Skip to main content

Improving Parametric PCA Using KL-divergence Between Gaussian-Markov Random Field Models

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12950))

Included in the following conference series:

  • 1402 Accesses

Abstract

Parametric PCA is a dimensionality reduction based metric learning method that uses the Bhattacharrya and Hellinger distances between Gaussian distributions estimated from local patches of the KNN graph to build the parametric covariance matrix. Later on, PCA-KL, an entropic PCA version using the symmetrized KL-divergence (relative entropy) was proposed. In this paper, we extend this method by replacing the Gaussian distribution by a Gaussian-Markov random field model. The main advantage is the incorporation of the spatial dependence by means of the inverse temperature parameter. A closed form expression for the KL-divergence is derived, allowing fast computation and avoiding numerical simulations. Results with several real datasets show that the proposed method is capable of improving the average classification performance in comparison to PCA-KL and some state-of-the-art manifold learning algorithms, such as t-SNE and UMAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  2. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Royal Stat. Soc. Ser. B (Methodological) 36(2), 192–236 (1974)

    Google Scholar 

  3. Cunningham, J.P., Ghahramani, Z.: Linear dimensionality reduction: survey, insights, and generalizations. J. Mach. Learn. Res. 16, 2859–2900 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Hammersley, J.M., Clifford, P.: Markov field on finite graphs and lattices (preprint) (1971). www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf

  5. Jolliffe, I.T.: Principal Component Analysis. 2 edn. Springer, New York (2002). https://doi.org/10.1007/b98835

  6. Levada, A.L.M.: Parametric PCA for unsupervised metric learning. Pattern Recogn. Lett. 135, 425–430 (2020)

    Article  Google Scholar 

  7. Levada, A.L.M.: Information geometry, simulation and complexity in gaussian random fields. Monte Carlo Methods Appl. 22, 81–107 (2016)

    Article  MathSciNet  Google Scholar 

  8. Levada, A.L.M.: PCA-KL: a parametric dimensionality reduction approach for unsupervised metric learning. Adv. Data Anal. Classif. 1–40 (2021). https://doi.org/10.1007/s11634-020-00434-3

  9. Li, D., Tian, Y.: Survey and experimental study on metric learning methods. Neural Netw. 105, 447–462 (2018)

    Article  Google Scholar 

  10. McClurkin, J., L.M. Optican, B., Gawne, T.: Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. Science 253, 675–677 (1991)

    Google Scholar 

  11. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv arXiv:1802.03426 (2020)

  12. Murase, H., Nayar, S.: Visual learning and recognition of 3d objects from appearance. Int. J. Comput. Vis. 14, 5–24 (1995)

    Article  Google Scholar 

  13. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  14. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020217

    Chapter  Google Scholar 

  15. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2268–2269 (2000)

    Article  Google Scholar 

  16. Tasoulis, S., Pavlidis, N.G., Roos, T.: Nonlinear dimensionality reduction for clustering. Pattern Recog. 107, 107508 (2020)

    Article  Google Scholar 

  17. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  18. Van Der Maaten, L., Hinton, G.E.: Visualizing high-dimensional data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  19. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10, 66–71 (2009)

    Google Scholar 

  20. Wang, F., Sun, J.: Survey on distance metric learning and dimensionality reduction in data mining. Data Min. Knowl. Disc. 29(2), 534–564 (2014). https://doi.org/10.1007/s10618-014-0356-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre L. M. Levada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levada, A.L.M. (2021). Improving Parametric PCA Using KL-divergence Between Gaussian-Markov Random Field Models. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics