Skip to main content

Heterogeneous Formal Neurons and Modeling of Multi-transmitter Neural Ensembles

  • Conference paper
  • First Online:
  • 639 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12948))

Abstract

A multitransmitter neural ensemble is a group of neurons interacting not via isolated synaptic connections, but via the emission of neurotransmitters directly into the shared extracellular space (ECS). There are multiple experimental evidence that non-synaptic interactions play the important role in biological neural circuits. We propose a model of multitransmitter neural ensembles where each neuron is represented as a finite state machine. An algorithm of neural interactions via the shared ECS is proposed. This framework allows one to capture the variety of spiking behavior observed in biological neurons. The model is intended primarily for simulation of simple neural ensembles where each neuron has a unique internal properties and plays the specific role in the ensemble activity. We show how the model can imitate such neural activity classes as tonic spiking, bursting, post-inhibitory rebound etc. To illustrate the key features of the proposed framework, we have modeled two examples of pattern-generating neural ensembles: a half-center oscillator and a feeding network of a pond snail.

The research was partially supported by the Russian Foundation for Basic Research (projects Nos. 19-04-00628, 20-07-00190).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Tech. Rep. 6 (1999)

    Google Scholar 

  2. Bargmann, C.I.: Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34(6), 458–465 (2012). https://doi.org/10.1002/bies.201100185

  3. Bazenkov, N., Dyakonova, V., Kuznetsov, O., Sakharov, D., Vorontsov, D., Zhilyakova, L.: Discrete modeling of multi-transmitter neural networks with neuronal competition. In: Samsonovich, A.V., Klimov, V.V. (eds.) BICA 2017. AISC, vol. 636, pp. 10–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63940-6_2

    Chapter  Google Scholar 

  4. Bazenkov, N.I., Boldyshev, B.A., Dyakonova, V., Kuznetsov, O.P.: Simulating small neural circuits with a discrete computational model. Biol. Cybern. 114(3), 349–362 (2020). https://doi.org/10.1007/s00422-020-00826-w

    Article  MATH  Google Scholar 

  5. Crossley, M., Staras, K., Kemenes, G.: A two-neuron system for adaptive goal-directed decision-making in Lymnaea. Nature Commun. 7(1), 1–13 (2016). https://doi.org/10.1038/ncomms11793

  6. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Kinetic models of synaptic transmission. Methods Neuronal Model. 2, 1–25 (1998)

    Google Scholar 

  7. Fitzhugh, R.: Mathematical models of excitation and propagation in nerve. In: Biological Engineering, pp. 1–85 (1969)

    Google Scholar 

  8. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764

  9. Ivashko, D.G., Prilutsky, B.I., Markin, S.N., Chapin, J.K., Rybak, I.A.: Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52–54, 621–629 (2003). https://doi.org/10.1016/S0925-2312(02)00832-9

  10. Izhikevich, E.M.: Simple model of spiking neurons (2003). https://doi.org/10.1109/TNN.2003.820440

  11. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocortical systems. Proc. Nat. Acad. Sci. U.S.A 105(9), 3593–3598 (2008). https://doi.org/10.1073/pnas.0712231105

  12. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks (2008). https://doi.org/10.1038/nrm2503

  13. Kuznetsov, O.P.: Complex networks and activity spreading. Autom. Remote Control 76(12), 2091–2109 (2015). https://doi.org/10.1134/S0005117915120012

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuznetsov, O.P., Bazenkov, N.I., Boldyshev, B.A., Zhilyakova, L.Y., Kulivets, S.G., Chistopolsky, I.A.: An asynchronous discrete model of chemical interactions in simple neuronal systems. Sci. Tech. Inf. Process. 45(6), 375–389 (2018). https://doi.org/10.3103/S0147688218060072

    Article  Google Scholar 

  15. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11(23), R986–R996 (2001). https://doi.org/10.1016/S0960-9822(01)00581-4

  16. Marder, E., Goeritz, M.L., Otopalik, A.G.: Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms (2015). https://doi.org/10.1016/j.conb.2014.10.012

  17. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/BF02478259

  18. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981).https://doi.org/10.1016/S0006-3495(81)84782-0

  19. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962). https://doi.org/10.1109/JRPROC.1962.288235

    Article  Google Scholar 

  20. Nikitin, O., Lukyanova, O.: Control of an agent in the multi-goal environment with homeostasis-based neural network. In: Procedia Computer Science, vol. 123, pp. 321–327. Elsevier B.V. (2018). https://doi.org/10.1016/j.procs.2018.01.050

  21. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit parameters. Nature Neurosci. 7(12), 1345–1352 (2004). https://doi.org/10.1038/nn1352

  22. Roberts, P.D.: Classification of temporal patterns in dynamic biological networks. Neural Comput. 10(7), 1831–1846 (1998).https://doi.org/10.1162/089976698300017160

  23. Tiwari, A., Talcott, C.: Analyzing a discrete model of Aplysia central pattern generator. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. E1–E1. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88562-7_27

    Chapter  Google Scholar 

  24. Vavoulis, D.V., Straub, V.A., Kemenes, I., Kemenes, G., Feng, J., Benjamin, P.R.: Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. Eur. J. Neurosci. 25(9), 2805–2818 (2007). https://doi.org/10.1111/j.1460-9568.2007.05517.x

  25. Webster-Wood, V.A., Gill, J.P., Thomas, P.J., Chiel, H.J.: Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. Biol. Cybern. 114(6), 557–588 (2020). https://doi.org/10.1007/s00422-020-00851-9

    Article  MATH  Google Scholar 

  26. Zhilyakova, L.Y.: Small networks of MIMO agents with two activity types. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds.) RCAI 2020. LNCS (LNAI), vol. 12412, pp. 100–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59535-7_8

    Chapter  Google Scholar 

Download references

Acknowledgment

The author thanks Oleg Kuznetsov, Liudmila Zhilyakova, Varvara Dyakonova, and Dmitry Sakharov for helpful discussion on the mathematical framework and biological motivation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazenkov, N. (2021). Heterogeneous Formal Neurons and Modeling of Multi-transmitter Neural Ensembles. In: Kovalev, S.M., Kuznetsov, S.O., Panov, A.I. (eds) Artificial Intelligence. RCAI 2021. Lecture Notes in Computer Science(), vol 12948. Springer, Cham. https://doi.org/10.1007/978-3-030-86855-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86855-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86854-3

  • Online ISBN: 978-3-030-86855-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics