
On 3-Coloring of (2P4, C5)-Free Graphs∗†

Vít Jelínek1, Tereza Klimošová1, Tomáš Masařík1,2,3,
Jana Novotná1,2, and Aneta Pokorná1

1Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
2University of Warsaw, Poland

3Simon Fraser University, Burnaby, Canada
{jelinek, pokorna}@iuuk.mff.cuni.cz

{tereza,masarik,janca}@kam.mff.cuni.cz

Abstract
The 3-coloring of hereditary graph classes has been a deeply-researched problem in the

last decade. A hereditary graph class is characterized by a (possibly infinite) list of minimal
forbidden induced subgraphs H1, H2, . . .; the graphs in the class are called (H1, H2, . . .)-free.
The complexity of 3-coloring is far from being understood, even for classes defined by a few
small forbidden induced subgraphs. For H-free graphs, the complexity is settled for any H on
up to seven vertices. There are only two unsolved cases on eight vertices, namely 2P4 and P8.
For P8-free graphs, some partial results are known, but to the best of our knowledge, 2P4-free
graphs have not been explored yet. In this paper, we show that the 3-coloring problem is
polynomial-time solvable on (2P4, C5)-free graphs.

1 Introduction
Graph coloring is a notoriously known and well-studied concept in both graph theory and theo-
retical computer science. A k-coloring of a graph G = (V,E) is defined as a mapping c : V →
{1, . . . , k} which is proper, i.e., it assigns distinct colors to u, v ∈ V if uv ∈ E. The k-coloring
problem asks whether a given graph admits a k-coloring. For any k ≥ 3, the k-coloring is a well-
known NP-complete problem [27]. We also define a more general list-k-coloring where each vertex
v has a list P (v) of allowed colors such that P (v) ⊆ {1, . . . , k}. In that case, the coloring function
c, in addition to being proper, has to respect the lists, that is, c(v) ∈ P (v) for every vertex v.

A graph class is hereditary if it is closed under vertex deletion. It follows that a graph class
G is hereditary if and only if G can be characterized by a unique (not necessarily finite) set HG
of minimal forbidden induced subgraphs. Special attention was given to hereditary graph classes
where HG contains only one or only a very few elements. In such cases, when {H} = HG , or
{H1, H2, . . .} = HG , we say that G ∈ G is H-free, or (H1, H2, . . .)-free, respectively. We let Pt

denote the path on t vertices, and C` the cycle on ` vertices. We let H denote the complement of
a graph H. For two graphs H1 and H2, we let H1 +H2 denote their disjoint union, and we write
kH for the disjoint union of k copies of a graph H.

∗V. Jelínek was supported by project 18-19158S of the Czech Science Foundation. T. Klimošová is supported
by the grant no. 19-04113Y of the Czech Science Foundation (GAČR) and the Center for Foundations of Modern
Computer Science (Charles Univ. project UNCE/SCI/004). T. Masařík received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant
Agreement 714704. He completed a part of this work while he was a postdoc at Simon Fraser University in Canada.
J. Novotná and A. Pokorná were supported by SVV-2017-260452 and GAUK 1277018.

†An extended abstract of this paper has been accepted to the proceedings of International Workshop on Graph-
Theoretic Concepts in Computer Science (WG) 2021.

1

ar
X

iv
:2

01
1.

06
17

3v
2

 [
cs

.D
S]

 1
0

M
ay

 2
02

1

In recent years, a lot of attention has been paid to determining the complexity of k-coloring
of H-free graphs. Classical results imply that for every k ≥ 3, k-coloring of H-free graphs is NP-
complete if H contains a cycle [14] or an induced claw [24, 30]. Hence, it remains to consider the
cases where H is a linear forest, i.e., a disjoint union of paths. The situation around complexity of
(list) k-coloring on Pt-free graphs where k ≥ 4 has been resolved completely. The cases k = 4, t ≥ 7
and k ≥ 5, t ≥ 6 are NP-complete [25] while cases for k ≥ 1, t = 5 are polynomial-time solvable [23].
In fact, k-coloring is polynomial-time solvable on sP1 + P5-free graphs for any s ≥ 0 [13]. The
borderline case where k = 4, t = 6 has been settled recently. There the 4-coloring problem (even
the precoloring extension problem with 4 colors) is polynomial-time solvable [33] while the list
4-coloring problem is NP-complete [18]. In 2021, Hajebi, Li, and Spirkl show that 5-coloring on
2P4-free graphs is NP-complete [21].

Now, we move our focus towards the complexity of the 3-coloring problem, which was less well
understood, in spite of the amount of the research interest it received in the past years. However,
a considerable progress has been made in 2020; a quasi-polynomial algorithm running in time
nO(log2(n)) on n-vertex Pt-free graphs (t is a constant) was shown by Pilipczuk et al. [31], extending
a breakthrough of Gartland and Lokshtanov [15]. In the realms of polynomiality, Bonomo et
al. [1] found a polynomial-time algorithm for P7-free graphs. Klimošová et al. [28] completed the
classification of 3-coloring of H-free graphs, for any H on up to 7 vertices. These results were
subsequently extended to P6 + rP3-free graphs, for any r ≥ 0 [5]. There are only two remaining
graphs on at most 8 vertices, namely P8 and 2P4, for which the complexity of 3-coloring is still
unknown.

Algorithms for subclasses of Pt-free graphs which avoid one or more additional induced sub-
graphs, usually cycles, have been studied. They might be a first step in the attempt to settle the
case of Pt-free graphs. This turned out to be the case for 3-coloring of P7-free graphs (as can be
seen from preprints [2, 7, 8] leading to [1]) and 4-coloring of P6-free graphs [6].

Note that the problem of 4-coloring is NP-complete even when some (Pt, C`)-free graphs are
considered when t ≥ 7. Hell and Huang [22] and Huang et al. [26] settled many NP-complete cases
of this type. These results, in combination with the polynomiality of P6-free case, leave open only
the following cases: (P7, C7)-, (P8, C7)-, and (Pt, C3)-free graphs, for 7 ≤ t ≤ 21.

Chudnovsky and Stacho [11] studied the problem of 3-coloring of P8-free graphs which addi-
tionally avoid induced cycles of two distinct lengths; specifically, they consider graphs that are
(P8, C3, C4)-free, (P8, C3, C5)-free, and (P8, C4, C5)-free. For the first two cases, they show that
all such graphs are 3-colorable. For the last one, they provide a complete list of 3-critical graphs,
i.e., the graphs with no 3-coloring such that all their proper induced subgraphs are 3-colorable.
Independently, using a computer search, Goedgebeur and Schaudt [16] showed that there are only
finitely many 3-critical (P8, C4)-free graphs. In fact, 3-coloring is polynomial-time solvable on
(Pt, C4)-free graphs for any t ≥ 1 [19].

The situation concerning 2P4 or P8 is still far from being determined when two forbidden
induced subgraphs are considered; in particular, it is not known whether (P8, C3)-free, (P8, C5)-
free, (2P4, C3)-free, or (2P4, C5)-free graphs can be 3-colored in polynomial time1. This is in
contrast with the algorithm for (P7, C3)-free graphs [3] which is considerably simpler than the one
for P7-free graphs [1]. Recently, Rojas and Stein [32] approached the problem by showing that
for any odd t ≥ 9, there exists a polynomial-time algorithm that solves the 3-coloring problem
in Pt-free graphs of odd girth at least t − 2. In particular, their result implies that 3-coloring is
polynomial-time solvable for (P9, C3, C5)-free graphs.

Freshly, a similar question was resolved in the case where, instead of a cycle, a 1-subdivision
of K1,s (a star with s leaves), denoted as SDK1,s, is considered. Chudnovsky, Spirkl, and Zhong
have shown that the class of (SDK1,s, Pt)-free graphs is list-3-colorable in polynomial time for
any s, t ≥ 1 [10]. For other related results and history of the problem, please consult a recent
survey [17].

In this paper, we resolve one of the remaining open problems mentioned above, which considers
1First two cases were explicitly mentioned as open in [17] and [32], the latter two cases are open to the best of

our knowledge.

2

2P4-free graphs, as we will describe a polynomial-time algorithm for 3-coloring of (2P4, C5)-free
graphs. To the best of our knowledge, this is a first attempt to attack the 3-coloring of 2P4-free
graphs.

Theorem 1.1. The 3-coloring problem is polynomial-time solvable on (2P4, C5)-free graphs.

To prove our result, we will make use of some relatively standard techniques. Let ω(G) be
the size of the largest clique of graph G. We use a seminal result of Grötschel, Lovász, and
Schrijver [20] that shows the k-coloring problem on perfect graphs, i.e., graphs where each induced
subgraph G′ is ω(G′)-colorable, can be solved in polynomial time. Perfect graphs are characterized
by the strong perfect graph theorem [9] as the graphs that have neither odd-length induced cycles
nor complement of odd-length induced cycles on at least five vertices.

As K4 and C7 graphs are not 3-colorable, we can assume that our graph is (2P4, C5, C7,K4)-
free. As K4 ⊆ C` whenever ` ≥ 8 and 2P4 ⊆ C` whenever ` ≥ 10, it follows that either the
graph is perfect, or it contains C7 or C9. In the first case, we are done by the aforementioned
polynomial-time algorithm. For the latter cases, we divide the analysis into two further subcases.
First, we suppose that the graph is (2P4, C5, C7, C7,K4)-free and therefore it must contain C9. We
analyze this case in Subsection 2.1. Second, we suppose that graph contains C7 and we analyze
this case in Subsection 2.3.

We will exploit the fact that once we find an induced P4, the vertices that are not adjacent to
it must induce a P4-free graph (also known as cograph). Such graphs were among the first H-free
graphs studied, and have many nice properties, e.g., any greedy coloring gives a proper coloring
using the least number of colors [4]. We will make use of a slightly stronger statement that handles
the list-3-coloring problem.

Theorem 1.2 ([17]). The list-3-coloring problem on P4-free graphs can be solved in polynomial
time.

The 3-coloring algorithm that we develop to prove Theorem 1.1 cannot be directly extended
to solve the more general list-3-coloring problem, since it uses the 3-coloring algorithm for perfect
graphs to deal with graphs avoiding C7 and C9. However, apart from this one case, the algorithm
works with the more general setting of list-3-coloring. In fact, we use reductions of lists as one of
our base techniques. After several branching steps with polynomially many branches and suitable
structural reductions of the original graph G, the algorithm will transform a 3-coloring instance of
a (2P4, C5)-free graph G to a set of polynomially many heavily structured list-3-coloring instances.
These structured instances can then be encoded by a 2-SAT formula, whose satisfiability is solvable
in linear time [29].

2 Proof of Theorem 1.1
We are given a (2P4, C5)-free graph G = (V,E), and our goal is to determine whether it is
3-colorable. We will present an algorithm that solves this problem in polynomial time. The
algorithm begins by checking that the graph is C7-free, and that the neighborhood of each vertex
induces a bipartite graph, rejecting the instance if the check fails. Note that this check ensures,
in particular, that G is K4-free.

The algorithm then partitions the graph into connected components, solving the 3-coloring
problem for each component separately. From now on, we assume that the graph G = (V,E) is
connected, C7-free, and each of its vertices has a bipartite neighborhood.

The basic idea of the algorithm is to choose an initial subgraph N0 of bounded size, try all
possible proper 3-colorings of N0, and analyze how the precoloring of N0 affects the possible
colorings of the remaining vertices.

We let N1 denote the vertices in V \N0 which are adjacent to at least one vertex of N0, and
we let N2 be the set V \ (N0 ∪N1). We will use the notation N(x) for the set of neighbors of x
in G, and Ni(x) for Ni ∩N(x).

3

Our algorithm will iteratively color the vertices of G. We will assume that throughout the
algorithm, each vertex v has a list P (v) ⊆ {1, 2, 3} of available colors. We call P (v) the palette
of v. The goal is then to find a proper coloring of G in which each vertex is colored by one
of its available colors. The problem of deciding the existence of such coloring is known as the
list-3-coloring problem, and is a generalization of the 3-coloring problem.

Whenever a vertex x of G is colored by a color c in the course of the algorithm, we immediately
remove c from the palette of x’s neighbors. Additionally, if the vertex x is not in N0, it is then
deleted. The vertices in N0 are kept in G even after they are colored. We then update the
list-3-coloring instance using the following basic reductions:

• If a vertex y has only one color c′ left in P (y), we color it by the color c′ and remove c′ from
the palettes of its neighbors. If y 6∈ N0, we then delete y.

• If P (y) is empty for a vertex y, the instance of list-3-coloring is rejected.

• If, for a vertex y 6∈ N0, the size of P (y) is greater than the degree of y, we delete y.

• Diamond consistency rule: If y and y′ are a pair of nonadjacent vertices such that P (y) 6=
P (y′), and if N(y) ∩ N(y′) is not an independent set, then any valid 3-coloring of G must
assign the same color to y and y′; we therefore replace both P (y) and P (y′) with P (y)∩P (y′).

• Neighborhood domination rule: If y and y′ are a pair of nonadjacent vertices such that
N(y) ⊆ N(y′) and P (y′) ⊆ P (y), and if y is not in N0, we delete y.

• If G has a connected component in which every vertex has at most two available colors, we
determine whether the component is colorable by reducing the problem to an instance of
2-SAT. If the component can be colored, we remove it from G and continue, otherwise we
reject the whole instance.

• If a connected component of G is P4-free, we solve the list-3-coloring problem for this com-
ponent by Theorem 1.2. If the component is colorable we remove it, otherwise we reject the
whole instance G.

It is clear that the rules are correct in the sense that the instance of list-3-coloring produced
by a basic reduction is list-3-colorable if and only if the original instance was list-3-colorable. It is
also clear that we may determine in polynomial time whether an instance of list-3-coloring (with
fixed N0) permits an application of a basic reduction, and perform the basic reduction, if available.
Throughout the algorithm, we apply the basic reductions greedily as long as possible, until we
reach a situation where none of them is applicable.

The basic reductions by themselves are not sufficient to solve the 3-coloring problem for G.
Our algorithm will sometimes also need to perform branching, i.e., explore several alternative
ways to color a vertex or a set of vertices. Formally, this means that the algorithm reduces a
given instance G of list-3-coloring to an equivalent set of instances {G1, . . . , Gk}; here saying that
a list-3-coloring instance G is equivalent to a set {G1, . . . , Gk} of instances means that G has a
solution if and only if at least one of G1, . . . , Gk has a solution.

In the beginning of the algorithm, we attach to each vertex v of G the list P (v) = {1, 2, 3} of
available colors, thereby formally transforming it to an instance of list-3-coloring. The algorithm
will then try all possible proper 3-colorings ofN0, and for each such coloring, apply basic reductions
as long as any basic reduction is applicable. If this fails to color all the vertices, more complicated
reduction steps and further branching will be performed, to be described later.

Overall, the algorithm will ensure that the initial instance G is eventually reduced to a set of
at most polynomially many smaller instances, each of which can be transformed to an equivalent
instance of 2-SAT, which then can be solved efficiently.

4

Figure 1: Picture showing the induced 2P4 in the case of G being C7-free. If the dash-and-dotted
edge is present, A has length 7, otherwise A has length 9.

2.1 The C7-free case
Our choice of N0 will depend on the structure of G. More precisely, if G contains an induced copy
of C7, we will choose one such copy as N0. This is by far the most challenging case, and we return
to it later.

The case when G is C7-free can be handled in a simple way, as we now show.

Proposition 2.1. The 3-coloring problem for a (2P4, C5, C7)-free graph G can be solved in poly-
nomial time.

Proof. Recall that we assume that G is K4-free and C7-free; otherwise G would clearly not be
3-colorable. Note that K4-freeness implies that G is Ck-free for every k ≥ 8, and 2P4-freeness
implies that G is Ck-free for every k ≥ 10.

If G is also C9-free, then it is perfect by the strong perfect graph theorem, and since it is
K4-free, it is 3-colorable. Assume then that G contains an induced copy of C9. Fix N0 to be an
induced copy of C9 in G, and define N1 and N2 accordingly. We will show that for any proper
coloring of N0, the basic reductions can solve the resulting list-3-coloring problem.

Fix a 3-coloring of N0, and apply the basic reductions, until none of them is applicable. We
claim that this solves the instance completely, i.e., we either color the whole graph, or determine
that no coloring exists. For contradiction, suppose that we reached a situation when G still
contains uncolored vertices, but no basic reduction is applicable.

It follows that G contains a vertex with three available colors, and this vertex necessarily
belongs to N2. In particular, N2 is nonempty, and therefore we may find in G two adjacent
vertices x, y with x ∈ N1 and y ∈ N2. Recall that N0(x) is the set of vertices of N0 adjacent to x.
The vertices of N0(x) partition the cycle N0 into edge-disjoint arcs, and at least one of these arcs
has an odd number of edges. Let A be such an arc of odd length.

If A has length 1, then x is adjacent to two adjacent vertices of N0, hence the color of x is
uniquely determined by the coloring of N0 and x should have been deleted. If A has length 3 or
5, then A∪ {x} induces a copy of C5 or C7, respectively, which is impossible. Thus, A has length
7 or 9. In such case, we find a copy of 2P4 in G, where one P4 consists of y, x, a vertex z ∈ N0(x),
and a vertex w ∈ A adjacent to z, while the other P4 is formed by taking four consecutive internal
vertices of A, each of which is at distance at least two from z and w; see Figure 1. In all cases we
get a contradiction.

From now on, we assume that the graph G contains an induced C7. We choose one such C7
as N0, and define N1 and N2 accordingly.

5

2.2 More complicated reductions
Apart from the basic reductions described previously, which we will apply whenever opportunity
arises, we will also use more complicated reductions, to be applied in specific situations.

Cut reduction. Suppose G = (V,E) is a connected instance of list-3-coloring. Let X ⊆ V be a
vertex cut of G, let C be a union of one or more connected components of G−X, and let CX be
the subgraph of G induced by C ∪X. Suppose further that the following conditions hold.

• C has at least two vertices.

• X is an independent set in G.

• All the vertices in X have the same palette, which has size 2.

• For any two vertices x, x′ in X, we have N(x) ∩ C = N(x′) ∩ C.

• The graph CX is P4-free.

Assume without loss of generality that all the vertices of X have palette equal to {1, 2}. Let us say
that a coloring c : X → {1, 2} of X is feasible for C, if it can be extended into a proper 3-coloring
of the list-3-coloring instance CX . Note that the feasibility of a given coloring can be determined
in polynomial time by Theorem 1.2, because CX is a cograph.

We distinguish three types of possible colorings of X: the all-1 coloring colors all the vertices
of X by the color 1, the all-2 coloring colors all the vertices of X by color 2, and a mixed coloring
is a coloring that uses both available colors on X. Observe that if X admits at least one mixed
coloring feasible for C, then every (not necessarily mixed) coloring of X by colors 1 and 2 is feasible
for C. This is because when we extend a mixed coloring of X to a coloring of CX , all the vertices
y ∈ C must receive the color 3. If such a coloring of C exists, we can combine it with any coloring
of X by colors 1 and 2.

The cut reduction of X and C is an operation which reduces G to a smaller, equivalent list-
3-coloring instance, determined as follows. We choose an arbitrary mixed coloring c of X, and
check whether it is feasible for C. If it is feasible, we reduce the instance G to G − C, leaving
the palettes of the remaining vertices unchanged. The new instance is equivalent to the original
one, since any proper list-3-coloring of G− C can be extended to a coloring of G, because all the
colorings of X are feasible for C.

If the mixed coloring c is not feasible for C, we know that no mixed coloring is feasible. We
then test the all-1 and the all-2 coloring for feasibility. If both are feasible, we reduce the instance
G by replacing C with a single new vertex v, with palette P (v) = {1, 2}, and connecting v to all
the vertices of X. Note that the reduced instance is an induced subgraph of the original one. It
is easy to see that the reduced instance is equivalent to the original one.

If only one coloring of X is feasible for C, we delete C, color the vertices of X using the
unique feasible coloring, and delete the corresponding color from the palettes of the neighbors
of X in G− C. If no coloring of X is feasible for C, we declare that G is not list-3-colorable.

Neighborhood collapse. Let G be an instance of list-3-coloring, and let v be a vertex of G.
Suppose that N(v) induces in G a connected bipartite graph with nonempty partite classes X
and Y . Suppose furthermore that all the vertices of X have the same palette PX , and all the
vertices in Y have the same palette PY . The neighborhood collapse of the vertex v is the operation
that replaces X and Y by a pair of new vertices x and y, adjacent to each other and to v, with the
property that any vertex of G−Y adjacent to at least one vertex in X will be made adjacent to x,
and similarly every vertex adjacent to Y in G−X will be adjacent to y. We then set P (x) = PX

and P (y) = PY . Informally speaking, we have collapsed the vertices in X to a single vertex x,
and similarly for Y and y.

It is clear that the collapsed instance is equivalent to the original one. However, since the new
instance is not necessarily an induced subgraph of the original one, it might happen, e.g., that a

6

collapse performed in a C5-free graph will introduce a copy of C5 in the collapsed instance. In our
algorithm, we will only perform collapses at a stage when C5-freeness will no longer be needed.

On the other hand, 2P4-freeness is preserved by collapses, as we now show.

Lemma 2.2. Let G be a 2P4-free instance of list-3-coloring in which a neighborhood collapse of a
vertex v may be performed, and let G∗ be the graph obtained by the collapse. Then G∗ is 2P4-free.

Proof. Suppose G∗ contains an induced 2P4, and let P and Q be the two nonadjacent copies
of P4. Let x and y be the two vertices obtained by collapsing sets X and Y , as in the definition
of neighborhood collapse. Without loss of generality, P contains the vertex x. It follows that Q
contains none of x, y or v, and in particular, Q is also a P4 in G.

If the path P contains the edge xy, we may ‘lift’ P into the graph G by replacing the vertices x
and y by appropriate vertices x′ ∈ X and y′ ∈ Y , and by replacing the edge xy by a shortest path
from x′ to y′ in N(v). This transforms P into an induced path P ′ in G on at least four vertices
which is nonadjacent to Q. Thus, G also contains a 2P4.

Suppose now that P does not contain the edge xy, and therefore y is not in P . If x is the
end-vertex of P , say P = xw1w2w3, we easily obtain a 2P4 in G by simply replacing x by a vertex
x′ ∈ X adjacent to w1 in G. Suppose then that x is an internal vertex of P , say P = w1xw2w3.
Since we know that P does not contain y, we may replace the vertex w1 with v in P , knowing
that vxw2w3 is also an induced P4 in G∗ nonadjacent to Q. By replacing the vertex x by a vertex
x′ ∈ X adjacent to w2, we obtain the induced path vx′w2w3 in G which forms a 2P4 together
with Q.

2.3 Graphs containing C7

We now turn to the most complicated part of our coloring algorithm, which solves the 3-coloring
problem for a (2P4, C5)-free graph G that contains an induced C7. We let N0 be an induced copy
of C7 in this graph, and define N1 and N2 accordingly.

We let v1, v2, . . . , v7 denote the vertices ofN0, in the order in which they appear on the cycleN0.
We evaluate their indices modulo 7, so that, e.g., v8 = v1.

Fix a proper coloring of N0, and apply the basic reductions to G until no basic reduction is
applicable. We now analyze the structure of G at this stage of the algorithm. We again let N0(x)
denote the set of neighbors of x in N0.

Lemma 2.3. After fixing the coloring of N0 and applying all available basic reductions, the graph
G has the following properties.

• Each vertex x of N1 satisfies either N0(x) = {vi} for some i, or N0(x) = {vi, vi+2} for
some i.

• Each induced copy of P4 in G has at most two vertices in N2.

• G is connected.

Proof. To prove the first part, use the vertices of N0(x) to partition the cycle N0 into edge-disjoint
arcs. Note that none of these arcs has length 1, since then x would be adjacent to two vertices
of distinct colors, and it would have been colored and deleted. Also, none of these arcs can have
length 3, since such an arc together with the vertex x would induce a C5 in G, contradicting
C5-freeness.

On the other hand, at least one of the arcs formed by N0(x) must have odd length. Thus,
there is either an arc of length 7, implying N0(x) = {vi}, or there is an arc of length 5, implying
N0(x) = {vi, vi+2} for some i. This proves the first part of the lemma.

7

Figure 2: Finding an induced 2P4, as-
suming P is an induced P4 with exactly
three vertices in N2. Note that P can
look differently, but always contains x.

Figure 3: Vertex x ∈ N1 being a partial neighbor
of a top component C and neighboring another
top component C ′ leads to an induced 2P4.

To prove the second part, assume that P is an induced copy of P4 in G with at least three
vertices in N2. If P is fully contained in N2, then P forms a 2P4 together with any P4 contained
in N0. Suppose that P \ N2 consists of a single vertex x, as in Figure 2. Necessarily x is in N1,
and by the first part of the lemma, N0 \ N0(x) contains an induced P4 which forms an induced
2P4 with P .

To prove the last part of the lemma, note that N0 is connected and therefore contained in a sin-
gle component of G, and if G contained another connected component, then this other component
would necessarily be P4-free and would be colored by a basic reduction.

Lemma 2.3 is the last part of the proof that makes use of the C5-freeness of G. From now on,
we will not need to use the fact that G is C5-free. In particular, we will allow ourselves reduction
operations, such as the neighborhood collapse, which do not preserve C5-freeness.

We will assume, without mentioning explicitly, that after performing any modification of the
list-3-coloring instance G, we always apply basic reductions until no more basic reductions are
available.

In the rest of the proof, we use the term top component to refer to a connected component of
N2. Observe that every top component is P4-free and therefore has a dominating set of size at
most 2 [12]. We say that a top component is relevant, if it contains a vertex z with |P (z)| = 3.
Note that if G has no relevant top component, then all its vertices have at most two available
colors, and the coloring problem can be solved by a single basic reduction.

We will say that a vertex x of N1 is relevant if x is adjacent to a vertex belonging to a relevant
top component.

Let x ∈ N1 be a vertex, and let C be a top component. We say that x is a partial neighbor of
C, if x is adjacent to at least one but not all the vertices of C. We say that x is a full neighbor of
C, if it is adjacent to every vertex of C.

Lemma 2.4. Suppose x ∈ N1 is a partial neighbor of a top component C. Then x is not a
neighbor of any other top component. Moreover, |N0(x)| = 2.

Proof. Let y and z be two adjacent vertices belonging to C, such that x is adjacent to y but not
to z. Suppose for contradiction that there is a vertex w ∈ N2 adjacent to x but not belonging
to C. Then wxyz is a copy of P4 with three vertices in N2, as shown in Figure 3, which contradicts
Lemma 2.3. This shows that x is not adjacent to any top component other than C.

Suppose now thatN0(x) contains a single vertex vi. Then vixyz together with vi+2vi+3vi+4vi+5
induce a 2P4.

8

(a) The situation obtained from the assumption
that N2(x) and N2(y) for x, y ∈ Ri are not com-
parable by inclusion. The dash-and-dot line rep-
resents an edge which is present in one case (red
induced 2P4) and absent in the other (blue in-
duced 2P4).

(b) The situation obtained when the neighbor-
hoods of vertices in Ri in N2 are comparable by
inclusion with N2(z) being the largest neighbor-
hood. Note that these vertices are full neighbors
of their top components.

Figure 4: Illustrations of the situations in the proof of Lemma 2.5.

We will now reduce G to a set of polynomially many instances in which the set of relevant
vertices has special form. We first eliminate the relevant vertices that have only one neighbor
in N0. Let Ri be the set of relevant vertices that are adjacent to vi and not adjacent to any other
vertex of N0.

Lemma 2.5. For any i ∈ {1, . . . , 7}, we can reduce G to an equivalent set of at most two instances,
both of which satisfy Ri = ∅.

Proof. By Lemma 2.4, we know that any vertex x ∈ Ri is a full neighbor of each of its adjacent
top components.

Let x, y be two distinct vertices of Ri. We claim that the two sets N2(x) and N2(y) are
comparable by inclusion. To see this, suppose for contradiction that there are vertices x′ ∈
N2(x) \N2(y) and y′ ∈ N2(y) \N2(x). Then we can find in G a copy of 2P4 in which the first P4
is vi+2vi+3vi+4vi+5, and the second P4 is either x′xyy′ (if xy ∈ E(G)), or x′xviy (if xy 6∈ E(G));
see Figure 4a.

Choose z ∈ Ri so that N2(z) is as large as possible. In particular, for every x ∈ Ri, we have
N2(x) ⊆ N2(z). We then obtain two instances equivalent to G by coloring z by its two available
colors. Note that by coloring z, we ensure that all the vertices N2(z) have at most two available
colors, and since z is a full neighbor of all its adjacent top components, this ensures that the
vertices of Ri will no longer be relevant after z has been colored; see Figure 4b for illustration.

From now on, we deal with instances of G where every relevant vertex has exactly two neighbors
in N0. Let Si be the set of relevant vertices adjacent to vi.

9

Figure 5: Considering a pair of vertices (x, y) of type
γ for x ∈ Si, y ∈ Si+3, the edge x′y′ must be present,
otherwise we obtain an induced 2P4. The other dash-
and-dotted edges are not necessarily present, and the
vertex vi+5 is adjacent to at most one vertex from
{x, y}.

Figure 6: Coloring (b) from the
proof of Lemma 2.6 for k < j.

Lemma 2.6. For any i ∈ {1, . . . , 7}, we can reduce G to an equivalent set of polynomially many
instances, each of which satisfies Si = ∅ or Si+3 = ∅.

Proof. Suppose that the vertices in Si have available colors 1 and 2, while the vertices in Si+3
have available colors 2 and 3 (the case when the vertices in Si+3 have the same available colors as
the vertices in Si is similar and we omit it).

For a pair of vertices x ∈ Si and y ∈ Si+3, we distinguish the following three possibilities:

(α) N2(x) and N2(y) are comparable by inclusion,

(β) x is adjacent to y, or

(γ) neither of the previous two conditions holds.

We say that the pair (x, y) is of type α if it satisfies the condition (α) above, and similarly for the
other two types. Observe that if the pair (x, y) is of type γ, then there exist x′ ∈ N2(x) \N2(y)
and y′ ∈ N2(y) \ N2(x). Moreover, for any choice of such x′ and y′, the pair x′y′ must be an
edge of G, otherwise x′xvivi−1 and y′yvi+3vi+4 would form a copy of 2P4. In particular, x′ and y′
belong to the same top component C, and both x and y are partial neighbors of C, as is depicted
in Figure 5.

Let Z = Si ∪ Si+3. Let m be the size of Z, and let us order the vertices of Z into a sequence
z1, z2, . . . , zm satisfying |N2(z1)| ≥ |N2(z2)| ≥ · · · ≥ |N2(zm)|.

We will reduce G to the set of all the instances that can be constructed by one of the following
two rules:

(a) All the vertices in Z are colored by their available color different from 2 (i.e., the vertices of
Si are colored by 1, the vertices of Si+3 by 3).

(b) Fix a j ∈ {1, . . . ,m} and proceed as follows: color the vertices z1, . . . , zj−1 by their available
color different from 2, and color zj by 2. Moreover, if zj is a partial neighbor of a top
component C, color a dominating set of size two in C, in all the possible ways.

10

Figure 7: The situation considered in the remaining part of the main proof.

We now verify that in all the colorings described above, after all possible basic reductions are
applied, either Si or Si+3 becomes empty. This is clearly the case for the coloring described in (a),
in which all the vertices in Si ∪ Si+3 will be removed from G, so both sets will be empty.

Consider now a coloring described in (b), and assume without loss of generality that zj is in Si.
We claim that after the coloring is performed, there will be no relevant vertex left in Si+3. To see
this, consider a vertex zk ∈ Si+3. If k < j, then zk has been colored by the color 3, see Figure 6.

If k > j we distinguish three possibilities depending on the type of the pair (zj , zk). If the
pair (zj , zk) is of type α, then N2(zk) ⊆ N2(zj) (recall that k > j implies |N2(zj)| ≥ |N2(zk)|).
In particular, all the vertices in any top component adjacent to zk will only have two available
colors (recall that if zj is a partial neighbor of a top component, we also color a dominating set of
this top component, ensuring all its vertices have at most two available colors). Thus, zk will no
longer be relevant. If the pair (zj , zk) is of type β, i.e. zjzk is an edge, then zk has only the color 3
available and can be colored. Finally, suppose (zj , zk) is of type γ. As discussed before, this means
both zj and zk are partial neighbors of a top component C and have no other neighbors in N2.
After the coloring is performed, all the vertices in C will have only two available colors, because
we have colored its dominating set of size two. Hence zk is no longer relevant. We conclude that
Si+3 becomes empty, as claimed.

It is clear that the coloring rules (a) and (b) admit only polynomially many possible colorings,
and that any valid list coloring of G extends one of the partial colorings described in (a) or in (b).
Thus, we reduced G to an equivalent set of polynomially many instances.

From now on, assume that we deal with an instance G in which for every i, one of the two
sets Si and Si+3 is empty. Unless the instance is already completely solved, there must be at least
one relevant vertex. Assume without loss of generality that G has a relevant vertex adjacent to v1
and v3. It follows that S1 and S3 are nonempty, and hence S4, S5, S6 and S7 are empty. Moreover,
as any relevant vertex is adjacent to a pair of vertices of the form {vi, vi+2}, it follows that S2 is
empty as well. In particular, every relevant vertex x satisfies N0(x) = {v1, v3}. It follows that all
the relevant vertices have the same palette of size 2; assume without loss of generality that this
palette is {1, 2}.

We will now focus on describing the structure of the subgraph of G induced by the relevant
vertices and the relevant top components adjacent to them. Let R denote the set of relevant
vertices. Note that the subgraph of G induced by R∪N2 does not contain P4, otherwise we could
use the path v4v5v6v7 to get a 2P4 in G.

Note also that if two relevant vertices x and y are adjacent, then any common neighbor of x
and y must be colored by color 3, thanks to the diamond consistency rule. We thus know that
adjacent relevant vertices have no common neighbors outside N0. We may also assume that the
graph induced by the relevant vertices is bipartite, otherwise G would clearly not be 3-colorable.

11

Lemma 2.7. Suppose that x and y are two adjacent relevant vertices. Let us write X ′ = N2(x)
and Y ′ = N2(y). Then there are disjoint sets X,Y ⊆ R, with x ∈ X and y ∈ Y , satisfying these
properties:

1. Every vertex in X ∪ Y ′ is adjacent to every vertex in Y ∪X ′.

2. X and Y are independent sets of G.

3. The vertices in X ′∪Y ′ are only adjacent to vertices in X∪Y ∪X ′∪Y ′; in particular, X ′∪Y ′
induce a top component.

Proof. Consider the subgraph G[R] of G induced by the relevant vertices, and let C be the con-
nected component of G[R] containing x and y. Recall that C must be bipartite. We let X and Y
be its partite classes containing x and y, respectively. Note that C is complete bipartite, otherwise
it would contain a P4.

We will now show that all the vertices in X have the same neighbors in N2. Indeed, if we
could find a pair of vertices x1, x2 ∈ X and a vertex x′ ∈ N2(x1) not adjacent to x2, then x′x1yx2
would induce a P4. It follows that for every x1 ∈ X we have N2(x1) = X ′, and similarly for every
y1 ∈ Y we have N2(y1) = Y ′.

We saw that adjacent relevant vertices have no common neighbors, so X ′ and Y ′ are disjoint.
Every vertex in X ′ must be adjacent to every vertex in Y ′, for if there were nonadjacent vertices
x′ ∈ X ′ and y′ ∈ Y ′, then x′xyy′ would induce a P4. This proves the first claim of the lemma.

To prove the second claim, observe that X and Y are independent by construction.
To prove the third claim, proceed by contradiction and assume that a vertex x′ ∈ X ′ ∪ Y ′ is

adjacent to a vertex z not belonging to X ∪ Y ∪X ′ ∪ Y ′. We may assume that x′ belongs to X ′.
Necessarily, z belongs to R ∪N2, and zx′xy induces a forbidden P4.

Suppose G[R] contains at least one edge xy, and let X,Y,X ′, Y ′ be as in the previous lemma.
Note that there are only two possible ways to color G[X ∪ Y] – either X is colored 1 and Y is
colored 2, or vice versa. We can check in polynomial time which of these two colorings can be
extended to a valid coloring of G[X ∪ Y ∪ X ′ ∪ Y ′]. If neither of the two colorings extends, we
reject G, if only one of the two coloring extends, we color X ∪Y accordingly, and if both colorings
extend, we remove the vertices X ′∪Y ′ from G, resulting in a smaller equivalent instance, in which
X ∪ Y are no longer relevant. Repeating this for every component of G[R] that contains at least
one edge, we eventually reduce the problem to an instance in which the relevant vertices form an
independent set.

From now on, we assume R is independent in G. For a vertex x ∈ R, let C2(x) denote the set
of top components that contain at least one neighbor of x.

Lemma 2.8. For any two relevant vertices x and y, we either have C2(x) = C2(y), or C2(x) and
C2(y) are disjoint.

Proof. Suppose the lemma fails for some x and y. We may then assume that there is a top
component C ∈ C2(x) ∩ C2(y) and a component C ′ ∈ C2(x) \ C2(y). Since |C2(x)| ≥ 2, we know
from Lemma 2.4 that x is a full neighbor of all the top components in C2(x). Choose a vertex
u ∈ C ′ and a vertex v ∈ C ∩ N2(y). Then uxvy is a copy of P4 in R ∪ N2, which is impossible.

Let us say that two relevant vertices x and y are equivalent if C2(x) = C2(y). As the next
step in our algorithm, we will process the equivalence classes one by one, with the aim to reduce
the instance G to an equivalent instance in which each relevant vertex is adjacent to a single top
component.

Let x ∈ R be a vertex such that |C2(x)| ≥ 2, and let Rx be the equivalence class containing x.
By Lemma 2.4, each vertex in Rx is a full neighbor of any component in C2(x), and by Lemma 2.8,
no vertex outside of Rx may be adjacent to a relevant top component in C2(x). Thus, Rx is a
vertex cut separating the relevant top components in C2(x) from the rest of G. We may therefore

12

Figure 8: Illustrations to the proof of Lemma 2.9. The left part shows a situation when y is not
adjacent to any vertex in N2(x), the right part shows a situation when y has a neighbour in N2(x)
which is disconnected. Each part depicts two different possibilities. The blue P4 shows the case
y ∈ Rx, while the red P4 shows the case when y ∈ C.

apply the cut reduction through the vertex cut Rx to reduce G to a smaller instance in which the
vertices of Rx are no longer relevant.

We repeat the cut reductions until there is no relevant vertex adjacent to more than one top
component. From now on, we deal with instances in which each relevant vertex is adjacent to a
unique top component; note that this top component is necessarily relevant.

Lemma 2.9. Let x be a relevant vertex, let C be the top component adjacent to x, let Rx be the
equivalence class of x, and let y ∈ Rx ∪ C be a vertex not adjacent to x. Then y is adjacent to
at least one vertex in N2(x). Moreover, if N2(x) induces a disconnected subgraph of G, then y is
adjacent to all the vertices of N2(x).

Proof. Refer to Figure 8. If y is not adjacent to any vertex of N2(x), then we can find an induced
path with at least four vertices by considering the shortest path from x to y in the graph induced
by C ∪ {x, y}. Therefore y has at least one neighbor in N2(x). Suppose now that N2(x) is
disconnected. If y is not adjacent to all the vertices of N2(x), then we can find a vertex u ∈ N2(x)
adjacent to y, and a vertex v ∈ N2(x) nonadjacent to y, in such a way that u and v are in distinct
components of N2(x). Then yuxv is an induced P4.

Fix now a relevant top component C and let R be set of relevant vertices in N1 adjacent to C.
Fix a vertex x ∈ R so that N2(x) is as large as possible. Let Rx be the equivalence class containing
x. We distinguish several possibilities, based on the structure of N2(x).

N2(x) is disconnected. Suppose first that N2(x) induces in G a disconnected subgraph. By
Lemma 2.9, any vertex in Rx is adjacent to all vertices in N2(x). By our choice of x, this implies
that for any x′ ∈ Rx we have N2(x′) = N2(x). We may therefore apply the cut reduction for the
cut Rx that separates C from the rest of G, to obtain a smaller instance in which the vertices of
Rx are no longer relevant.

13

Figure 11: Illustrations of the situation when N2(x) is a single edge uv. Again, case y ∈ Rx is
shown as blue y and blue P4, while y ∈ (C − u) is shown as red y and red P4. There are two
subcases corresponding to yz being an edge or not.

Figure 9: There is an induced P4 in N2 if N2(x)
is connected with ≥ 3 vertices and for y, y′ ∈ Y
there exists a u neighboring only one of them.

Figure 10: Recall that u is adjacent to
all vertices of C. If there is a y ∈ C
adjacent to both u and v, there is no
other neighbor z of y. Otherwise, either
zv is an edge, causing a K4, or zv is not
an edge, causing an induced P4.

N2(x) is connected, with ≥ 3 vertices. Now suppose that N2(x) induces a connected graph,
and that N2(x) has at least three vertices. We now verify that N2(x) induces a complete bipartite
graph, otherwise C contains P4 or G is not 3-colorable. Let Y and Z be the two partite classes
of N2(x). Note that any two vertices y, y′ in Y have the same neighbors in G: indeed if u were a
vertex adjacent to y but not to y′, then uyxy′ would induce a copy of P4, as depicted in Figure 9.
By the same argument, all the vertices in Z have the same neighbors in G as well. Diamond
consistency enforces that all the vertices in Y have the same palette, and similarly for Z. We may
then invoke neighborhood domination to delete from Y all vertices except a single vertex y, and
do the same with Z, reducing G to an equivalent instance in which N2(x) consists of a single edge.

N2(x) is a single vertex. Suppose that N2(x) consists of a single vertex y. If y is the only vertex
of C, then y must have the palette {1, 2, 3}, otherwise C would not be a relevant component. In
such case, we may simply color y with color 3 and delete it, as this does not restrict the possible
colorings of G− y in any way. If, on the other hand, C has more than one vertex, it follows from
Lemma 2.9 that all the vertices of Rx are adjacent to y, and by the choice of x, every vertex in Rx

is adjacent to y as its only neighbor in C. We may then apply cut reduction for the cut Rx. In all
cases, we obtain a smaller equivalent instance, in which the vertices in Rx are no longer relevant.

14

N2(x) is a single edge. The last case to consider deals with the situation when N2(x) contains
exactly two adjacent vertices u and v. Assume that degG(u) ≥ degG(v). Recall that the set R of
relevant vertices is independent. Note that for any vertex x′ ∈ Rx, N2(x′) is connected, otherwise
Lemma 2.9 implies that N2(x′) is contained in N2(x), contradicting N2(x) being a single edge.

We first claim that any vertex y ∈ Rx ∪ (C − u) adjacent to v is also adjacent to u. Suppose
this is not the case. Then, since degG(u) ≥ degG(v), there must also be a vertex z ∈ Rx ∪ (C − v)
adjacent to u but not to v. If yz is an edge, then zyvx is a copy of P4, and if yz is not an edge, then
zuvy is a copy of P4, as shown in Figure 11. In both cases we have a contradiction, establishing
the claim. Note that the claim, together with Lemma 2.9, implies that u is adjacent to all the
other vertices of Rx ∪ C.

Next, we show that if C contains a vertex adjacent to both u and v, then we may reduce G to a
smaller equivalent instance. Suppose y ∈ C is adjacent to u and v. Then P (y) = P (x) = {1, 2} by
diamond consistency. We now claim that y has no other neighbors in G beyond u and v. Suppose
that z 6∈ {u, v} is a neighbor of y. Then z cannot be adjacent to v, since uvyz would form a
K4. Therefore zyvx is a copy of P4, a contradiction illustrated by Figure 10. We conclude that
N(y) = {u, v} ⊆ N(x), and since P (y) = P (x), we may delete y due to neighborhood domination.

From now on, we assume that u and v have no common neighbor in C. Recall that u is adjacent
to all the other vertices in C∪Rx. We now reduce G to an instance where C−u is an independent
set. We already know that v is isolated in C − u by the previous paragraph. Suppose that C − u
has a component D with more than one vertex. If D has a vertex v′ adjacent to a vertex x′ ∈ Rx,
we can repeat the reasoning of the previous paragraph with x′ and v′ in the place of x and v,
showing that u and v′ cannot have any common neighbor in C, contradicting the assumption that
D has more than one vertex. We can thus conclude that D is not adjacent to any vertex in Rx.
Then u is a cut-vertex separating D from the rest of G. We may test which colorings of u can be
extended into D (since D is P4-free, this can be done efficiently), then restrict the palette of u to
only the feasible colors, and then delete D.

Figure 12: Situation in which
we can apply a neighborhood col-
lapse.

Figure 13: The last case in which each vertex of C−u
has palette {1, 3} or {2, 3}. The blue text represents
the three possibilities to color u and what colors that
implies for other parts of the graph.

We are now left with a situation when C is a star with center u, and every vertex of Rx is
adjacent to u and to at most one vertex of C − u. If there is a vertex w ∈ C − u adjacent to more
than one vertex in Rx, it means that the neighborhood of w is a connected bipartite graph (a star
with center u) to which we may apply neighborhood collapse; see Figure 12.

Suppose now that every vertex w ∈ C − u has only one neighbor in Rx (if w had no neighbor
in Rx, it would have degree 1 and we could remove it). If w’s palette has 3 colors, we can remove

15

it, so we may assume that every vertex in C − u has a palette of size 2. Then u’s palette must
have 3 colors, otherwise C would not be a relevant component. If a vertex in C − u has palette
{1, 2}, then u must be colored 3 and then Rx is no longer relevant.

It remains to consider the case when each vertex of C − u has the palette {1, 3} or {2, 3}. Let
W1 and W2 be the sets of vertices of C − u having palette {1, 3} and {2, 3}, respectively. Let X1
and X2 be the sets of vertices of Rx that are adjacent to a vertex in W1 and W2, respectively.
Let X0 be the set of vertices in Rx that have no neighbor in C − u. The situation is shown in
Figure 13. Let us consider the possible colorings of C ∪Rx. If u is colored by 3, then the whole set
W1 is colored by 1, W2 is colored by 2, hence X1 is colored by 2 and X2 by 1, while the vertices
in X0 can be colored arbitrarily by 1 or 2. On the other hand, if u receives a color α 6= 3, then
all the vertices in Rx receive the color β ∈ {1, 2} \ {α}, and the vertices in C − u can be colored
by 3. The set Rx therefore admits three types of feasible colorings: the all-1 coloring, the all-2
coloring, and any coloring where the set X1 is colored by 2 and X2 by 1. This set of colorings can
be equivalently characterized by the following properties:

• If a vertex in X1 is colored by 1, then the whole Rx receives 1.

• If a vertex in X2 is colored by 2, then the whole Rx is colored by 2.

• All the colors in X1 are equal and all the colors in X2 are equal.

The above properties can be encoded by a 2-SAT formula whose variables correspond to vertices
of Rx.

To summarize, we have shown that a 3-coloring instance G can be reduced to an equivalent set
of polynomially many simpler list-3-coloring instances. The structure of these simpler instances
guarantees that for any relevant top component C, we can form a 2-SAT formula describing
the colorings of the relevant vertices adjacent to C that can be extended to a proper coloring
of C. Moreover, in the subgraph of G induced by the vertices not belonging to any relevant top
component, each vertex has a palette of size at most two. The colorings of this subgraph can
again be encoded by a 2-SAT formula. Such an instance of list-3-coloring then admits a solution
if and only if there is a satisfying assignment for the conjunction of the 2-SAT formulas described
above. The existence of such an assignment can be found in polynomial time. This completes the
proof of Theorem 1.1.

3 Conclusions
We have shown that 3-coloring on (2P4, C5)-free graphs is solvable in polynomial time. As we
discussed in the introduction, this approach might serve as a step towards resolving 3-coloring on
2P4-free graphs because it remains to consider 2P4-free graphs containing C5.

Apart from the main question above, under more refined scale, the complexity of 3-coloring
on (2P4, C3)-free, (P8, C3)-free, or (P8, C5)-free graphs remains unknown. In another direction, it
would be interesting to extend our result to the list 3-coloring setting.

Acknowledgements. We acknowledge the comfortable and inspiring atmosphere of the work-
shop KAMAK 2019 organized by Charles University where part of this work was done.

References
[1] Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian

Zhong. Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven
Vertices. Combinatorica, 38(4):779–801, May 2017. doi:10.1007/s00493-017-3553-8.

[2] Flavia Bonomo, Oliver Schaudt, and Maya Stein. 3-colouring graphs without triangles or
induced paths on seven vertices, 2014. arXiv:1410.0040v1.

16

https://doi.org/10.1007/s00493-017-3553-8
http://arxiv.org/abs/1410.0040v1

[3] Flavia Bonomo-Braberman, Maria Chudnovsky, Jan Goedgebeur, Peter Maceli, Oliver
Schaudt, Maya Stein, and Mingxian Zhong. Better 3-coloring algorithms: excluding a triangle
and a seven vertex path. Theoretical Computer Science, 2020. doi:10.1016/j.tcs.2020.
10.032.

[4] Claude A Christen and Stanley M Selkow. Some perfect coloring properties of graphs. Journal
of Combinatorial Theory, Series B, 27(1):49–59, August 1979. doi:10.1016/0095-8956(79)
90067-4.

[5] Maria Chudnovsky, Shenwei Huang, Sophie Spirkl, and Mingxian Zhong. List 3-
Coloring Graphs with No Induced P6 + rP3. Algorithmica, July 2020. doi:10.1007/
s00453-020-00754-y.

[6] Maria Chudnovsky, Peter Maceli, Juraj Stacho, and Mingxian Zhong. 4-Coloring P6-Free
Graphs with No Induced 5-Cycles. Journal of Graph Theory, 84(3):262–285, 2017. doi:
10.1002/jgt.22025.

