Skip to main content

Detecting Environmental, Social and Governance (ESG) Topics Using Domain-Specific Language Models and Data Augmentation

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12871))

Included in the following conference series:

Abstract

Despite recent advances in deep learning-based language modelling, many natural language processing (NLP) tasks in the financial domain remain challenging due to the paucity of appropriately labelled data. Other issues that can limit task performance are differences in word distribution between the general corpora – typically used to pre-train language models – and financial corpora, which often exhibit specialized language and symbology. Here, we investigate two approaches that can help to mitigate these issues. Firstly, we experiment with further language model pre-training using large amounts of in-domain data from business and financial news. We then apply augmentation approaches to increase the size of our data-set for model fine-tuning. We report our findings on an Environmental, Social and Governance (ESG) controversies data-set and demonstrate that both approaches are beneficial to accuracy in classification tasks.

This research was conducted while all authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that our definition is company- and investment -centric and differs from consumer/citizen-relevant controversies dealt with by [9] and [5], for example.

  2. 2.

    https://www.ft.com/content/3f1d44d9-094f-4700-989f-616e27c89599 (accessed 2020-06-30).

  3. 3.

    To obtain the data for replication, it can be licensed from Reuters at https://www.reutersagency.com/en/products/archive/ (accessed 2020-06-30).

  4. 4.

    https://www.refinitiv.com/en/financial-data/company-data/esg-research-data (accessed 2020-06-30).

  5. 5.

    https://sustainabledevelopment.un.org (accessed 2020-06-30).

  6. 6.

    https://www.statmt.org/wmt14/translation-task.html (accessed 2020-06-30).

  7. 7.

    F-score or F1 is the harmonic mean between precision and recall.

  8. 8.

    http://handbook.reuters.com (accessed 2020-06-39).

References

  1. Araci, D.: FinBERT: financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063 (2019)

  2. Barz, B., Denzler, J.: Deep learning on small datasets without pre-training using cosine loss. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2020, IEEE (2020)

    Google Scholar 

  3. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3606–3611 (2019)

    Google Scholar 

  4. Bloice, M.D., Stocker, C., Holzinger, A.: Augmentor: an image augmentation library for machine learning. Technical report, ArXiv preprint server (2017). https://arxiv.org/pdf/1708.04680.pdf

  5. Choi, Y., Jung, Y., Myaeng, S.-H.: Identifying controversial issues and their sub-topics in news articles. In: Chen, H., Chau, M., Li, S., Urs, S., Srinivasa, S., Wang, G.A. (eds.) PAISI 2010. LNCS, vol. 6122, pp. 140–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13601-6_16

    Chapter  Google Scholar 

  6. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does BERT look at? An analysis of BERT’s attention. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 276–286. ACL, Florence (2019). https://doi.org/10.18653/v1/W19-4828

  7. Desola, V., Hanna, K., Pri Nonis: FinBERT: pre-trained model on sec filings for financial natural language tasks. Technical report, University of California at Berkeley (2019). https://doi.org/10.13140/RG.2.2.19153.89442

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423

  9. Dori-Hacohen, S., Jensen, D., Allan, J.: Controversy detection in Wikipedia using collective classification. In: Proceedings of SIGIR, New York, NY, USA, pp. 797–800 (2016)

    Google Scholar 

  10. Edunov, S., Ott, M., Auli, M., Grangier, D.: Understanding back-translation at scale. arXiv preprint arXiv:1808.09381 (2018)

  11. Feuerriegel, S., Prendinger, H.: News-based trading strategies. Decis. Support Syst. 90, 65–74 (2016)

    Article  Google Scholar 

  12. Friede, G., Busch, T., Bassen, A.: ESG and financial performance: aggregated evidence from more than 2000 empirical studies. J. Sustain. Financ. Invest. 5(4), 210–233 (2015). https://doi.org/10.1080/20430795.2015.1118917

    Article  Google Scholar 

  13. In, S.Y., Rook, D., Monk, A.: Integrating alternative data (also known as ESG data) in investment decision making. Glob. Econ. Rev. 48(3), 237–260 (2019). https://doi.org/10.1080/1226508X.2019.1643059

    Article  Google Scholar 

  14. Jang, M., Foley, J., Dori-Hacohen, S., Allan, J.: Probabilistic approaches to controversy detection. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, pp. 2069–2072. ACM, New York (2016). https://doi.org/10.1145/2983323.2983911

  15. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. arXiv preprint arXiv:2001.04451 (2020)

  16. Kovaleva, O., Romanov, A., Rogers, A., Rumshisky, A.: Revealing the dark secrets of BERT. arXiv preprint arXiv:1908.08593 (2019)

  17. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  18. Lee, J., et al.: BioBERT: pre-trained biomedical language representation model for biomedical text mining. arXiv preprint arXiv:1901.08746 (2019)

  19. Leidner, J.L.: Survey of textual data & geospatial technology. In: Werner, M., Chiang, Y.-Y. (eds.) Handbook of Big Geospatial Data. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55462-0_16

    Chapter  Google Scholar 

  20. Lu, Y., Nakicenovic, N., Visbeck, M., Stevance, A.S.: Policy: five priorities for the UN Sustainable Development Goals. Nat. News 520(7548), 432 (2015)

    Article  Google Scholar 

  21. Nugent, T., Leidner, J.L.: Risk mining: company-risk identification from unstructured sources. In: Domeniconi, C., et al. (eds.) IEEE International Conference on Data Mining ICDM, 12–15 December 2016, Barcelona, Spain, pp. 1308–1311 (2016)

    Google Scholar 

  22. Nugent, T., Petroni, F., Raman, N., Carstens, L., Leidner, J.L.: A comparison of classification models for natural disaster and critical event detection from news. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 3750–3759. IEEE (2017)

    Google Scholar 

  23. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of EMNLP (2014)

    Google Scholar 

  24. Schramade, W.: Investing in the UN sustainable development goals: opportunities for companies and investors. J. Appl. Corp. Fin. 29(2), 87–99 (2017)

    Article  Google Scholar 

  25. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 (2015)

  26. Vaswani, A., et al.: Tensor2Tensor for neural machine translation. CoRR abs/1803.07416 (2018)

    Google Scholar 

  27. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  28. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv preprint arXiv:1904.12848 (2019)

  29. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of NAACL-HLT, pp. 1480–1489. ACL, San Diego (2016). https://doi.org/10.18653/v1/N16-1174

  30. Yu, A.W., et al.: QANet: combining local convolution with global self-attention for reading comprehension. arXiv preprint arXiv:1804.09541 (2018)

  31. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv preprint arXiv:1805.07836 (2018)

  32. Zhu, Y., et al.: Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings of IEEE ICCV, pp. 19–27 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nugent, T., Stelea, N., Leidner, J.L. (2021). Detecting Environmental, Social and Governance (ESG) Topics Using Domain-Specific Language Models and Data Augmentation. In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds) Flexible Query Answering Systems. FQAS 2021. Lecture Notes in Computer Science(), vol 12871. Springer, Cham. https://doi.org/10.1007/978-3-030-86967-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86967-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86966-3

  • Online ISBN: 978-3-030-86967-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics