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Abstract. Exploration is an important step in autonomous navigation
of robotic systems. In this paper we introduce a series of enhancements
for exploration algorithms in order to use them with vision-based si-
multaneous localization and mapping (vSLAM) methods. We evaluate
developed approaches in photo-realistic simulator in two modes: with
ground-truth depths and neural network reconstructed depth maps as
vSLAM input. We evaluate standard metrics in order to estimate explo-
ration coverage.
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ping · simulation · robotics

1 Introduction

Making robotic systems fully autonomous is an important problem for modern
researchers [12,20,25,6]. In order to operate autonomously, the system needs to
know it’s position on the map (environment). If the environment is unknown, the
map is need to be built first. This step can be done by manually controlling the
robotic system, however that’s not always possible due to operating conditions,
e.g. poor signal for remote control. So, one way of solving this problem is using
Simultaneous Localization and Mapping (SLAM) with exploration algorithms.

SLAM algorithms are used to build the map of an unknown environment and
retrieve robot’s current position by utilizing different sensors. There are a lot of
different sensors for SLAM to operate with, such as: GPS [5], lidar [9,14], inertia
measurement unit (IMU) [19,27] and cameras [17,1]. The choice of the sensors is
done considering the operating environment, robot’s size or weight restrictions
and etc.

In GPS-denied environment, popular sensor of choice is monocular camera.
Modern monocular vSLAM algorithms use convolutional neural networks to re-
construct depth maps [26,3]. Those depth maps are suitable as an input for
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RGB-D vSLAM algorithms. However, these algorithms still suffer from prob-
lems that are common for all vSLAM algorithms: incorrect scale, localization
errors during rotations without translation and poorly detailed environment.

The second important part of autonomous navigation is exploration [4,23].
At each step of localization and mapping the algorithms decide where robot needs
to go in order to explore more unknown space and map it. Modern algorithms are
versatile and usually work with 2D maps and poses (SLAM output). However,
to increase the robustness of autonomous navigation with vision-based SLAM,
we need to consider vSLAM problems in exploration algorithms. In this work
we introduce such enhancements and evaluate them in photo-realistic simulated
environment.

This paper is organized as follows: section 2 describes current state of research
in visual SLAM and autonomous exploration. Section 3 states the exploration
problem formally. Section 4 describes proposed exploration pipeline detailly. Sec-
tion 5 presents the experimental setup and the results of the experiments in both
RGB-D and monocular modes. Section 6 concludes.

2 Related work

Exploration is crucial for autonomous navigation in unknown environment, so
there exists a vast variety of methods and algorithms aimed at solving this task.
We focus on methods that work in conjunction with visual SLAM or work with
visual sensors. This section gives brief overview.

In early works authors used known information about operating environment.
For example, in [21] knowledge about geometric forms of floor, walls, ceiling and
etc. is used in order to extract frontiers directly from the images. The goal point
is chosen at the most informative place on the map based on the extracted infor-
mation. In order to find the shortest path, Dijkstra’s pathplanning algorithms is
used. The algorithm is tested on real robot in indoor environment, so the devel-
oped visual servo control is applied in order to reach the destination. Regardless
being able to solve small and medium-scale exploration tasks, this approach is
applicable to indoor exploration only and not robust to environment changes
and large scale exploration.

In [7] authors use exploration with graph-based stereo SLAM. However, in
order to perform shortest pathplanning, local semi-continuous metric space is
used in opposite to following the nodes of the graph. Authors also implemented
visual odometry failure recovery in order to improve the final quality of the
localization and exploration. The algorithm is able to navigate autonomously
for 30 minutes (limited by robot’s battery) in real indoor environment.

Another approach that utilizes monocular vSLAM is presented in [24]. Semi-
dense LSD-SLAM [10] algorithm is used for mapping and localization of micro
aerial vehicle (MAV). As an exploration algorithm authors introduce star dis-
covery. This approach is used in order to overcome the visual odometry drift
and errors during rotation without motion (common problem for monocular vS-
LAM). The exploration algorithm is pretty straightforward: MAV performs star
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discovery on spot, then the farthest point on the frontier in line of sight is cho-
sen as a new star discovery point, then the robot proceeds to this point. This
approach require a lot of free space in order to perform a star rotation. That
limits the application area of this algorithm drastically.

