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Abstract. In this paper, we show that Bandwidth is hard for the com-
plexity class W [t] for all t ∈ N, even for caterpillars with hair length at
most three. As intermediate problem, we introduce the Weighted Path
Emulation problem: given a vertex-weighted path PN and integer M ,
decide if there exists a mapping of the vertices of PN to a path PM , such
that adjacent vertices are mapped to adjacent or equal vertices, and such
that the total weight of the pre-image of a vertex from PM equals an inte-
ger c. We show that Weighted Path Emulation, with c as parameter,
is hard for W [t] for all t ∈ N, and is strongly NP-complete. We also show
that Directed Bandwidth is hard for W [t] for all t ∈ N, for directed
acyclic graphs whose underlying undirected graph is a caterpillar.

Keywords: Bandwidth · Parameterized complexity · Weighted path
emulation · W-hierarchy · Caterpillars

1 Introduction

The Bandwidth problem is one of the classic problems from algorithmic graph
theory. In this problem, we are given an undirected graph G = (V,E) and integer
k, and want to find a bijection from V to {1, 2, . . . , n}, with n = |V |, such that
for each edge {v, w} ∈ E: |f(v) − f(w)| ≤ k. The problem was proved to be
NP-complete in 1976 by Papadimitriou [21]. Later, several special cases were
proven to be NP-complete. In 1986, Monien [19] showed that Bandwidth stays
NP-complete when the input is restricted to caterpillars with hair length at most
three. A caterpillar is a tree where all vertices of degree at least three are on the
same path; the hairs are the paths attached to this central path, and have here
at most three vertices.

In this paper, we consider the parameterized complexity of this problem.
We consider the standard parameterization, i.e., we ask for the complexity of
Bandwidth as a function of n and k. This problem is long known to belong to
XP: already in 1980, Saxe [22] showed that Bandwidth can be solved in time
f(k) · nk+1 for some function f ; this was later improved to f(k) · nk [17].
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In 1994, Bodlaender et al. [5] reported that Bandwidth is W [t]-hard for
all positive integers t, even when we restrict the input to trees. However, the
proof of this fact was so far never published. In the current paper, we give the
proof of a somewhat stronger result: Bandwidth is W [t]-hard for all positive
integers t, even when we restrict the input to caterpillars with maximum hair
length three. A sketch of a proof that Bandwidth is W [t]-hard for all positive
integers t for general graphs appears in the monograph by Downey and Fellows
[10]. In recent years, Dregi and Lokshtanov [12] gave a proof that Bandwidth
is W [1]-hard for trees of pathwidth at most two, and showed that there does not
exist an algorithm for Bandwidth on such trees with running time of the form
f(k)no(k) assuming that the Exponential Time Hypothesis holds.

Our proof uses techniques from the NP-hardness proof for Bandwidth on
caterpillars by Monien [19]. In particular, one gadget in the proof is identical
to a gadget from Moniens proof. Also, the proof is inspired by ideas behind the
proof of the result reported in [5], and a proof for W [t]-hardness of a scheduling
problem for chains of jobs with delays, which was obtained by Bodlaender and
van der Wegen [7].

To obtain our main result, we obtain an intermediate result that is also inter-
esting on itself. We consider a variation of the notion of uniform emulation. The
notion of emulation was introduced by Fishburn and Finkel [15], to describe the
simulation of processor networks on smaller processor networks. An emulation
of a graph G = (V,E) on a graph H = (W,F ) is a function f : V → W , such
that for each edge {v, w} ∈ E, f(v) = f(w) or {f(v), f(w)} ∈ F , i.e., neigh-
boring vertices are mapped to the same or neighboring vertices. An emulation
is uniform when each vertex in H has the same number of vertices mapped
to it, i.e., there is a constant c, called the emulation factor, such that for all
w ∈ W : |f−1(w)| = c. An analysis of the complexity to decide whether for given
G and H, there exists a uniform emulation was made by Bodlaender and van
Leeuwen [8], and Bodlaender [2]. In particular, in [2], the complexity of deciding
if there is a uniform emulation on a path or cycle was studied. It was shown
that Uniform Emulation on a Path belongs to XP, parameterized by the
emulation factor c, belongs to XP for connected graphs and is NP-complete,
even for c = 4, when we allow that G is not connected. Bodlaender et al. [5]
claimed that Uniform Emulation on a Path is hard for W [t] for all positive
integers t. In this paper, we show a variation of this result, where the input
is a weighted path. We name the problem of finding an uniform emulation of a
weighted path to a path Weighted Path Emulation. It is straightforward to
modify the algorithm from [2] to weighted graphs. This shows that Weighted
Path Emulation belongs to XP, with the emulation factor as parameter.

There is a sharp distinction between the complexity of the Bandwidth prob-
lem for caterpillars with hairs of length at most two, and caterpillars with hairs
of length three (or larger). Assmann et al. [1] give a characterization of the
bandwidth for caterpillars whose hair length is at most two, and show that one
can compute a layout of optimal width in O(n log n) time. This contrasts with
the NP-hardness and fixed parameter intractability for caterpillars with hairs of
length three, by Monien [19] and this paper. For related results, see [18,20,23].
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Very recently, the results in the paper were strengthened, and it was shown
that Bandwidth for caterpillars of hair length at most three, and Weighted
Path Emulation are complete for a class of parameterized problems called
XNLP. For a brief discussion of these results, see Sect. 6.

This paper is organized as follows. In Sect. 2, we give a number of definitions.
In Sect. 3, we discuss hardness for the Weighted Path Emulation problem.
Section 4 gives the main result: hardness for the bandwidth of caterpillars with
hairs of length at most three. In Sect. 5, we discuss a variation of the proof, to
obtain that Directed Bandwidth is hard for W [t] for all positive integers t ∈
N, for directed acyclic graphs whose underlying undirected graph is a caterpillar
with hair length one. Some final remarks are made in Sect. 6. In this extended
abstract, we describe the intuition behind the proofs; the precise proofs can be
found in the version of the paper on arXiv [3].

2 Definitions

All graphs in this paper are considered to be simple and undirected. We assume
that the reader is familiar with standard notions from graph theory and fixed
parameter complexity (see e.g. [10,11,16]).

Pn denotes the path graph with n vertices. We denote the vertices of Pn by
the first n positive integers, 1, 2, . . . , n; the edges of Pn are the pairs {i, i + 1}
for 1 ≤ i < n.

A caterpillar is a tree such that there is a path that contains all vertices
of degree at least three. A caterpillar can be formed by taking a path PN (the
spine), and then attaching to vertices of PN zero or more paths. These latter
paths are called the hairs of the caterpillar.

A linear ordering of a graph G = (V,E) is a bijective function f : V →
{1, 2, . . . , n}. The bandwidth of a linear ordering f of G is max{v,w}∈E |f(v) −
f(w)|. The bandwidth of a graph is the minimum bandwidth over its linear
orderings.

Let G = (V,E) be an undirected graph, and w : V → Z+ be a function that
assigns to each vertex a positive integer weight. An emulation of G on a path
PM is a function f : V → {1, 2, . . . ,M}, such that for all edges {v, w} ∈ E,
|f(v) − f(w)| ≤ 1. An emulation f : V → {1, 2, . . . ,M} is said to be uniform, if
there is an integer c, such that for all i ∈ {1, 2, . . . ,M},

∑
v:f(v)=i w(v) = c. c is

called the emulation factor.
For a directed acyclic graph G = (V,A), the directed bandwidth of a topologi-

cal ordering of G is max(v,w)∈A f(w)− f(v); the directed bandwidth of a directed
acyclic graph G is the minimum directed bandwidth over all topological order-
ings of G.

If we have a directed graph G = (V,A), the underlying undirected graph of
G is the undirected graph G′ = (V,E), with E = {{v, w} | (v, w) ∈ A}; i.e., we
forget the direction of edges; if we obtain a pair of parallel edges, we take only
one.

We consider the following parameterized problems.
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Bandwidth
Given: An undirected graph G = (V,E), integer k.
Parameter: k.
Question: Is the bandwidth of G at most k?

Directed Bandwidth
Given: A directed acyclic graph G = (V,E), integer k.
Parameter: k.
Question: Is the directed bandwidth of G at most k?

Weighted Path Emulation
Given: Integers N , M , c, weight function w : {1, 2, . . . , N} → Z+, such that
∑N

i=1 w(i)/M = c ∈ Z+.
Parameter: c.
Question: Is there a uniform emulation f of PN with weight function w on
PM?

Note that in the problem statement above, c is the emulation factor, i.e., we
have for a solution f that for each j, 1 ≤ j ≤ M ,

∑
i:f(i)=j w(i) = c.

A Boolean formula is said to be t-normalized, if it is the conjunction of the
disjunction of the conjunction of . . . of literals, with t alternations of AND’s and
OR’s. So, a Boolean in Conjunctive Normal Form is 2-normalized. Downey and
Fellows [9] consider the following parameterized problem; this is the starting
point for our reductions.

Weighted t-Normalized Satisfiability
Given: A t-normalized Boolean formula F and a positive integer k ∈ Z+.
Parameter: k
Question: Can F be satisfied by setting exactly k variables to true?

Theorem 1 (Downey and Fellows [9]). Weighted t-Normalized Satis-
fiability is W [t]-complete.

3 Hardness of Weighted Path Emulation

Our first main result is the following; the proof can be found in the full paper [3].

Theorem 2. Weighted Path Emulation is W [t]-hard for all positive inte-
gers t.

Suppose we are given a t-normalized Boolean expression F over n variables,
say x1, . . . , xn, and integer k. We let t′ be the number of nested levels of dis-
junction. We consider the problem to satisfy F by making exactly k variables
true.

We will define a path PN with a weight function w : {1, . . . , N} → Z+, an
emulation factor c, and an integer M , such that PN has a uniform emulation
on a path PM if and only if F can be satisfied by setting exactly k variables to
true. Before giving the proof, we give a high level overview of some main ideas
of the proof.
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3.1 Intuition and Techniques

In this subsection, we give some ideas behind the construction. The precise
construction and formal proofs are given in the next subsection.

We assume we have given a t-normalized Boolean formula F . We transform
the formula to a weighted path PN , such that PN has a uniform emulation on
PM with c the emulation factor, if and only if F can be satisfied by setting
exactly k variables to true.

We can view F as a tree, with internal nodes marked with disjunction or
conjunction, and each leaf with a literal, then we alternatingly have a level in
the tree with disjunctions, and with conjunctions. We set t′ to be the number of
levels with disjunctions.

The path PN is formed by taking, in this order, the following: a part called
the ‘floor’, k ‘variable parts’, t′ ‘disjunction parts’, and a ‘filler path’. t′ is the
number of levels in the formula tree with disjunctions, and for each ‘level’ of
disjunction we have one disjunction part. E.g., if F is in conjunctive normal
form, then t′ = 1.

The floor has M vertices, each with a weight that is larger than c/2. Thus, we
cannot map two floor vertices to the same element of PM , and thus, can assume,
without loss of generality, that the ith floor vertex is mapped to i. The different
weights for floor vertices help to build the further gadgetry of the construction.

The variable and disjunction parts are forced to start at M , then move to
1, and then move (possibly with some ‘zigzagging’) back to M , where then the
next part starts. This is done by giving each part one vertex of large weight
that only can fit at vertex 1, and another vertex of even larger weight, that only
can fit at vertex M . These large weight vertices are called left and right turning
points. See Fig. 1 for an illustration of the construction.

Fig. 1. Impression of a first part of the construction. The ith floor vertex is mapped
to i; after this, the path then moves from M to 1 and back, with left turning points
(LTR) mapped to 1, and right turning points (RTP) mapped to M . The picture shows
the floor and first two variable parts.

We have k variable parts. Each models one variable that is set to true. We
start with a left turning point, M − 2 vertices of weight one, and a right turn-
ing point: this is to move back from M to 1. Then, we have n − 1 vertices of
weight one, M − 2n − 2 ‘heavy’ vertices, and again n − 1 vertices of weight one.
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The heavy vertices are mapped consecutively (except possibly at the first n and
last n positions); the weight one vertices before and after the heavy vertices
allows us to shift the sequence of heavy vertices in n ways—each different such
shift sets another variable to true. By using two different heavy weights, com-
bined with weight settings for floor vertices and vertices from disjunction parts,
we can check that all variable parts select a different variable to be true (which
is done at positions n + 2, . . . , 2n + 1), and that F is satisfied (which is done at
positions 2n + 2, . . . , M − n − 2).

We have for each level in the formula tree with disjunctions a disjunction
part. Thus, we have t′ disjunction parts. With help of ‘anchors’ (vertices of large
weight that can go only to one specific position), we can ensure that a subpart
for a disjunction has to be mapped to the part of the floor that corresponds with
this disjunction. Such a subpart consist of a path with weight one vertices, a path
with 3m(F ′) selecting vertices (which have larger weight), and another path with
weight one vertices. Now, each term in the disjunction has an associated interval
of size m(F ′) and between these intervals we have m(F ′) elements. Then, we
can show that the selecting vertices must cover entirely one of the intervals of
a term—this corresponds to that term being satisfied. See Fig. 2 below. Say
F ′ = F1 ∨F2 ∨F3. In the illustration we see the intervals assigned to F1, F2, and
F3, and the space between, before and after these. Each of the seven intervals
has size m(F ′). We can show that the 3m(F ′) selecting vertices must be mapped
to consecutive vertices between the left and right anchor of F ′, and thus these
cover the interval of each least one Fi entirely.

Fig. 2. Illustration: consecutive selecting vertices cover the interval of one term

Heavy vertices of variable parts come in two weights: cv and cc + cu. This is
used for checking that F is satisfied. As an example, consider a negative literal
¬xj in F . We have one specific position on PM , say i, that checks whether this
literal is satisfied, in case its satisfaction contributes to the satisfaction of F—
that case corresponds to having a selecting vertex mapped to i for each level of
disjunction. Now, the weight of the floor vertex mapped to i is such that when
this floor vertex and all selecting vertices are mapped to i, then we can only fit k
heavy vertices of weight cv here; if at least one of these heavy vertices has weight
cv + cu, then the total weight mapped to i exceeds c. If this happens, then this
heavy vertex belongs to a variable part which corresponds to setting xi to be
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true; thus, this enforces that xi is false. A somewhat similar construction is used
for positive literals.

The last part of PN is the filler path. This is a long path with vertices of
weight one. This is used to ensure that the mapping becomes uniform: if the
total weight of vertices of floor, variable part, and disjunction parts vertices
mapped to i is zi, then we map c − zi (consecutive) vertices of the filler path to
i. See Fig. 3 for an illustration.

Fig. 3. Illustration of the mapping of the filler path. The black area represents the
weights of floor, variable part and disjunction part vertices mapped to the element
of PM

We need in the proof for Bandwidth actually a slightly different result (for
an easier proof), namely, we require that the first vertex of PN is mapped to M .
From the proof of Theorem 2 we also can conclude the next result.

Corollary 1. Weighted Path Emulation with f(1) = 1 and Weighted
Path Emulation with f(1) = M are W [t]-hard for all positive integers t.

We also have the following corollary; see also [3].

Corollary 2. Weighted Path Emulation is strongly NP-complete.

4 Hardness of Bandwidth of Caterpillars

The main result of this section is the following theorem. Many details of the
proof can be found in [3].

Theorem 3. Bandwidth is W [t]-hard for all positive integers t, when
restricted to caterpillars with hair length at most three.

To prove Theorem 3, we transform from the Weighted Path Emulation
with f(1) = M problem.

Let PN and PM be paths with weight function w : {1, . . . , N} → {1, . . . , c},
and c =

∑N
i=1 w(i)/M the emulation factor. Thus,

∑N
i=1 w(i) = cM . Recall that

we parameterized this problem by the value c.
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Assume that c > 6; otherwise, obtain an equivalent instance by multiplying
all weights by 7.

Let b = 12c + 6. Let k = 9bc + b. Note that k is even. We give a caterpillar
G = (V,E) with hair length at most three, with the property that PN has a
uniform emulation on PM , if and only if G has bandwidth at most k.

G is constructed in the following way:

– We have a left barrier: a vertex p0 which has 2k − 1 hairs of length one, and
is neighbor to p1.

– We have a path with 5M − 3 vertices, p1, . . . , p5M−3. As written above, p1 is
adjacent to p0. Each vertex of the form 5i − 2 or 5i (1 ≤ i ≤ M − 1) receives
2k − 2b hairs of length one. See Fig. 4. We call this part the floor.

– Adjacent to vertex p5M−3, we add the turning point from the proof of
Monien [19]. We have vertices va = p5M−3, vb, vc, vd, ve, vf , vg, which
are successive vertices on a path. I.e., we identify one vertex of the turning
point (va) with the last vertex of the floor p5M−3. To vc, we add 3

2 (k − 2)
hairs of length one; to vd, we add k hairs of length three, and to vf we add
3
2 (k − 2) hairs of length one. Note that this construction is identical to the
one by Monien [19]; vertex names are chosen to facilitate comparison with
Moniens proof. See Fig. 5.

– Add a path with 6N − 5 vertices, say y1, . . . y6n−5, with y1 adjacent to vg. To
each vertex of the form y6i−5, add 9b · w(i) hairs of length one. We call this
part the weighted path gadget.

– Note that the number of vertices that we defined so far and that is not part of
the turning point equals 2k+5M−3+2(M−1)(2k−2b)+6N−5+9b

∑N
i=1 wi =

5M + 4Mk − 2k − 4Mb + 4b + 9bcM . Let this number be α. One easily sees
that α ≤ (5M − 2)k − 1. Add a path with (5M − 2)k − 1 − α vertices and
make it adjacent to y6n. We call this the filler path.

Fig. 4. First part of the caterpillar

Let G be the remaining graph. Clearly, G is a caterpillar with hair length
at most three. It is interesting to note that the hair lengths larger than one are
only used for the turning point.

The correctness of the construction follows from the following lemma. The
proof can be found in the full paper [3].

Lemma 1. PN has a uniform emulation g on PM with emulation factor c with
f(1) = M , if and only if the bandwidth of G is at most k.
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Fig. 5. The Turning Point, after Monien [19]

Fig. 6. Initial part of the floor, with left barrier and two gaps

Some Intuition. We sketch some ideas behind the proof. Suppose we have a linear
ordering g of G with bandwidth at most k. We have a number of observations.

– p0 with hairs form a blockage (called the left barrier, in the sense that these
must either entirely at the left side or entirely at the right side of the linear
ordering.

– In the same way, the turning point forms a blockage; the proof of this is due
to Monien [19]. Without loss of generality, we can assume p0 is at the left
side, the turning point is at the right side.

– By considering the total number of vertices, we can show that the successive
vertices pi, pi+1 always have distance k − 1 or k, with g(pi+1) = g(pi) + k or
g(pi+1) = g(pi) + k − 1.

– Vertices p3, p5, p8 have ‘many’ hairs: these fills most of the nearby positions.
E.g., in intervals [g(p2), g(p3)], [g(p3), g(p4)], [g(p4), g(p5)], and [g(p5), g(p6)]
we have many hairs of the vertices pi, while the interval [g(p6), g(p7)] has not.
So, every fifth interval has ‘more space’, which we call a gap. See Fig. 6 for
the initial part of the floor with two gaps.

– Vertices of the form y6i−5 also have a large number of hairs. We must
have that most of these hairs must be mapped to intervals of the form
[g(p5j+1), g(p5j+2)]. In such a case, map the ith vertex of PN to the jth
vertex of PM . Let f be the resulting mapping

– An interval of the form [g(p5j+1), g(p5j+2)] (and the neighboring intervals,
after taking hairs of the floor into account) cannot fit 9b(c + 1) hairs of the
weighted path gadget. This implies that the total weight of all vertices mapped
by f to j is bounded by c; and, as we have M such intervals, must be exactly
c. This shows uniformity of the mapping f .

– As discussed, a vertex of the form y6i−5 has hairs mapped to an interval
[g(p5j+1), g(p5j+2)]. Thus, when we map i to j, y6i−5 is mapped to an integer
between g(p5j) and g(p5j+3). Then, y6i+1 is mapped to an integer between
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g(p5j−6) and g(p5j+9)—as there is a path with six edges from y6i−5 to y6i+1,
they can be mapped at most six intervals apart. This shows that there are
hairs of y6i+1 that are mapped to the interval [g(p5j−5), g(p5j−4)] or to the
interval [(g(p5j+1), g(p5j+2)] or to the interval [g(p5j+7), g(p5j+8)]. And thus,
vertex i + 1 from PN is mapped to j − 1, j or j + 1. This shows that the
mapping f is an emulation.

An illustration of the construction of a linear ordering, given a uniform emu-
lation is given in Fig. 7.

Fig. 7. Illustration of part of the construction. Shown are P4 with successive vertex
weights 2, 1, 2, 1; a uniform emulation on P3 with emulation factor 2; a layout of a
part of G.

As the construction of the caterpillar G can be done in polynomial time,
given M , N and w, the main result of this section now follows.

Theorem 4. Bandwidth for caterpillars with hair length at most three is W [t]-
hard for all t ∈ N.

5 Directed Bandwidth

A minor variation of the proof of Theorem 3 gives the following result. The
details can be found in the full paper [3].

Theorem 5. Directed Bandwidth is hard for W [t] for all positive integers
t, when restricted to directed acyclic graphs whose underlying undirected graph
is a caterpillar with hair length at most one.

6 Conclusions

In this paper, we showed that Bandwidth is hard for the complexity class
W [t] for all positive integers t ∈ N , even when the input graph is a caterpillar
with hairs of length at most three. The proof uses some techniques and gad-
gets from the NP-completeness proof of Bandwidth for this class of graphs by
Monien [19]. Monien also shows NP-completeness of Bandwidth for caterpillars
of maximum degree three (with arbitrary hair length). This raises the question
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whether Bandwidth for caterpillars with maximum degree three is W [t]-hard
for all t. We conjecture that this is the case; perhaps with a modification of our
proof such a result can be achieved?

The intermediate result of the W [t]-hardness of Weighted Path Emula-
tion is of independent interest. We used this result as a stepping stone for our
main result, but expect that the result may also be useful for proving hardness
for other problems as well.

It is unlikely that Bandwidth belongs to W [P ]. In [14], Fellows and Rosa-
mond describe an argument, due to Hallett, that gives the intuition behind
the conjecture that Bandwidth does not belong to W [P ]. From the works of
Bodlaender et al. [4] and Drucker [13], it follows that problems that are AND-
compositional do not have a polynomial kernel unless NP ⊆ coNP/poly. The
intuition behind this methodology is that such a polynomial kernel for an AND-
compositional problem would give an unlikely strong compression of informa-
tion. While Bandwidth is not in FPT, assuming W [t] �⊆ FPT , for some t,
and thus has no kernel (of any size), it is AND-compositional. If Bandwidth
would belong to W [P ], it would have a certificate of O(k log n) bits (namely, the
indices of the variables that are set to true), and it is unlikely that an AND-
compositional problem has such a small certificate. We thus can formulate the
following conjecture, due to Hallett.

Conjecture 1 (Hallett, see also [14]). Bandwidth does not belong to W [P ],
unless NP ⊆ coNP/poly.

Very recently, the author showed with Groenland, Nederlof and Swennen-
huis [6] that Weighted Path Emulation is complete for the class of problems
that can be solved with a non-deterministic algorithm that uses f(k)nc time and
f(k) log n space (f a computable function, c a constant). This class is known as
N [fpoly, f log] and denoted as XNLP in [6]. From the observation that the
transformation described in Sect. 4 can be carried out in logarithmic space, it
follows that Bandwidth for caterpillars with hair length at most three is also
XNLP-complete. We thus also have that Bandwidth does not belong to W [P ]
unless W [P ] ⊆ XNLP .

Finally, we conjecture that with modifications of the techniques from this
paper, it is possible to show for more problems hardness for the W [t]-classes.
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