Skip to main content

Hybrid Urban Model (CA + Agents) for the Simulation of Real Estate Market Dynamics and Sea-Level Rise Impacts

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12950))

Included in the following conference series:

  • 1402 Accesses

Abstract

The paper presents a proposal for a hybrid model - based on cellular automata and agents - that simulates the spatial distribution of population and built area according to real estate market’s dynamics and the risk of flooding due to sea-level rise. Its main differential is the integration of network analysis metrics to the functioning of the cellular automata. This proposal was motivated by the interest in analysing future development scenarios for the coast of ​​Rio Grande do Sul, a state located in southern Brazil. Its demographic dynamics have been generating pressure for urban growth to the detriment of the surrounding natural environment, making cities in the region more susceptible to natural phenomena such as the sea-level rise. The proposed model is presented through the ODD + D description protocol and the results of simulations executed for Imbé and Tramandaí, two municipalities located on the coast of Rio Grande do Sul. The results show that the model represents the effect of current planning policies on long-term urban development. However, some urban dynamics are not yet precisely represented by the proposal at its current stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertê, A., Lemos, B., Testa, G., Zanella, M., Oliveira, S.: Perfil Socioeconômico COREDE Litoral. Department of Planning, Mobility and Regional Development of the State Government of Rio Grande do Sul, Porto Alegre, Brazil (2015). https://planejamento.rs.gov.br/upload/arquivos/201512/15134132-20151117102724perfis-regionais-2015-litoral.pdf. Accessed 18 Mar 2021

  2. Zuanazzi, P., Bartels, M.: Estimativas para a População Flutuante do Litoral Norte do RS. Fundação de Economia e Estatística Siegfried Emanuel Heuser, Porto Alegre, Brazil (2016)

    Google Scholar 

  3. Kluge, I.: A Articulação entre Urbanização, Economia e Mercado Imobiliário em Cidades Litorâneas e a Relação com o Ambiente Construído: o estudo de caso do município de Capão da Canoa – RS. Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Brazil (2015). https://lume.ufrgs.br/handle/10183/130719. Accessed 18 Mar 2021

  4. Climate Central’s Coastal Risk Screening Tool. https://coastal.climatecentral.org/map. Accessed 18 Mar 2021

  5. Casali, Y., Heinimann, H.R.: A topological characterization of flooding impacts on the Zurich road network. PLOS ONE 14(7), e0220338 (2019). https://doi.org/10.1371/journal.pone.0220338

  6. Kim, Y., Newman, G.: Advancing scenario planning through integrating urban growth prediction with future flood risk models. Comput. Environ. Urban Syst. 82, 101498 (2020). https://doi.org/10.1016/j.compenvurbsys.2020.101498

    Article  Google Scholar 

  7. Li, S., Li, X., Liu, X., Wu, Z., Ai, B., Wang, F.: Simulation of spatial population dynamics based on labor economics and multi-agent systems: a case study on a rapidly developing manufacturing metropolis. Int. J. Geogr. Inf. Sci. 27, 2410–2435 (2013). https://doi.org/10.1080/13658816.2013.826360

    Article  Google Scholar 

  8. Taberna, A., Filatova, T., Roy, D., Noll, B.: Tracing resilience, social dynamics and behavioral change: a review of agent-based flood risk models. Socio-Environ. Syst. Model. 2, 17938 (2020). https://doi.org/10.18174/sesmo.2020a17938

    Article  Google Scholar 

  9. Batty, M. Complexity in city systems: understanding, evolution and design. Centre for Advanced Spatial Analysis (CASA), London (2007). https://discovery.ucl.ac.uk/id/eprint/3473/. Accessed 18 Mar 2021

  10. Portugali, J.: What makes cities complex? In: Portugali, J., Stolk, E. (eds.) Complexity, Cognition, Urban Planning and Design. SPC, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32653-5_1

    Chapter  Google Scholar 

  11. Moroni, S., Cozzolino, S.: Action and the city: emergence, complexity, planning. Cities 90, 42–51 (2019). https://doi.org/10.1016/j.cities.2019.01.039

    Article  Google Scholar 

  12. De Roo, G.: Spatial planning, complexity and a world ‘out of equilibrium’: outline of a non-linear approach to planning. In: de Roo, G., Hillier, J., van Wezemael, J. (eds.) Complexity and Spatial Planning: Systems, Assemblages and Simulations. Ashgate Publishing, Farnham (2012)

    Google Scholar 

  13. Zellner, M., Campbell, S.D.: Planning for deep-rooted problems: what can we learn from aligning complex systems and wicked problems? Plan. Theor. Pract. 16, 457–478 (2015). https://doi.org/10.1080/14649357.2015.1084360

    Article  Google Scholar 

  14. White, R., Engelen, G., Uljee, I.: Modeling Cities and Regions as Complex Systems: From Theory to Planning Applications. The MIT Press, Cambridge, Massachusetts (2015).978-0-262-02956-8

    Book  Google Scholar 

  15. Torrens, P.M.: How Cellular Models of Urban Systems Work (1. Theory). Centre for Advanced Spatial Analysis (CASA), London (2000). https://discovery.ucl.ac.uk/id/eprint/1371/. Accessed 18 Mar 2021

  16. Torrens, P.M.: Automata-based models of urban systems. In: Longley, P., Batty, M. (eds.) Advanced Spatial Analysis, pp. 61–79. ESRI Press, Redlands (2003)

    Google Scholar 

  17. Liu, Y., Batty, M., Wang, S., Corcoran, J.: Modelling urban changes with cellular automata: contemporary issues and future research directions. Prog. Hum. Geogr. 45, 3–24 (2021). https://doi.org/10.1177/0309132519895305

    Article  Google Scholar 

  18. Crooks, A.T., Patel, A., Wise, S.: Multi-agent systems for urban planning. In: Pinto, N., Tenedório, J.A., Antunes, A.P., Caldera, J.R. (eds.) Technologies for Urban and Spatial Planning: Virtual Cities and Territories, pp. 29–56. IGI Global (2014)

    Google Scholar 

  19. Dahal, K.R., Chow, T.E.: An agent-integrated irregular automata model of urban land-use dynamics. Int. J. Geogr. Inf. Sci. 28, 2281–2303 (2014). https://doi.org/10.1080/13658816.2014.917646

    Article  Google Scholar 

  20. Batty, M., Torrens, P.M.: Modelling and prediction in a complex world. Futures 37, 745–766 (2005). https://doi.org/10.1016/j.futures.2004.11.003

    Article  Google Scholar 

  21. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. 1. Paperback edn. MIT Press, Cambridge, Massachusetts (2007). ISBN 978-0-262-52479-7

    Google Scholar 

  22. Ngo, T.A., See, L.: Calibration and validation of agent-based models of land cover change. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 181–197. Springer Netherlands, Dordrecht (2012). https://doi.org/10.1007/978-90-481-8927-4_10

    Chapter  Google Scholar 

  23. Müller, B., et al.: Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environ. Model. Softw. 48, 37–48 (2013). https://doi.org/10.1016/j.envsoft.2013.06.003

    Article  Google Scholar 

  24. Krafta, R.: Spatial self-organization and the production of the city. Cybergeo: Eur. J. Geogr. (1999). Document 350. https://doi.org/10.4000/cybergeo.4985

  25. Krafta, R.: Urban convergence: morphology and attraction. Environ. Plan. B Plan. Des. 23, 37–48 (1996). https://doi.org/10.1068/b230037

    Article  Google Scholar 

  26. Filatova, T.: Empirical agent-based land market: integrating adaptive economic behavior in urban land-use models. Comput. Environ. Urban Syst. 54, 397–413 (2015). https://doi.org/10.1016/j.compenvurbsys.2014.06.007

    Article  Google Scholar 

  27. Taillandier, P., et al.: Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica 23(2), 299–322 (2018). https://doi.org/10.1007/s10707-018-00339-6

    Article  Google Scholar 

  28. OpenStreetMap. https://www.openstreetmap.org/search?query=imb%C3%A9#map=12/-29.9355/-50.1156. Accessed 19 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Kruger Dalcin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalcin, G.K., Krafta, R. (2021). Hybrid Urban Model (CA + Agents) for the Simulation of Real Estate Market Dynamics and Sea-Level Rise Impacts. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics