Skip to main content

Full Waveform Inversion in Viscoelastic Media

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Accumulations of gas hydrates in the bottom layers pose not only a potential threat to offshore engineering structures and shipping. They can also cause the release of significant volumes of methane into the atmosphere. The most natural way to detect gas hydrates is to use seismic methods. The technology of their application on the shelf is quite well developed, and there is a wide range of instrumental and methodological solutions that ensure their practical use. Detecting gas hydrates belongs to the class of multi-parameter inverse problems. Indeed, gas hydrates in the surrounding medium lead to a change in the propagation velocity of seismic waves and an increased level of wave absorption in these areas. Thus, the correct localization of the gas hydrate accumulations requires determining those regions in space where both the propagation velocities of seismic waves and quality factor change simultaneously. This work deals with the study of the trade-off in velocities and the quality factor of seismic waves. Namely, which condition we need to separate these two parameters’ perturbations by solving the dynamic inverse problem of seismic wave propagation.

Supported by Russian Science Foundation, project 20-11-20112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assous, F., Collino, F.: A numerical method for the explanation of sensitivity: the case of the identification of the 2D stratified elastic medium. Inverse Prob. 6(4), 487–514 (1990)

    Article  Google Scholar 

  2. Asvadurov, S., Knizhnerman, L., Pabon, J.: Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude. Geophysics 69(3), 817–824 (2004)

    Article  Google Scholar 

  3. Bogoyavlensky, V.: Prospects and problems of the arctic shelf oil and gas field development. Drilling Oil (Burenie i neft’) 11, 4–10 (2012)

    Google Scholar 

  4. Blanch, J.O., Robertsson, J.O.A., Symes, W.W.: Modeling of a constant q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics 60(1), 176–184 (1995)

    Article  Google Scholar 

  5. Carcione, J.M.: Seismic modeling in viscoelastic media. Geophysics 5, 110–120 (1993)

    Article  Google Scholar 

  6. Cheverda, V.A., Kostin, V.I.: R-pseudoinverses for compact operators in hilbert spaces:existence and stability. J. Inverse Ill-Posed Prob. 3(2), 131–148 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Christensen, R.M.: Theory of viscoelasticity - An introduction. 2nd edn, Academic Press, Cambridge, 364 p (1982)

    Google Scholar 

  8. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239–249 (1961)

    Article  MathSciNet  Google Scholar 

  9. Curtin, M.E., Sternberg, E.: On the linear theory of visscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962)

    Article  Google Scholar 

  10. Day, S.M., Minster, J.B.: Numerical simulation of attenuated wavefields using a pade approximant method. Geophys. Res. 67, 5279–5291 (1962)

    Article  MathSciNet  Google Scholar 

  11. Dmitrenko, I., et al.: Recent changes in shelf hydrography in the Siberian arctic: potential for subsea permafrost instability. J. Geophys. Res. 116, C10027 (2011)

    Article  Google Scholar 

  12. Dugarov G.A., Duchkov A.A., Duchkov A.D., Drobchik A.N.: Laboratory study of the acoustic properties of hydrate-bearing sediments. Sci. Rep. Facuilty Phys. Moscow Univ. (5), 1750812 (2017)

    Google Scholar 

  13. Efimova E.S.: Reliability of attenuation properties recovery for viscoelastic media. Open J. Appl. Sci. 3(1B1), 84–88 (2013)

    Google Scholar 

  14. Fichtner, A.: Full Seismic Waveform Modeling and Inversion. Springer, Berlin (2011) https://doi.org/10.1007/978-3-642-15807-0

  15. Hao, Q., Greenhalgh, S.: The generalized standard-linear-solid model and the corresponding viscoacoustic wave equations revisited. Geophys. J. Int. 219, 1939–1947 (2019)

    Google Scholar 

  16. Hölemann, J.A., Kirillov, S., Klagge, T., Novikhin, A., Kassens, H., Timokhov, L.: Near-bottom water warming in the Laptev sea in response to atmospheric and sea-ice conditions in 2007. Polar Res. 30, 6425 (2011)

    Article  Google Scholar 

  17. Janout, M.A., Hölemann, J., Krumpen, T.: Cross-shelf transport of warm and saline water in response to sea ice drift on the Laptev Sea shelf. J. Geophys. Res. Oceans 118, 563–576 (2013)

    Article  Google Scholar 

  18. Janout, M., et al.: Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf. Geophys. Res. Lett. 43(1), 264–272 (2016)

    Article  Google Scholar 

  19. Kostov, C., Neklyudov, D., Tcheverda, V.: waveform inversion for macro velocity model recon-struction in look-ahead off-set VSP: numerical SVD-based analysis. Geophys. Prospect. 61(6), 1099–1113 (2016)

    Google Scholar 

  20. Hak, B., Mulder, W.A.: Seismic attenuation imaging with causality. Geophys. J. Int. 184, 439–451 (2011)

    Article  Google Scholar 

  21. Hicks, G.J., Pratt, R.G.: Reflection waveform inversion using local descent methods: estimating attenuation and velocity over a gas-sand deposit. Geophysics 66(2), 598–612 (2001)

    Article  Google Scholar 

  22. Liu, H.-P., Anderson, D.L., Kanamori, H.: Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophysics 47, 41–58 (1976)

    Google Scholar 

  23. McDonal, F.J., Angona, F.A., Mills, R.L., Sengbush, R.L., van Nostrand, R.G., White, J.E.: Attenuation of shear and compressional waves in Pierre shale. Geophysics 23, 421–439 (1958)

    Article  Google Scholar 

  24. McGuire, A.D., et al.: Sensitivity of the carbon cycle in the arctic to climate change. Ecol. Monogr. 79(4), 523–555 (2009)

    Article  Google Scholar 

  25. Mulder, W.A.: Velocity and attenuation perturbations can hardly be determined simultaneously in acoustic attenuation scattering. In: SEG Houston International Exposition and Annual Meeting, pp. 3078–3082 (2009)

    Google Scholar 

  26. Mulder, W.A., Hak, B.: An ambiguity in attenuation scattering imaging. Geophys. J. Int. 178(3), 1614–1624 (2009)

    Article  Google Scholar 

  27. Nemirovskaya, I.A.: Petroleum hydrocarbons in the ocean (in russina: Neftjanye uglevodorody v okeane). Priroda 3, 17–27 (2008)

    Google Scholar 

  28. Parra, J.O., Hackert, C.: Wave attenuation attributes as flow unit indicators. Lead. Edge 21(6), 564–572 (2002)

    Article  Google Scholar 

  29. Rachold, V., et al.: Near-shore arctic subsea permafrost. Trans. EOS: Trans. Am. Geophys. Union 88(13), 149–156 (2007)

    Article  Google Scholar 

  30. Romanov, V.G.: The two-dimensional inverse problem for the equation of viscoelasticity. Siberian Math. Mag. 53(6), 1401–1412 (2012)

    Google Scholar 

  31. Ruppel, C.D., Kessler, J.D.: The interaction of climate change and methane hydrates. Rev. Geophys. 55(1), 126–168 (2017)

    Article  Google Scholar 

  32. Sun, Y.F., Goldberg, D. Hydrocarbon signatures from high-resolution attenuation profiles. In: SEG Technical Program Expanded Abstracts, pp. 996–999 (1998)

    Google Scholar 

  33. Zener, C.: Elasticity and Anelasticity of Metals, p. 170. University of Chicago Press, Chicago (1948)

    Google Scholar 

  34. White, R.E.: The acuracy of estimating Q from seismic data. Geophysics 57, 1508–1511 (1992)

    Article  Google Scholar 

  35. Zhang, D., Lamoureux, M., Margrave, G., Cherkaev, E.: Rational approximation for estimation of quality q factor and phase velocity in linear, viscoelastic, isotropic media. Comput. Geosci. 15, 117–133 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Cheverda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheverda, V., Efimova, E., Reshetova, G. (2021). Full Waveform Inversion in Viscoelastic Media. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics