Skip to main content

Declarative Approach to UAVs Mission Contingency Planning in Dynamic Environments

  • Conference paper
  • First Online:
Book cover Distributed Computing and Artificial Intelligence, Volume 2: Special Sessions 18th International Conference (DCAI 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 332))

Abstract

This paper presents a novel approach to the joint proactive and reactive planning of the deliveries by a UAVs’ fleet. We develop a receding horizon based approach to a contingency planning for the UAVs’ fleet mission. We considered the delivery of goods to spatially dispersed customers, over assumed time horizon. In order to take into account forecasted weather changes which affect the energy consumption of UAVs and limit their range we propose a set of reaction rules that can be encountered during delivery in a highly dynamic and unpredictable environment. These rules are used in course of the contingency plans design related to the need to implement an emergency return of the UAV to the base or handling of ad hoc ordered deliveries. Due to nonlinearity of environment’s characteristics a constraint programming paradigm has been implemented and due to the NP-difficult nature of the considered planning problem, conditions have been developed that allow for the acceleration of calculations. The computational experiments have shown that the developed model is capable of providing feasible plans contingency plans of UAVs’ mission performed in dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bożejko, W., Gnatowski, A., Pempera, J., Wodecki, M.: Parallel tabu search for the cyclic job shop scheduling problem. Comput. Ind. Eng. 113, 512–524 (2017)

    Article  Google Scholar 

  2. Coelho, B.N., Coelho, V.N., Coelho, I.M.: A multi-objective green UAV routing problem. Comput. Oper. Res. 1–10 (2017). https://doi.org/10.1016/j.cor.2017.04.011

  3. Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 47, 70–85 (2017)

    Article  Google Scholar 

  4. Enright, J.J., Frazzoli, E., Pavone, M., Ketan, S.: Handbook of Unmanned Aerial Vehicles (2015). https://doi.org/10.1007/978-90-481-9707-1

  5. Estrada, M.A.R., Ndoma, A.: The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: natural disasters response and humanitarian relief aid. Proc. Comput. Sci. 149, 375–383 (2019). https://doi.org/10.1016/j.procs.2019.01.151

    Article  Google Scholar 

  6. Golinska, P., Hajdul, M.: Multi-agent coordination mechanism of virtual supply chain. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, pp. 620–629. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22000-5_64

    Chapter  Google Scholar 

  7. Golinska, P., Hajdul, M.: Virtual logistics clusters – IT support for integration. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS (LNAI), vol. 7196, pp. 449–458. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28487-8_47

    Chapter  Google Scholar 

  8. Hall, J., Anderson, D.: Reactive route selection from pre-calculated trajectories – application to micro-UAV path planning. Aeronaut. J. 115(1172), 635–640 (2011). https://doi.org/10.1017/S0001924000006321

    Article  Google Scholar 

  9. Lohatepanont, M., Barnhart, C.: Airline schedule planning: integrated models and algorithms for schedule design and fleet assignment. Transp. Sci. 38(1), 19–32 (2005). https://doi.org/10.1287/trsc.1030.0026

    Article  Google Scholar 

  10. Khosiawan, Y., Khalfay, A., Nielsen, I.: Scheduling unmanned aerial vehicle and automated guided vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm optimization. Int. J. Adv. Robot. Syst. (2018). https://doi.org/10.1177/1729881417754145

  11. Oubbati, O.S., Chaib, N., Lakas, A., Bitam, S., Lorenz, P.: U2RV: UAV-assisted reactive routing protocol for VANETs. Int. J. Commun. Syst. 33, e4104 (2020). https://doi.org/10.1002/dac.4104

    Article  Google Scholar 

  12. Oubbati, O., Lakas, A., Güneş, M., Zhou, F., Yagoubi, M.B.: UAV assisted reactive routing for urban VANETs. In: ACM Symposium on Applied Computing, Morocco (2017)

    Google Scholar 

  13. Patella, S.M., Grazieschi, G., Gatta, V., Marcucci, E., Carrese, S.: The adoption of green vehicles in last mile logistics: a systematic review. Sustainability 13(6) (2021). https://doi.org/10.3390/su13010006

  14. Radzki, G., Nielsen, P., Bocewicz, G., Banaszak, Z.: A proactive approach to resistant UAV mission planning. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) AUTOMATION 2020. AISC, vol. 1140, pp. 112–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40971-5_11

    Chapter  Google Scholar 

  15. Relich, M., Bocewicz, G., Rostek, K.B., Banaszak, Z.: A declarative approach to new product development project prototyping. IEEE Intell. Syst. (2020). https://doi.org/10.1109/MIS.2020.3030481

  16. Shirani, R., St-Hilaire, M., Kunz, T., Zhou, Y., Li, J., Lamont, L.: On the delay of reactive-greedy-reactive routing in unmanned aeronautical ad-hoc networks. Proc. Comput. Sci. 10, 535–542 (2012). https://doi.org/10.1016/j.procs.2012.06.068

    Article  Google Scholar 

  17. Sitek, P., Wikarek, J.: A multi-level approach to ubiquitous modeling and solving constraints in combinatorial optimization problems in production and distribution. Appl. Intell. 48(5), 1344–1367 (2017). https://doi.org/10.1007/s10489-017-1107-9

    Article  Google Scholar 

  18. Sung, I., Nielsen, P.: Zoning a service area of unmanned aerial vehicles for package delivery services. J. Intell. Rob. Syst. 97(3–4), 719–731 (2019). https://doi.org/10.1007/s10846-019-01045-7

    Article  Google Scholar 

  19. Thibbotuwawa, A., Nielsen, P., Zbigniew, B., Bocewicz, G.: energy consumption in unmanned aerial vehicles: a review of energy consumption models and their relation to the UAV routing. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2018. AISC, vol. 853, pp. 173–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99996-8_16

    Chapter  Google Scholar 

  20. Thibbotuwawa, A., Bocewicz, G., Radzki, G., Nielsen, P., Banaszak, Z.: UAV mission planning resistant to weather uncertainty. Sensors 20, 515 (2020)

    Article  Google Scholar 

  21. Thibbotuwawa, A., Bocewicz, G., Zbigniew, B., Nielsen, P.: A solution approach for UAV fleet mission planning in changing weather conditions. Appl. Sci. 9, 3972 (2019). https://doi.org/10.3390/app9193972

    Article  Google Scholar 

  22. Traverso, P., Giunchiglia, E., Spalazzi, L., Giunchiglia, F.: Formal theories for reactive planning systems: some considerations raised from an experimental application. AAAI Technical Report WS-96-07. AAAI (1996). https://www.researchgate.net/publication/2270270

  23. Troudi, A., Addouche, S.-A., Dellagi, S., Mhamedi, A.E.: Sizing of the drone delivery fleet considering energy autonomy. Sustainability 10, 3344 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bocewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radzki, G., Relich, M., Bocewicz, G., Banaszak, Z. (2022). Declarative Approach to UAVs Mission Contingency Planning in Dynamic Environments. In: González, S.R., et al. Distributed Computing and Artificial Intelligence, Volume 2: Special Sessions 18th International Conference. DCAI 2021. Lecture Notes in Networks and Systems, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-030-86887-1_1

Download citation

Publish with us

Policies and ethics