Skip to main content

A Novel Approach to End-to-End Facial Recognition Framework with Virtual Search Engine ElasticSearch

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12951))

Included in the following conference series:

Abstract

Facial recognition has been one of the most intriguing, interesting research topics over years. It involves some specific face-based algorithms such as facial detection, facial alignment, facial representation, and facial recognition as well; however, all of these algorithms are derived from heavy deep learning architectures, which leads to limitations on development, scalability, flawed accuracy, and deployment into publicity with mere CPU servers. It also requires large datasets containing hundreds of thousands of records for training purposes. In this paper, we propose a full pipeline for an effective face recognition application which only uses a small Vietnamese-celebrity datasets and CPU for training that can solve the leakage of data and the need for GPU devices. It is based on a face vector-to-string tokens algorithm then saves face’s properties into Elasticsearch for future retrieval, so the problem of online learning in Facial Recognition is also tackled. In comparison with another popular algorithms on the dataset, our proposed pipeline achieves not only higher accuracy, but also faster inference time for real-time face recognition applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://drive.google.com/drive/folders/1I3KXcGpmm6zpw_y07p-7wIKt5K08iOgc.

  2. 2.

    https://www.djangoproject.com/.

References

  1. Almabdy, S., Elrefaei, L.: Deep convolutional neural network-based approaches for face recognition. Appl. Sci. 9, 4397 (2019). https://doi.org/10.3390/app9204397

    Article  Google Scholar 

  2. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: OpenFace: a general-purpose face recognition library with mobile applications. Technical report CMU-CS-16-118, CMU School of Computer Science (2016)

    Google Scholar 

  3. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  4. Cao, Q., et al.: VGGFace2: A dataset for recognising faces across pose and age (2018). arXiv: 1710.08092 [cs.CV]

  5. Chowdhry, D.A., et al.: Smart security system for sensitive area using face recognition. In: 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET), pp. 11–14 (2013)

    Google Scholar 

  6. Django Contributors. Django 3.1 (2020). https://www.djangoproject.com/

  7. DVC Contributors. Iterative, DVC: Data Version Control - Git for Data & Models (2020). https://doi.org/10.5281/zenodo.012345

  8. Elasticsearch Contributors. Function Score query 6.8 (2019). https://www.elastic.co/guide/en/elasticsearch/reference/6.8/query-dslfunction-score-query.html

  9. Elasticsearch Contributors. Rescoring 6.8 (2019). https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-request-rescore.html

  10. Tensorflow Contributors. Tensorflow Serving 6.8 (2019). https://github.com/tensorflow/serving

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  12. Deb, D., Nain, N., Jain, A.K.: longitudinal study of child face recognition (2017). arXiv: 1711.03990 [cs.CV]

  13. Deng, J., et al.: ArcFace: additive angular margin loss for deep face recognition (2019). arXiv: 1801.07698 [cs.CV]

  14. Deng, J., et al.: RetinaFace: single-stage dense face localisation in the wild (2019). arXiv: 1905.00641 [cs.CV]

  15. Karl Pearson, F.R.S.: LIII. On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901). https://doi.org/10.1080/14786440109462720

  16. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation (2014). arXiv: 1311.2524 [cs.CV]

  17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  18. He, K., et al.: Deep residual learning for image recognition (2015). arXiv: 1512.03385 [cs.CV]

  19. Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  20. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). arXiv: 1704.04861 [cs.CV]

  21. King, D.E.: Dlib-Ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009). ISSN: 1532-4435

    Google Scholar 

  22. Komulainen, J., Hadid, A., Pietikainen, M.: Context based face anti-spoofing, pp. 1–8, September 2013. https://doi.org/10.1109/BTAS.2013.6712690

  23. Huang, G.B., Learned-Miller, E.: Labeled faces in the wild: updates and new reporting procedures. Technical report UM-CS-2014-003. University of Massachusetts, Amherst, May 2014

    Google Scholar 

  24. Li, H., et al.: A convolutional neural network cascade for face detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325–5334 (2015)

    Google Scholar 

  25. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings of International Conference on Image Processing, vol. 1, p. I (2002)

    Google Scholar 

  26. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2. ISBN 978-3-319-46447-3

  27. Mu, C., et al.: Towards practical visual search engine within elasticsearch (2019). arXiv: 1806.08896 [cs.CV]

  28. Ng, H.-W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 343–347, January 2015. https://doi.org/10.1109/ICIP.2014.7025068

  29. Owayjan, M., et al.: Face recognition security system, December 2013

    Google Scholar 

  30. Parmar, D., Mehta, B.: Face recognition methods & applications. Int. J. Comput. Technol. Appl. 4, 84–86 (2014)

    Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Rima, S., et al.: Smart security surveillance using IoT, pp. 659–663, August 2018. https://doi.org/10.1109/ICRITO.2018.8748703

  33. Sahoo, D., et al.: Online deep learning: learning deep neural networks on the fly (2017). arXiv: 1711.03705 [cs.LG]

  34. Satish, A., Devarajan, N.: Preprocessing technique for face recognition applications under varying illumination conditions. Glob. J. Comput. Sci. Technol. Graph. Vis. 12, 13–18 (2012)

    Google Scholar 

  35. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015. https://doi.org/10.1109/cvpr.2015.7298682. http://dx.doi.org/10.1109/CVPR.2015

  36. Shi, Y., Otto, C., Jain, A.K.: Face clustering: representation and pairwise constraints. IEEE Trans. Inform. Forensics Secur. 13(7), 1626–1640 (2018). https://doi.org/10.1109/tifs.2018.2796999. https://dx.doi.org/10.1109/TIFS.2018

  37. Taigman, Y., et al.: DeepFace: closing the gap to human-level performance in face verification, September 2014. https://doi.org/10.1109/CVPR.2014.220

  38. Tang, X., et al.: PyramidBox: a context-assisted single shot face detector (2018). arXiv: 1803.07737 [cs.CV]

  39. Tolba, A., El-Baz, A., El-Harby, A.: Face recognition: a literature review. Int. J. Signal Process. 2, 88–103 (2005)

    Google Scholar 

  40. Vikram, K., Padmavathi, S.: Facial parts detection using Viola Jones algorithm. In: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1–4 (2017)

    Google Scholar 

  41. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, vol. 1, p. I-511, February 2001. ISBN: 0-7695-1272-0. https://doi.org/10.1109/CVPR.2001.990517

  42. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition (2018). arXiv: 1801.09414 [cs.CV]

  43. Wang, M., Deng, W.: Deep face recognition: a survey (2018). arXiv: 1804.06655 [cs.CV]

  44. Wang, Y., Yao, Q.: Few-shot learning: a survey. CoRR abs/1904.05046 (2019). arXiv: 1904.05046. http://arxiv.org/abs/1904.05046

  45. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987). Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists. ISSN 0169-7439. https://doi.org/10.1016/0169-7439(87)80084-9. http://www.sciencedirect.com/science/article/pii/0169743987800849

  46. Wright, J., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009). https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  47. Yang, H., et al.: An empirical study of recent face alignment methods, November 2015. https://doi.org/10.13140/RG.2.1.4603.8484

  48. Yang, J., et al.: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 156–171 (2017)

    Article  Google Scholar 

  49. Yi, D., et al.: Learning face representation from scratch (2014). arXiv: 1411.7923 [cs.CV]

  50. Zhang, K., et al.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23, 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dat Nguyen Van .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van, D.N., Trung, S.N., Hong, A.P.T., Hoang, T.T., Thanh, T.M. (2021). A Novel Approach to End-to-End Facial Recognition Framework with Virtual Search Engine ElasticSearch. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12951. Springer, Cham. https://doi.org/10.1007/978-3-030-86970-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86970-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86969-4

  • Online ISBN: 978-3-030-86970-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics