ∈ EG(ψ(zℓ), ψ(zr)) = Ez .

We now prove the main result of this subsection.

Theorem 11. There is an algorithm that, given an instance of WMCP computes an equivalent instance in polynomial
time, such that the graph consists of at most 2vc(G) · a edges.

Proof. The algorithm is simply described as follows: Apply the Rules 2–4 exhaustively. Obviously, a single applica-
tion of one rule can be done in polynomial time. Then, since after every application of one of the rules the number of
vertices is decreased by one, Rules 2–4 can be applied exhaustively in polynomial time.

Let J be an instance of WMCP that is reduced regarding Rules 2–4. We next use Lemma 10 to prove that the input
graph G consists of at most 2 · vc · a edges. Recall that for every pair (u, v) of vertices in G, there exists a (u, v)-cut
of size at most a since J is reduced regarding Rule 4

Let (T = (V , E), ψ) be a cut tree of G with respect to a minimum vertex cover S. Let I := V \ S be the remaining
independent set. Furthermore, let L ⊆ V be the set of leaves of T and let I ⊆ V be the set of inner vertices of T .
Lemma 10 then implies

|E| ≤ |
⋃

x∈I

Ex|+ |
⋃

x∈L

Ex|.

Since every (u, v)-cut inG has size at most a andω(e) ≥ 1 for every edge ewe conclude that |Ex| ≤ a for every x ∈ I.
Thus, since T has at most vc(G) inner vertices, we have |

⋃

x∈I Ex| ≤ vc(G) · a.

We next define an injective mapping p :
⋃

x∈LEx →
⋃

x∈I Ex. Observe that the existence of such a mapping

implies |
⋃

x∈LEx| ≤ |
⋃

x∈I Ex| and thus |E| ≤ 2 · vc(G) · a.

Let {u, v} ∈ Ex for some leaf vertex x. Without loss of generality assume that v ∈ S and u ∈ I . Since J is
reduced regarding Rules 2–4, there are no degree-one vertices in G and thus, u has a neighbor w ∈ S \ {v}. We then
define p({u, v}) := {u,w}. Note that p({u, v}) ∈ EG(S, I), and that both edges {u, v} and p({u, v}) are incident
with the same vertex u ∈ I .

We first show that p is well-defined. That is, that p({u, v}) ∈
⋃

x∈I Ex for every {u, v} ∈
⋃

x∈LEx.

Since |ψ(x) ∩ S| = 1, there exists another leaf vertex y with w ∈ ψ(y). Let z be the first common ancestor of x
and y. Then, {u,w} ∈ Ez . Since z is an inner vertex, we conclude that p is well-defined.

Next, we show that p is injective. Let e := {u, v} and e′ := {u′, v′} be edges in
⋃

x∈LEx. Let p(e) = p(e′). We show

that e = e′. Without loss of generality assume that v, v′ ∈ S and u, u′ ∈ I . Then, all four edges e, e′, p(e), and p(e′)
are incident with the same vertex of I and thus u = u′. Then, since {ψ(x) | x ∈ L} is a partition of V we conclude
that e and e′ are element of the same set Ex for some x ∈ L. Then, |ψ(x) ∩ S| = 1 implies v = v′ and thus e = e′.
Therefore, p is injective, which then implies |E| ≤ 2 · vc(G) · a.

Technically, the instance from Theorem 11 is not a kernel since the encoding of d and the values of c(e) might not be
bounded by some polynomial in a and vc. We use the following lemma to show that Theorem 11 implies a polynomial
kernel for WMCP.

17

Lemma 11 ([12]). There is an algorithm that, given a vector w ∈ Qr and some W ∈ Q computes in polynomial

time a vector w = (w1, . . . , wr) ∈ Zr where maxi∈{1,...,r} |wi| ∈ 2O(r3) and an integer W ∈ Z with total encoding

length O(r4) such that w · x ≤W if and only if w · x ≤W for every x ∈ {0, 1}r.

Corollary 5. WMCP admits a polynomial problem kernel when parameterized by vc + a.

Proof. Let J := (G = (V,E), s, t, c, ω, d, a) be the reduced instance from Theorem 11. Observe that both, the number
of vertices n and the number of edges m of G are polynomially bounded in vc + a. We define r := m and w to be
the r-dimensional vector where the entries are the values c(e) for each e ∈ E. Furthermore, let W := d. Applying

the algorithm behind Lemma 11 computes a vector w with the property stated in the lemma and an integer W that has
encoding length O(m4).

Substituting all values c(e) with the corresponding entry in w and substituting d by W then converts J into an equiv-
alent instance which has a size that is polynomially bounded in vc + a.

The algorithm behind Theorem 11 also implies a polynomial kernel for the unweighted problem MCP: We transform
the unweighted instance into a weighted instance where all capacities and costs are one. Afterwards, we apply the
algorithm from Theorem 11 to compute a reduced instance J ′. In J ′ all costs are one, and the capacities are at
most a + 1. We then use Corollary 1 to transform the reduced instance J ′ into an instance J of MCP. Due to the
structure of J ′, the number of new vertices introduced in J is at most m · (a + 1), where m denotes the number of
edges in J ′. Since m ≤ 2vc(G) · a, we obtain the following corollary.

Corollary 6. MCP admits a polynomial problemkernel with 4vc(G) · a2 edges.

6.2 Limits of Problem Kernelization

Let Bq be a full binary tree of height q. We denote the vertices on level ℓ as bqℓ,1, . . . , b
q
ℓ,2ℓ

for each ℓ ∈ [0, q]. Hence,

vertex bqℓ,i for some ℓ ∈ [0, q − 1] and some i ∈ [1, 2ℓ] has the neighbors bqℓ+1,2i−1 and bqℓ+1,2i in the next level. The

full binary tree Rq of height q with the vertices rqℓ,1, . . . , r
q
ℓ,2ℓ

on level ℓ ∈ [0, q] is defined analogously. A mirror fully

binary tree Mq is the graph obtained after merging the vertices bqq,i and rqq,i for each i ∈ [1, 2q]. By lp(G) we denote

the length of a longest path in G.

Lemma 12. Let q ≥ 3, then the longest path of a mirror fully binary tree Mq is 2q2.

Proof. By Lq we denote the length of each longest path with one endpoint being bq0,1 which does not contain ver-

tex rq0,1. We prove the following statements inductively for q ≥ 3.

1. Lq = Lq−1 + 2q − 1.

2. |V (Pq) ∩ {bq0,1, r
q
0,1}| = 1 for each longest path Pq of Mq and lp(Mq) = 2Lq.

Solving the recurrence implied by 1. and 2. leads to lp(Mq) = 2q2. Hence, it remains to prove the two statements.

Base Case q = 3: By considering all possible longest paths in M3 we show that the length of a longest path with one
endpoint being b30,1 and not containing r30,1 is nine and that lp(M3) = 18.

Inductive step j − 1 7→ j:

1. Let Zj be a longest path starting at bj0,1 not containing vertex rj0,1. Without loss of generality, assume

that bj1,1 ∈ Zj .

First, consider the case that rj1,1 /∈ Zj . Then, the length of Zj is at most the length of a longest path starting

in vertex bj1,1 and not containing vertex rj1,1 in the mirror fully binary tree of height j−1 rooted in vertex bj1,1
plus one for the edge {bj1,1, b

j
0,1}. By inductive hypothesis we obtain that Zj has length at most Lj−1 + 1.

Second, consider the case that rj1,1 ∈ Zj . Since bj1,1, r
j
1,1 ∈ Zj there exists a path connecting these two

vertices. Without loss of generality, assume that vertices bj2,1 and rj2,1 are on this path of length exactly 2j−2.

Note that bj1,1 has the neighbors bj0,1 and bj2,1 in the path and thus bj2,2 is not a neighbor of bj1,1. Thus, we can

now use the inductive hypothesis. The length of each longest path starting at vertex rj1,1 and not containing

18

vertex bj1,1 in the mirror fully binary tree of height j − 1 rooted in rj1,1 is at most Lj−1. Hence, the length
of Zj is at most Lj−1 + 2j − 1. Thus, we obtain Lj = Lj−1 + 2j − 1.

2. Consider the case that |V (Pj) ∩ {bj0,1, r
j
0,1}| = 1. Then, by 1. we can construct a path Zj of length 2Lj =

2Lj−1 + 4j − 2 by joining two paths where one endpoint is bj0,1 which both do not contain vertex rj0,1.

Thus, lp(Mj) ≥ 2Lj . Next, assume towards a contradiction that |V (Pj) ∩ {bj0,1, r
j
0,1}| 6= 1.

First, consider that case |V (Pj) ∩ {bj0,1, r
j
0,1}| = 0. Then, the path Pj has length at most lp(Mj−1) =

2Lj−1 < 2Lj−1 + 4j − 2 = 2Lj , a contradiction to the existence of the path Zj .

Second, consider the case |V (Pj)∩{bj0,1, r
j
0,1}| = 2. LetQj be the unique subpath of Pj with endpoints bj0,1

and rj0,1. Without loss of generality, bj1,1 ∈ V (Qj) (and thus also rj1,1 ∈ V (Qj)). Since Mj is a mirror fully

binary tree the subpath Qj has length exactly 2j. Let M ′ be the mirror fully binary tree rooted at vertex bj1,1.

ThenM ′∩V (Pj) = V (Qj)\{b
j
0,1, r

j
0,1}. Furthermore,Pj can contain the edges {bj0,1, b

j
1,2} and {rj0,1, r

j
1,2},

and a longest path in the mirror fully binary tree rooted in bj1,2 of height j − 1. Thus, the length of Pj is at

most lp(Mj−1) + 2j + 2 = 2Lj−1 + 2j + 2 < 2Lj−1 + 4j − 2 = 2Lj , a contradiction to the existence of
the path Zj .

Hence, lp(Mj) = 2Lj .

On the negative side, we provide an OR-composition to exclude a polynomial kernel for the combination of almost all
considered parameters with the exception of vc(G) and fvs(G).

Theorem 12. None of the problems MCP, WMCP, and ZWMCP admits a polynomial kernel when parameterized
by d+ a+ lp(G) + ∆(G) + td(G), unless NP ⊆ coNP/poly, where td(G) denotes the treedepth of G.

Proof. Our strategy is as follows: First, we provide an OR-composition [5, 6] of 2q instances of MCP to WMCP

where ω(e) = 1 and c(e) ∈ (d + q)O(1) for each edge e. Second, we apply Lemma 1 exhaustively to transform the
constructed instance of WMCP to an equivalent instance of MCP. Clearly, the budgets a and d do not change. In this
transformation, each edge e with c(e) ≥ 2 is replaced by a path with c(e) edges. Hence, the maximum degree does

not increase. Furthermore, since c(e) ∈ (d + q)O(1), the length of the longest path does only increase by a factor

of (d + q)O(1) and the tree-depth is only increased by O(log(d + q)). Thus, this transformation preserves all five
parameters. It remains to show the statement for WMCP.

Now, we prove the no polynomial kernel result for WMCP by presenting an OR-composition from MCP.
Let I1, I2, . . . , I2q be instances of MCP with the same budgets d and a, the same maximum degree ∆(G), the
same length lp(G) of the longest path, and the same tree-depth td(G) for some integer q ≥ 3. Moreover,
let Ij := (Gj = (Vj , Ej), sj , tj , d, a).

We describe how to construct an instance I∗ = (G∗, s∗, t∗, c∗, ω∗, d∗, a∗) of WMCP in polynomial time, where d∗ +
a∗+lp(G∗)+∆(G∗)+ td(G∗) ∈ (d+a+lp(G)+∆(G)+ td(G)+ q)O(1) such that I∗ is a yes-instance of WMCP
if and only if Ij is a yes-instance of MCP for at least one j ∈ [1, 2q].

We add the following vertices and edges to the graph G∗:

• We add a copy of the graph Gj for each j ∈ [1, 2q] to G∗.

• Furthermore, we add 6q new vertices Zj := {z1j , . . . , z
6q
j } and we add the the edges {sj, zij} and {zij, tj} for

each j ∈ [1, 2q] and each i ∈ [1, 6q] to G∗.

• Next, we add a full binary tree B with height q to G∗. We denote the vertices on level ℓ as b1ℓ , . . . , b
2ℓ

ℓ for

each ℓ ∈ [0, q]. Hence, vertex biℓ for some ℓ ∈ [0, q−1] and some i ∈ [1, 2ℓ] has the neighbors b2i−1
ℓ+1 and b2iℓ+1

in the next level. Now, we identify vertex sj with the leaf bjq for each j ∈ [1, 2q] and we identify vertex s∗

with the root b10.

• Analogously, we add a full binary treeR of height q with the vertices r1ℓ , . . . , r
2ℓ

ℓ on level ℓ ∈ [0, q]. Similarly,

we identify vertex t∗ with the root r10 and identify vertex tj with the leaf rjq for each j ∈ [1, 2q].

19

Next, we set d∗ := 2q(d + 1) + d and a∗ := 7q + a. Afterwards, we set ω∗(e) := 1 for each edge e ∈ E(G∗). We
define the costs of each edge in E(G∗) as follows:

• For each e ∈ Ej for some j ∈ [1, 2q] we set c(e) := 1.

• We set c({sj , z
i
j}) := d∗ + 1 and c({zij, tj}) := d∗ + 1 for each j ∈ [1, 2q] and each i ∈ [1, 6q].

• For each edge e in one of the full binary trees we set c(e) := d+ 1.

This completes the construction of I∗. Now, we prove that the parameters a∗, d∗, ∆(G∗), and lp(G∗) are bounded

by (a+ d+∆(G) + lp(G) + q)O(1).

• Since d∗ = 2q(d+ 1) and a∗ = 7q + a, the statement is clear for a∗ and d∗.

• Each vertex in B ∪R except the leaves have degree at most three. Furthermore, each vertex zij for some j ∈
[1, 2q] and some i ∈ [1, 6q] as degree two and each vertex in Vj \ {sj, tj} has degree at most ∆(G). Note
that vertex sj and tj for each j ∈ [1, 2q] has degree at most 6q + 1 + ∆(G). Hence, the statement is true
for ∆(G∗).

• Observe that the graph obtained from contracting all vertices in Wj := V (Gj) ∪ {z1j , . . . , z
6q
j } in the

graph G∗ into one vertex for each j ∈ [1, 2q] is a mirror fully binary tree of height q. Observe that by
construction, lp(G∗(Wj)) ∈ O(lp(G)) for each j ∈ [1, 2q]. Thus, by Lemma 12 we obtain that lp(G∗) ∈
O(lp(G) · q2). Hence, the statement is true for lp(G∗).

• Since td(Gj) = td(G) for each j ∈ [1, 2q], the tree-depth of G′
j = G∗[Vj ∪ Zj] is at most td(G) + 2.

Hence, there is a directed tree Tj(Vj ∪ Zj , Aj) of depth at most td(G) + 2 and root sj , such that for each
edge {u,w} ∈ E(G′

j) either u is an ancestor of w in Tj or vice versa. We define a directed tree T ∗ =

(V (G∗), A∗) as follows. The tree Tj is a subtree of T ∗ for each j ∈ [1, 2q]. The vertex b10 is the root of T ∗

and for each ℓ ∈ [0, q−1] and each i ∈ [1, 2ℓ],A∗ contains the arcs (biℓ, r
i
ℓ), (r

i
ℓ, b

2i
ℓ+1), and (riℓ, b

2i+1
ℓ+1). Recall

that bjq = sj . Since Tj is a subtree of T ∗ it follows that for each edge {u,w} ∈ E(G∗) either u is an ancestor

of w in T ∗ or vice versa. Moreover, since T ∗ has depth at most 2q + td(G) we obtain the stated bound on
the tree-depth of G∗.

Next, we prove the correctness. That is, we show that at least one instance Ij has a solutionDj with cost at most d for
some j ∈ [1, 2q] if and only if I∗ has a solution D with cost at most d∗.

(⇒) Let Dj be a solution of Ij with cost at most d.

Let P s
j be the unique (s∗, sj)-path inB and let P t

j be the unique (tj , t
∗)-path inR. We setD := Dj∪E(P s

j)∪E(P t
j).

First, we show that c∗(D) ≤ d∗. Since B and R are full binary trees of height q, both paths P s
j and P t

j consist of

exactly q edges. Recall that each edge in both B and R has cost d + 1. Since |Dj| ≤ d and c(e) = 1 for each
edge e ∈ Ej , we obtain c∗(D) ≤ 2q(d+ 1) + d.

Second, we prove that there is no (s∗, t∗)-cut A ⊆ E(G∗) \D in G∗ with ω∗(A) ≤ a∗. To this end, we present a∗ +1
many (s∗, t∗) paths in G∗ whose edge sets may only intersect in D. Together with ω∗(e) = 1 for each edge e ∈
E(G∗) we then conclude that ω∗(M) ≥ a∗ + 1. We use the following notation: For two paths P1 = (v1, . . . , vk)
and P2 = (w1, . . . , wr) inG∗ wherewr = v1, we let P1 ⊸ P2 := (v1, . . . , vk = w1, . . . , wr) denote the merge of P1

and P2.

• Let P s,ℓ
j be the subpath of P s

j until level ℓ ∈ [0, q−1]. SinceB is a full binary tree, let biℓ+1 be the child of the

endpoint of P s,ℓ
j which is not contained in P s

j . The subpathP ℓ,t
j and the vertex riℓ+1 are defined similarly. We

consider the (s∗, t∗)-path P s,ℓ
j · (biℓ+1, b

2i
ℓ+2, . . . , b

2q−ℓ·i
q = s2q−ℓ·i, z

1
2q−ℓ·i, t2q−ℓ·i = r2

q−ℓ·i
q , . . . , r2iℓ+2, r

i
ℓ+1) ·

P ℓ,t
j . Since ℓ ∈ [0, q − 1], these are q paths in total.

• Observe that P s
j ⊸ (sj , z

i
j , tj) ⊸ P t

j is an (s∗, t∗)-path for each i ∈ [1, 6q]. Hence, these are 6q paths in
total.

20

• SinceDj is a solution of Ij , there are a+1 many (sj , tj)-paths P1, . . . , Pa+1 inGj whose edge set may only
intersect in Dj . SinceDj ⊆ D, P s

j ⊸ Pi ⊸ P t
j is an (s∗, t∗)-path for each i ∈ [1, a+1] such that Pi ⊆ Ej .

Hence, these are a+ 1 paths in total.

Thus, G∗ contains at least a + 1 many (s∗, t∗)-paths whose edge set may only intersect in D and hence I∗ is a
yes-instance of WMCP.

(⇐) Conversely, let D be a solution with cost at most d∗ of I∗. At the beginning, we prove the following statement.

Claim 5. For each solution D of I∗ with cost at most d∗, there exists a j ∈ [1, 2q] such that E(P s
j) ⊆ D for the

unique path P s
j from s∗ to sj and E(P t

j) ⊆ D for the unique path P t
j from t∗ to tj .

Proof. Assume towards a contradiction that this is not the case. We define Bs := E(B) ∩D and Rt := E(R) ∩D
as the set of protected edges in the binary trees B and R. Note that since c∗(e) = d + 1 for each edge e in the binary
trees B and R and d∗ = 2q(d + 1) + d, we have |Bs| + |Rt| ≤ 2q. By Zs we denote the connected component
of G∗[Bs] containing vertex s∗. Since |Bs| ≤ 2q, we conclude that Zs contains at most 2q + 1 vertices. Since B is a
binary tree, each vertex in B has degree at most three. Recall that only vertices in level q of B have neighbors outside
of B. We set X := EB(Zs, N(Zs)). Note that |X | ≤ 3 · (2q + 1) ≤ 6q + 3.

First, we consider the case that G∗[Bs] does not contain the path P s
j as an induced subgraph for any j ∈ [1, 2q]. We

setA := X and show thatM is an (s∗, t∗)-cut inG∗. Note that |M | ≤ 6q+3 ≤ a∗. Observe thatA avoidsD since Zs

is a connected component in G∗[D] and A contains only adjacent edges of Zs. Thus, A is an (s∗, t∗)-cut in G∗ that
avoidsD with ω∗(A) ≤ a∗, a contradiction. Analogously, we can prove thatG∗[Rt] is a path P t

j′ for some j′ ∈ [1, 2q].

Second, we consider the case that G∗[Bs] is a path P s
j for some j ∈ [1, 2q] and thatG∗[Rt] is a path P t

j′ for some j′ ∈
[1, 2q] and j 6= j′. Recall that c(e) = d+ 1 for each edge e in the binary trees B and R and that d∗ = 2q(d+ 1) + d.
Furthermore, note that |Bs| = q = |Rt| and that Zs contains q + 1 vertices. Thus, D contains no other edges of R

than Rt. In particular, e∗ := {rjq, r
⌈j/2⌉
q−1 } /∈ D. Recall that tj = rjq . We define A := {e∗} ∪ X . Clearly, A

avoids D. Since q ≥ 2, we conclude that |A| ≤ 1 + 6q + 1 ≤ 7q. It remains to show that A is an (s∗, t∗)-cut in G∗.
Since X ⊆ A, every (s∗, t∗)-path P ∗ in G∗ − X starts with P s

j followed by an (sj , tj)-path. Moreover, P ∗ has to

contains the edge e∗. Since e∗ ∈ A, A is indeed an (s∗, t∗)-cut in G∗ with |A| ≤ a∗ that avoids D, a contradiction. �

By Claim 5, let j ∈ [1, 2q] such that E(P s
j)∪E(P t

j) ⊆ D. We defineDj := D∩Ej . Observe that since c(e) = d+1

for each edge in both binary treesB andR, each edge incident with vertex zij′ for some j′ ∈ [1, 2q] and some i ∈ [1, 6q]

has cost d∗ + 1, and each edge in the copy of Gj′ for some j′ ∈ [1, 2q] has costs one, we conclude that |Dj | ≤ d. In
the following, we show that Dj is a solution of Ij .

Assume towards a contradiction that there is an (sj , tj)-cut Aj ⊆ Ej of size at most a in Gj that avoids Dj . We

set A := Aj ∪ {{sj, zij} | i ∈ [1, 6q]} ∪X , where X := EB(V (P s
j), N(V (P s

j))). Note that A avoids D. By the fact

that B is a binary tree of depth q, it follows that |M | ≤ |Mj |+ 6q + q ≤ a+ 7q = a∗.

Since X ⊆ A, every (s∗, t∗)-path P ∗ in G∗ −X starts with P s
j followed by an (sj , tj)-path. Moreover, since Aj is

an (sj , tj)-cut inGj and {{sj, zij} | i ∈ [1, 6q]} ⊆ A,A is an (s∗, t∗)-cut of capacity at most a∗ inG∗, a contradiction.
Hence, Dj is a solution with cost at most d of Ij and, thus, Ij is a yes-instance of WMCP.

References

[1] Abolfazl Abdolahzadeh, Massoud Aman, and Javad Tayyebi. Minimum st-cut interdiction problem. Comput.
Ind. Eng., 148:106708, 2020.

[2] Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondrej Pangrác, Heiko
Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM Trans. Algorithms, 7(1):4:1–4:27, 2010.

[3] Cristina Bazgan, Till Fluschnik, André Nichterlein, Rolf Niedermeier, and Maximilian Stahlberg. A more fine-
grained complexity analysis of finding the most vital edges for undirected shortest paths. Networks, 73(1):23–37,
2019.

[4] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J.
Comput., 25(6):1305–1317, 1996.

[5] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without
polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

21

[6] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition.
SIAM J. Discret. Math., 28(1):277–305, 2014.

[7] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-
42):3736–3756, 2010.

[8] Stephen R. Chestnut and Rico Zenklusen. Hardness and approximation for network flow interdiction. Networks,
69(4):378–387, 2017.

[9] Kelly J. Cormican, David P. Morton, and R. Kevin Wood. Stochastic network interdiction. Oper. Res., 46(2):184–
197, 1998.

[10] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal
Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[11] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer
Science. Springer, 2013.

[12] Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for weighted prob-
lems. J. Comput. Syst. Sci., 84:1–10, 2017.

[13] Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for kernelization lower
bounds. SIAM J. Discret. Math., 32(1):656–681, 2018.

[14] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[15] Jiong Guo and Yash Raj Shrestha. Parameterized complexity of edge interdiction problems. In Proceedings of
the Twentieth International Computing and Combinatorics Conference (COCOON ’14), volume 8591 of Lecture
Notes in Computer Science, pages 166–178. Springer, 2014.

[16] Gregory Z. Gutin, Mark Jones, and Bin Sheng. Parameterized complexity of the k-arc chinese postman problem.
J. Comput. Syst. Sci., 84:107–119, 2017.

[17] Eitan Israeli and R. Kevin Wood. Shortest-path network interdiction. Networks, 40(2):97–111, 2002.

[18] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited.
J. Comput. Syst. Sci., 79(1):39–49, 2013.

[19] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science.
Springer, 1994.

[20] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via treewidth reduction.
ACM Trans. Algorithms, 9(4):30:1–30:35, 2013.

[21] J Cole Smith, Mike Prince, and Joseph Geunes. Modern network interdiction problems and algorithms. In
Handbook of combinatorial optimization, pages 1949–1987. Springer New York, 2013.

[22] R.Kevin Wood. Deterministic network interdiction. Math. Comput. Model., 17(2):1–18, 1993.

[23] Rico Zenklusen. Matching interdiction. Discret. Appl. Math., 158(15):1676–1690, 2010.

22

	1 Introduction
	2 Preliminaries
	2.1 Graph parameter
	2.2 Basic Observations

	3 NP-hardness and Parameterization by the Defender Budget d
	4 Parameterization by the Attacker Budget
	5 Parameterization by Vertex Cover Number
	6 On Problem Kernelization
	6.1 A Polynomial Kernel for vc+a
	6.2 Limits of Problem Kernelization