[7] Maria Chudnovsky, Peter Maceli, and Mingxian Zhong. Three-coloring graphs with no in-
duced seven-vertex path I : the triangle-free case, 2014. arXiv:1409.5164.

[8] Maria Chudnovsky, Peter Maceli, and Mingxian Zhong. Three-coloring graphs with no in-
duced seven-vertex path II : using a triangle, 2015. arXiv:1503.03573.

[9] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of Mathematics, 164(1):51–229, 2006. URL: http://www.jstor.org/
stable/20159988.

[10] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. List-three-coloring Pt-free graphs
with no induced 1-subdivision of K1,s. Discrete Mathematics, 343(11):112086, November
2020. doi:10.1016/j.disc.2020.112086.

[11] Maria Chudnovsky and Juraj Stacho. 3-colorable subclasses of P8-free graphs. SIAM Journal
on Discrete Mathematics, 32(2):1111–1138, January 2018. doi:10.1137/16m1104858.

[12] Derek G. Corneil and Yehoshua Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27–39, September 1984. doi:10.1016/0166-218x(84)90088-x.

[13] Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma. List
coloring in the absence of a linear forest. Algorithmica, 71(1):21–35, April 2013. doi:
10.1007/s00453-013-9777-0.

[14] Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs
and the hardness of colouring graphs of large girth. Combinatorics Probability and Computing,
7(4):375–386, 1998. doi:10.1017/S0963548398003678.

[15] Peter Gartland and Daniel Lokshtanov. Independent set on Pk-free graphs in quasi-
polynomial time. In 61st IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 613–624. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00063.

[16] Jan Goedgebeur and Oliver Schaudt. Exhaustive generation of k-critical H-free graphs. Jour-
nal of Graph Theory, 87(2):188–207, April 2017. doi:10.1002/jgt.22151.

[17] Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the
computational complexity of coloring graphs with forbidden subgraphs. Journal of Graph
Theory, 84(4):331–363, March 2016. doi:10.1002/jgt.22028.

[18] Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for coloring
problems on H-free graphs. Information and Computation, 237:204–214, October 2014. doi:
10.1016/j.ic.2014.02.004.

17

https://doi.org/10.1016/j.tcs.2020.10.032
https://doi.org/10.1016/j.tcs.2020.10.032
https://doi.org/10.1016/0095-8956(79)90067-4
https://doi.org/10.1016/0095-8956(79)90067-4
https://doi.org/10.1007/s00453-020-00754-y
https://doi.org/10.1007/s00453-020-00754-y
https://doi.org/10.1002/jgt.22025
https://doi.org/10.1002/jgt.22025
http://arxiv.org/abs/1409.5164
http://arxiv.org/abs/1503.03573
http://www.jstor.org/stable/20159988
http://www.jstor.org/stable/20159988
https://doi.org/10.1016/j.disc.2020.112086
https://doi.org/10.1137/16m1104858
https://doi.org/10.1016/0166-218x(84)90088-x
https://doi.org/10.1007/s00453-013-9777-0
https://doi.org/10.1007/s00453-013-9777-0
https://doi.org/10.1017/S0963548398003678
https://doi.org/10.1109/FOCS46700.2020.00063
https://doi.org/10.1002/jgt.22151
https://doi.org/10.1002/jgt.22028
https://doi.org/10.1016/j.ic.2014.02.004
https://doi.org/10.1016/j.ic.2014.02.004

[19] Petr A. Golovach, Daniël Paulusma, and Jian Song. Coloring graphs without short cycles
and long induced paths. Discrete Applied Mathematics, 167:107–120, April 2014. doi:10.
1016/j.dam.2013.12.008.

[20] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms for per-
fect graphs. In Topics on Perfect Graphs, pages 325–356. Elsevier, 1984. doi:10.1016/
s0304-0208(08)72943-8.

[21] Sepehr Hajebi, Yanjia Li, and Sophie Spirkl. List-5-coloring graphs with forbidden induced
subgraphs, 2021. arXiv:2105.01787.

[22] Pavol Hell and Shenwei Huang. Complexity of coloring graphs without paths and cycles.
Discrete Applied Mathematics, 216:211–232, January 2017. doi:10.1016/j.dam.2015.10.
024.

[23] Chính T. Hoàng, Marcin Kamiński, Vadim Lozin, Joe Sawada, and Xiao Shu. Deciding
k-colorability of P5-free graphs in polynomial time. Algorithmica, 57(1):74–81, May 2008.
doi:10.1007/s00453-008-9197-8.

[24] Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10(4):718–
720, November 1981. doi:10.1137/0210055.

[25] Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. European Journal
of Combinatorics, 51:336–346, January 2016. doi:10.1016/j.ejc.2015.06.005.

[26] Shenwei Huang, Matthew Johnson, and Daniël Paulusma. Narrowing the complexity gap
for colouring (Cs, Pt)-free graphs. The Computer Journal, 58(11):3074–3088, June 2015.
doi:10.1093/comjnl/bxv039.

[27] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

[28] Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and
Veronika Slívová. Colouring (Pr + Ps)-Free Graphs. Algorithmica, 82(7):1833–1858, Jan-
uary 2020. doi:10.1007/s00453-020-00675-w.

[29] Melven R. Krom. The decision problem for a class of first-order formulas in which all dis-
junctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
13(1-2):15–20, 1967. doi:10.1002/malq.19670130104.

[30] Daniel Leven and Zvi Galil. NP completeness of finding the chromatic index of regular graphs.
Journal of Algorithms, 4(1):35–44, March 1983. doi:10.1016/0196-6774(83)90032-9.

[31] Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski. Quasi-polynomial-time algorithm
for independent set in pt-free graphs via shrinking the space of induced paths. In Sympo-
sium on Simplicity in Algorithms (SOSA), pages 204–209. Society for Industrial and Applied
Mathematics, January 2021. doi:10.1137/1.9781611976496.23.

[32] Alberto Rojas and Maya Stein. 3-Colouring Pt-free graphs without short odd cycles, 2020.
arXiv:2008.04845.

[33] Sophie Spirkl, Maria Chudnovsky, and Mingxian Zhong. Four-coloring P6-free graphs. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1239–1256. Society for Industrial and Applied Mathematics, January 2019. doi:10.1137/1.
9781611975482.76.

18

https://doi.org/10.1016/j.dam.2013.12.008
https://doi.org/10.1016/j.dam.2013.12.008
https://doi.org/10.1016/s0304-0208(08)72943-8
https://doi.org/10.1016/s0304-0208(08)72943-8
http://arxiv.org/abs/2105.01787
https://doi.org/10.1016/j.dam.2015.10.024
https://doi.org/10.1016/j.dam.2015.10.024
https://doi.org/10.1007/s00453-008-9197-8
https://doi.org/10.1137/0210055
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1093/comjnl/bxv039
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00453-020-00675-w
https://doi.org/10.1002/malq.19670130104
https://doi.org/10.1016/0196-6774(83)90032-9
https://doi.org/10.1137/1.9781611976496.23
http://arxiv.org/abs/2008.04845
https://doi.org/10.1137/1.9781611975482.76
https://doi.org/10.1137/1.9781611975482.76

	1 Introduction
	2 Proof of Theorem 1.1
	2.1 The C_7-free case
	2.2 More complicated reductions
	2.3 Graphs containing C_7

	3 Conclusions