More recent approach [11] introduces an enhancement to frontier search by
making use of heading information and coarse graph representation of the map
in order to improve map coverage and reduce time of exploration. The algorithm
is tested on wheeled robot platform. Authors report that the robot were able
to explore large office (250m2) with different obstacles in 7 minutes. Regardless
this algorithm originally works with laser scanner only, the introduced approach
can be adopted for vSLAM autonomous exploration.

3 Problem statement

The exploration problem that we consider is described as follows. A robot
equipped with only visual sensors (monocular, stereo or RGB-D camera) is lo-
cated in unknown environment of restricted area (usually indoor space). Its task
is to construct a 2D map of whole environment while moving through it.

At each step t, a robot is given by observation It - an image from its camera.
Using this observation, exploration algorithm tracks its location, maps informa-
tion from the observation and decides where to move to explore and map new
space. The output of the algorithm A at step t is Mt - a map of explored part
of environment, and an action at - an intention to move somewhere:

A(It,Mt−1) = (Mt, at)

A map is represented as 2D matrix and consists of free, occupied and unex-
plored cells. Each cell of this matrix represents a small square of fixed size (e.g.
5x5 cm). The matrix is also provided with position of its top-left corner in global
coordinate system. At initial step, the map is an empty matrix.

Mt = (Pt ∈ {0, 1,−1}H×W ; (xt, yt) ∈ R
2); M0 = (∅; (0, 0))

An action is represented as a robot pose shift:

at = (dx, dy, δ)

It is the command for robot ”move on distance (dx, dy) (relatively to its
current position) and rotate by angle δ”. To simplify our model, we consider only
four possible actions: move forward (at = (dx, 0, 0)), turn left (at = (0, 0, δ)),
turn right (at = (0, 0,−δ)), and remain on the spot (at = (0, 0, 0)).

To measure exploration efficiency, absolute and relative coverage metric are
commonly used. The value of the absolute metric is the area of explored map
at certain time steps t. The value of the relative metric is the percentage of
environment space that has been explored at certain time steps t:

Cabs = {|(i, j) : M i,j
t ≥ 0|}, t ∈ T (1)
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Crel = {
|(i, j) : M i,j

t ≥ 0|

|(i, j) : M i,j ≥ 0|
}, t ∈ T (2)

where M is ground-truth map of the whole environment.

4 Method overview

Fig. 1. A scheme of proposed exploration pipeline

We propose fully autonomous exploration pipeline for robots equipped with
visual sensors. Our pipeline consists of four parts:

– SLAM module takes data from robot’s camera and estimates its trajectory
and 2D map of environment simultaneously in real time

– Exploration module takes current estimated robot position and SLAM-
builded map, and chooses goal where the robot should go

– Path planning module builds path from robot to goal position in SLAM-
produced map

– Path following module takes current robot position and path to goal and
sets low-level commands to robot’s controller: where to move now - forward,
left, or right

To simplify implementation on real robots and interaction between modules,
we integrate our pipeline with Robot Operation System (ROS)3. Full scheme of
the pipeline is shown at figure 1.

3 http://www.ros.org
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4.1 SLAM

We chose RTAB-MAP algorithm [16] to perform real-time simultaneous local-
ization and mapping. Our choice is motivated by RTAB-MAP has open-source
ROS implementation4 and has wide range of adjustable parameters. It takes
stereo or RGB-D images as input and outputs robot’s trajectory and map of
environment in both 2D and 3D. Trajectory is stored as a set of 6 DoF poses,
2D map is stored as occupancy grid (a matrix of free, occupied and unknown
cells), and 3D map is stored as point cloud.

Off-the-shelf RTAB-MAP algorithm works only with stereo or RGB-D input.
To run it in monocular mode, we use fully-convolutional neural network (FCNN)
like [3] to predict depth of images from camera. Experiments conducted in work
[2] show that RTAB-MAP with CNN-predicted depths is able to successfully
build a map of indoor scene in most of cases. Average absolute mapping error
was about 0.7m, and most of it was the scale error. After scale correction, average
error reduced to 0.3m.

4.2 Exploration: base version

Fig. 2. An example of frontier-based exploration work. The black area are occupied
map cells, white area are free map cells, blue lines are frontiers, red arrow is robot’s
pose, and large yellow arrow is the goal chosen by exploration. Green rounds represent
cost of frontiers – the bigger round, the more profitable the frontier

4 http://wiki.ros.org/rtabmap ros
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For goal setting, we use frontier-based exploration algorithm [15] based on
explore lite ROS package5. The algorithm from this package looks for fron-
tiers between free and unknown space on 2D SLAM-builded map. To find these
frontiers, breadth first search (BFS) in map cell neighborhood graph is used. A
centroid of the most ”profitable” frontier is marked as goal for robot. An example
of frontiers and goal is shown at figure 2.

Lets describe goal search formally. Let p ∈ R
2 be current robot position

and F1, . . . , FN be frontiers found by BFS. Each frontier is represented as set of
points on 2D map:

Fi = {fi,1, . . . , fi,ni
}; fi,j ∈ R

2, j = 1, . . . , ni

A frontier looks like a chain of cells on occupancy map, i.e. points fi,j and
fi,j+1 are located in neighbor map cells. Centroid of a frontier is geometrical
mean of all its points:

centri =
1

ni

ni∑

j=1

fi,j

Frontier cost is a combination of its breadth (i.e. its size in cells) and distance
from robot position to it:

costi = α||centri − p||2 − βni (3)

Breadth is added to cost function with sign ”-” because broader frontiers are
usually more useful for exploration: the broader frontier is, the more new space
we may explore beyond it.

The resultant goal is the centroid of frontier with lowest cost:

goal = centrarg min
i

costi (4)

The described cost function has significant drawbacks. First, the distance
between robot and frontier is measured without obstacle map in mind. So, the
path to lowest-cost frontier may be very long that may lead to large exploration
time. Second, this cost function does not consider robot’s orientation. In context
of visual SLAM, large on-the-spot turns may cause localization fails, so the angle
that robot shoud turn is also critically important. To eliminate these drawbacks,
we modify the cost function and introduced some other enhancements into ex-
ploration algorithm. The proposed enhancements are described below.

4.3 Exploration: our enhancements

To increase stability and speed of exploration and adapt it to vision-based SLAM
methods, we made some enhancements into explore lite algorithm.

5 http://wiki.ros.org/explore lite
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First, we changed cost function of frontiers. Instead of euclidean distance
between robot and frontier, we used length of robot-frontier path in 2D occu-
pancy map. Also we added orientation - the angle between robot’s direction and
direction from robot to frontier (i.e. how much should robot turn before it starts
moving to the frontier). Our cost estimation formula may be written as follows:

Let q ∈ R
2 be robot orientation vector, and π = (p0, p1, . . . , pk) be path from

robot to centroid of i-th frontier of size ni. In path π, p0 is the robot position,
and pk is the centroid of i− th frontier. Our cost function is

costi = α

k∑

j=0

||pj+1 − pj ||2 − βni + γ|∠(q, p1 − p0)| (5)

where α is coefficient for path length, β is coefficient for frontier size, and γ

is coefficient for turn angle between robot orientation and direction to frontier.

Second, we added some post-processing of SLAM-builded map. We noticed
that map constructed by visual SLAM method may contain small fake gaps
in obstacles caused by occlusions or low camera resolution. In this case, path
planner may find invalid path to goal. So we reduced map resolution from default
0.05m to 0.1m. We performed it by max pooling method with cell type order
”unknown < free < occupied”. Additionally, we expanded all the obstacles by 1
cell (marked all cells near obstacles as occupied cells).

Also we added a kind of ”bump detector” into our exploration algorithm.
When path follower sends command ”move forward” to robot, and SLAM tracks
no forward motion for certain time (e.g. 1 second), we mark map cell ahead robot
position as occupied. This trick lets robot not to stuck before invisible obstacle
(e.g. small box on the floor in case of tall robot).

Described map post-processing let us significantly decrease amount of fake
gaps and non-traversable paths suggested by planner. That makes exploration
faster and more stable.

4.4 Path Planner

For path planning from robot to goal, we use Theta* algorithm [18]. This al-
gorithm has high computational efficiency and supports any-angle paths. So,
Theta* paths on occupancy grid are shorter and much smoother than paths of
traditional algorithms like Dijkstra [8] or A* [13] (see fig. 3). The path smooth-
ness is critically important for visual SLAM systems because sharp movements
may make vSLAM unstable.

The path planner takes post-processed occupancy map, robot and goal po-
sitions, and outputs sequence of points that represents robot-goal path. Each
point of this sequence is located in free map cell, and each segment between
two neighbor points passes through free cells. To track map and pose updates,
re-planning is launched with fixed frequency, default 5 Hz.
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Fig. 3. An example of A* path (red) and Theta* path (green)

4.5 Path Follower

To move robot along proposed path, we use simple and straightforward algo-
rithm. We compare robot orientation and direction from robot pose to the next
point of the path. If the angle between robot orientation and direction to path
point is under some threshold (e.g. less than 5 degrees in absolute value), we
move robot forward. If it is above the threshold and is negative, we turn robot
left. If it is above the threshold and is positive, we turn robot right.

To increase speed and stability of exploration, we also use some heuristics in
path follower. First, at start of exploration, the follower sends only ”turn left”
command until robot rotates 360 degrees. The ”look around” makes exploration
faster and sometimes more stable.

Second, in case of vSLAM tracking loss, we launch the following program:
rotate 180 degrees left, move a bit forward, and rotate 180 degrees left again.
This trick helps robot to return into place stored in SLAM’s memory and restore
SLAM tracking.

5 Experiments

5.1 Experimental setup

We evaluated our pipeline in both RGB-D and monocular modes. In RGB-D
mode, images and precise depths from simulator were sent as input for the SLAM
module. In monocular mode, a fully-convolutional neural network (FCNN) was
used to estimate depth maps from images. Images with these FCNN-predicted
depths were sent as input for SLAM.

We evaluated our exploration pipeline in photo-realistic indoor environment
of Habitat simulator [22]. For our experiments we used scenes of Gibson dataset
[28]. This dataset was collected in real indoor environments with high-precision
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Fig. 4. Images and maps of some scenes of Gibson dataset

Matterport camera6 and accurate algorithmic post-processing. That let us re-
ceive realistic image and precise depth map from each point of scene.

Gibson dataset contains about 500 scenes. Most of them are apartments
or living houses. Many scenes have defects like gaps in textures that may cause
exploration fails and incorrect quality estimation. Also, many scenes have several
floors, so 2D SLAM does not work on them. Therefore we selected only 31 scenes
for our experiments – the scenes without stairs and texture defects. Area of
selected scenes varied from 28 to 251 m2. An example of images and maps of
these scenes is shown in Fig. 4.

To measure exploration efficiency, we used coverage metric - the area of map
space explored at certain time. We measured both absolute and relative area.
The area values were measured for different time from start – from 15s to 240s.

Another efficiency metric that we computed was the number of scenes where
exploration was finished in 240 seconds, and average finish time on these scenes.
We considered exploration as finished when explored area was more than 95%
of total scene area.

Also we counted number of SLAM tracking losses over all the scenes to
measure exploration stability.

5.2 Results with RGB-D input

For broad evaluation of the whole exploration pipeline and our enhancements in
RGB-D mode, we carried out a set of experiments on selected scenes with precise
depths at SLAM module input. First, we tested our pipeline with unchanged
explore lite algorithm as exploration module. Second, we added a ”bump

6 https://matterport.com/
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detector” and tested our pipeline again. Next, we added obstacle expanding
into map post-processing to test its effect. And finally, we included the last our
enhancement - added orientation coefficient into cost function. To make metric
values more stable, we launched exploration with each enhancement 5 times on
all scenes, and averaged metric values through these 5 tests.

To examine behaviour of our exploration in both large and small environ-
ments, we selected 13 relatively large scenes (with area more than 60 m2), and
18 scenes with area under 60 m2. We estimated coverage metrics on large and
small scenes separately.

Fig. 5. Coverage of exploration on small scenes: top left – absolute coverage values,
top right - absolute coverage gain (compared to unchanged explore lite algorithm,
bottom left – coverage relative to total scene area, bottom right – gain of relative
coverage (compared to unchanged explore lite algorithm)

The coverage results on small scenes are shown at fig. 5. At full experiment
time (240 seconds), unchanged explore lite algorithm covered about 94% of
scene area at average. With adding bump detection, 240-second covered area
increased to about 97%. Obstacle expanding and orientation coefficient had no
significant effect to total covered area, but had significant positive effect to ex-
ploration speed - the area covered in 90 seconds increased from 91% to 96%.

The coverage values for exploration on large scenes are shown at fig. 6. Dif-
ferences at large scenes were more noticeable than on small ones (see for example
fig. 7). With unchanged exploration, total covered area was at average 78% in
relative value and 85 m2 in absolute value. With adding an imitation of ”bump
detector”, the covered area increased to 80% and 86m2 respectfully. With adding
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Fig. 6. Coverage of exploration on large scenes: top left – absolute coverage values,
top right – absolute coverage gain (compared to unchanged explore lite algorithm,
bottom left - coverage relative to total scene area, bottom right – gain of relative
coverage (compared to unchanged explore lite algorithm

Fig. 7. Maps builded by SLAM during 240 seconds of exploration on a large scene.
Left – with unchanged exploration, right – with all our enhancements



12 Kirill Muravyev, Andrey Bokovoy, and Konstantin Yakovlev

obstacle expanding, the coverage increased to 84% and 92.5 m2. But adding ori-
entation coefficient made no progress in coverage - explored area remained at
level of 84%.

Enhancement N of SLAM losses N of finished scenes Avg. finish time, s

No 14.2 21.6 213
Bump detection 13.8 21.75 205

Obstacle expanding 10.0 23.4 165
Orientation coef 10.4 23.2 157

Table 1. Stability and efficiency metric values for exploration with different enhance-
ments

The results of SLAM stability and exploration efficiency evaluation are shown
in table 1. Bump detection and obstacle expanding had great positive effect to all
of the metrics. Adding orientation coefficient to cost function did not influence
SLAM stability, but reduced a bit average finish time - from 165s to 157s. Such
weak effect of orientation coefficient may be probably caused by large amount of
”dead ends” in scenes selected for evaluation. So, robot had to turn around many
times in these dead ends regardless of frontier cost function. This hypothesis may
be checked by experiments on large scenes with spacious rooms.

Overall, proposed enhancements of exploration algorithm improved quality
for all of estimated metrics. With introduction of a kind of ”bump detector”,
obstacle expanding, and orientation coefficient of cost-function, average part of
explored area increased by 3% on small scenes and 6% on large scenes. Also
these enhancements reduced number of SLAM losses by almost 1.5 times and
reduced average exploration finish time from 213 seconds to 157 seconds.

5.3 Results with FCNN-predicted depths

To examine our pipeline in monocular mode, we carried out some experiments
on selected scenes. We used pre-trained network from [3] for depth prediction. To
adapt this network to simulated environment and Habitat camera parameters,
we fine-tuned it on approximately 38000 image-depth pairs from 25 scenes of
our selected collection. The other 6 selected scenes were used for evaluation of
the exploration pipeline.

The experiments showed that our exploration pipeline is able to work au-
tonomously and build plausible map (see Fig. 8) in monocular mode. However,
errors in neural depth estimation caused some errors in constructed map. For
example, a narrow doorways sometimes were mapped as continuous wall (see
Fig. 9). Due to such inaccurate mapping, the planner could not find paths to
far goals, and exploration algorithm explored only part of scene area. Coverage
metric values are shown in Fig. 10. Average explored part of area reached 44%
(compared to 77% with exploration in RGB-D mode).
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Fig. 8. An example of map constructed during exploration with FCNN depths (left)
compared to ground-truth map (right)

Fig. 9. Example of inaccurate mapping with FCNN-predicted depths. On the camera
view (left part of picture), small doorway is observed. But on the map (right part of
the picture), the doorway is marked as a wall (see red ellipsis)

Fig. 10. Comparison of exploration with FCNN-predicted depths and exploration with
precise depths: absolute coverage (left), and relative scene coverage (right)
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Overall, our tests showed that proposed exploration pipeline is able to work
in monocular mode with neural depth estimation, but inaccurate depth predic-
tion may lead to mapping errors and incomplete area coverage. These errors may
be eliminated with more thorough neural network fine-tuning and fine adjust-
ment of SLAM parameters. A video with demonstration of exploration with our
enhancements and FCNN-predicted depths is available at
https://drive.google.com/file/d/1QJWmjR9Y2VWbycZVwz3Y6Dl9Rzkp-zjB/view?usp=sharing.

6 Conclusion and future work

We introduced novel enhancements to exploration algorithm and evaluated them
in photo-realistic simulated environment. We showed that our enhancements
increase the area of the explored space, reduce the time needed for full scene
exploration and reduce number of tracking losses with vSLAM operating ground-
truth depth map. We also tested our approach in monocular mode, with FCNN-
predicted depth maps. The results show that the exploration algorithm with our
enhancements is able to explore about a half of environment in monocular mode.

In future we plan to carry out more research into monocular vSLAM to in-
crease its accuracy and exploration coverage. Possible ways of increasing vSLAM
quality are usage of novel time-consistent FCNN architectures, global depth cor-
rection with geometric methods, and thorough vSLAM map post-processing.
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