Skip to main content

Asymptotic Quadrature Based Numerical Integration of Stochastic Damped Oscillators

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12950))

Included in the following conference series:

Abstract

This paper is focused on the numerical solution of stochastic harmonic damped oscillators, characterized by a nonlinear high-oscillating time-varying forcing term, coupled with a random force driven by an additive Wiener noise. The scheme is based on asymptotic quadratures together with the application of the variation of constants formula. Theoretical issues are provided and the numerical evidence on selected popular related physical models is also given.

This work is supported by GNCS-INDAM project and by PRIN2017-MIUR project. The authors are member of the INDAM Research group GNCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulsara, A.R., Lindenberg, K., Shuler, K.E.: Spectral analysis of a nonlinear oscillator driven by random and periodic forces. I. Linearized theory. J. Stat. Phys. 27, 787–808 (1982). https://doi.org/10.1007/BF01013448

    Article  MathSciNet  Google Scholar 

  2. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)

    Article  MathSciNet  Google Scholar 

  3. Burrage, K., Lenane, I., Lythe, G.: Numerical methods for second-order stochastic differential equations. SIAM J. Sci. Comp. 29, 245–264 (2007)

    Article  MathSciNet  Google Scholar 

  4. Burrage, K., Lythe, G.: Accurate stationary densities with partitioned numerical methods for stochastic differential equations. SIAM J. Numer. Anal. 47, 1601–1618 (2009)

    Article  MathSciNet  Google Scholar 

  5. Burrage, K., Lythe, G.: Accurate stationary densities with partitioned numerical methods for stochastic partial differential equations. Stochast. Partial Diff. Eq. Anal. Comput. 2(2), 262–280 (2014). https://doi.org/10.1007/s40072-014-0032-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Citro, V., D’Ambrosio, R.: Long-term analysis of stochastic \(\theta \)-methods for damped stochastic oscillators. Appl. Numer. Math. 150, 18–26 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cohen, D.: On the numerical discretisation of stochastic oscillators. Math. Comput. Simul. 82, 1478–1495 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cohen, D., Sigg, M.: Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations. Numer. Math. 121, 1–29 (2012)

    Article  MathSciNet  Google Scholar 

  9. D’Ambrosio, R., Di Giovacchino, S.: Mean-square contractivity of stochastic theta-methods. Comm. Nonlin. Sci. Numer. Simul. 96, 105671 (2021)

    Article  Google Scholar 

  10. D’Ambrosio, R., Di Giovacchino, S.: Nonlinear stability issues for stochastic Runge-Kutta methods. Comm. Nonlin. Sci. Numer. Simul. 94, 105549 (2021)

    Article  MathSciNet  Google Scholar 

  11. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Numerical preservation of long-term dynamics by stochastic two-step methods. Disc. Cont. Dyn. Sys. Ser. B 23(7), 2763–2773 (2018)

    MathSciNet  MATH  Google Scholar 

  12. D’Ambrosio, R., Scalone, C.: On the numerical structure preservation of nonlinear damped stochastic oscillators. Num. Algorithms 86(3), 933–952 (2020). https://doi.org/10.1007/s11075-020-00918-5

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Ambrosio R., Scalone C.: Filon quadrature for stochastic oscillators driven by time-varying forces, to appear in Appl. Numer. Math

    Google Scholar 

  14. D’Ambrosio, R., Scalone, C.: Two-step Runge-Kutta methods for stochastic differential equations. Appl. Math. Comput. 403, 125930 (2021)

    MathSciNet  MATH  Google Scholar 

  15. D’Ambrosio, R., Scalone C.: A Magnus integrator for nonlinear stochastic oscillators with non-constant frequency, submitted

    Google Scholar 

  16. de la Cruz, H., Jimenez, J.C., Zubelli, J.P.: Locally linearized methods for the simulation of stochastic oscillators driven by random forces. BIT 57(1), 123–151 (2017)

    Article  MathSciNet  Google Scholar 

  17. Failla, G., Pirrotta, A.: On the stochastic response of a fractionally-damped duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5131–5142 (2012)

    Article  MathSciNet  Google Scholar 

  18. Gardiner, C.W.: Handbook of Stochastic Methods, for Physics Chemistry and the Natural Sciences, 3rd edn. Springer, Heidelberg (2004)

    Book  Google Scholar 

  19. Gitterman, M.: The Noisy Oscillator, The First Hundred Years From Einstein Until Now. World Scientific (2005)

    Google Scholar 

  20. Gitterman, M.: Oscillator subject to periodic and random forces. J. Mod. Phys. 4, 94–98 (2013)

    Article  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-30666-8

    Book  MATH  Google Scholar 

  22. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  23. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44, 755–772 (2004)

    Article  MathSciNet  Google Scholar 

  24. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2006)

    Article  MathSciNet  Google Scholar 

  25. Condon, M., Iserles, A., Nørsett, S.P.: Differential equations with general highly oscillatory forcing terms. Proc. R. Soc. A 470, 20130490 (2015)

    Article  MathSciNet  Google Scholar 

  26. Khanamiryan, M.: Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations: part I. BIT 48, 743 (2008)

    Article  MathSciNet  Google Scholar 

  27. Lingala, N., Namachchivaya, N., Pavlyukevich, I.: Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone. Nonlinearity 30, 1376–1404 (2017)

    Article  MathSciNet  Google Scholar 

  28. Scalone C.: A numerical scheme for harmonic stochastic oscillators based on asymptotic expansions. submitted

    Google Scholar 

  29. Senoisian, M.J., Tocino, A.: On the numerical integration of the undamped harmonic oscillator driven by independent additive gaussian white noises. Appl. Numer. Math. 137, 49–61 (2019)

    Article  MathSciNet  Google Scholar 

  30. Shi, C., Xiao, Y., Zhang, C.: The convergence and MS stability of exponential Euler method for semilinear stochastic differential equations, abstract and applied analysis (2012)

    Google Scholar 

  31. Strömmen Melbö, A.H., Higham, D.J.: Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 51, 89–99 (2004)

    Article  MathSciNet  Google Scholar 

  32. Tocino, A.: On preserving long-time features of a linear stochastic oscillator. BIT 47, 189–196 (2007)

    Article  MathSciNet  Google Scholar 

  33. Yalim, J., Welfert, B.D., Lopez, J.M.: Evaluation of closure strategies for a periodically-forced Duffing oscillator with slowly modulated frequency subject to Gaussian white noise. Commun. Nonlinear Sci. Numer. Simulat. 44, 144–158 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmela Scalone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Ambrosio, R., Scalone, C. (2021). Asymptotic Quadrature Based Numerical Integration of Stochastic Damped Oscillators. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics