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Abstract. The exponential form of the original Phan-Thien and Tanner
(PTT) model is often used to study complex viscoelastic fluids. Recently,
a generalised version of the PTT model, that uses the Mittag-Leffler
function to compute a new function of the trace of the stress tensor, was
proposed. This new model adds one or two additional fitting parameters
that allow for greater fitting capability. In this paper, we propose two
optimisation problems for estimating the model parameters when fitting
experimental data in shear (storage modulus, loss modulus, shear viscos-
ity). We also propose a numerical sequential approach for solving one of
these problems. The optimal values for the parameters produced by the
optimisation approach allow the model to reproduce almost exactly the
experimental data.

Keywords: Optimisation · Sequential Approach · Viscoelastic Models
· Phan-Thien and Tanner · gPTT · Rheology

1 Introduction

The stress felt in our hands (σ), induced by stretching a spring is proportional
to the deformation (γe) with G0 the constant of proportionality. This is known
as Hook’s law (see the illustration in Fig. 1 - left). The stress felt by stretching

a dashpot is proportional to the velocity of that deformation (
dγf
dt ), with η the

constant of proportionality. This is known as Newton’s law for fluids. In the
Newton’s law, a smooth stretch leads to a low stress and a rapid stretch leads to
a high stress (see the illustration in Fig. 1 - centre). The Newton’s law for fluids
states that the faster we move our hands, the higher the resistance.

These are two laws universally accepted and observed experimentally (under
the limitations of the experiment and the material used).
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The Maxwell model of viscoelasticity can be easily obtained by combining a
spring and a dashpot in series, as shown in Fig. 1.

Newtonian FluidHookean Elastic Solid

spring

 


𝜎 𝑡 = 𝐺0𝛾𝑒(𝑡) 𝜎 𝑡 = 𝜂
𝑑𝛾𝑓(𝑡)

𝑑𝑡

dashpot

Maxwell Model

Fig. 1. The Maxwell model represented by a combination of a spring and a dashpot,
in series. The subscripts e and f stand for elastic solid and fluid, respectively.

To derive the Maxwell model one assume that the total deformation, γ, is the
sum of the deformation applied to the spring, γe, and the deformation applied
to the dashpot, γf . That is, γ(t) = γe(t) + γf (t). Applying the time derivative

to both sides of this equation, we obtain the total rate of deformation dγ(t)
dt =

dγe(t)
dt +

dγf (t)
dt . Applying again the time derivative to both sides of Hook’s law

and substituting in the equation for the total rate of deformation, we arrive at
the Maxwell model:

σ(t) + λ
dσ(t)

dt
= η

dγ(t)

dt
,

with λ = η
G0

the relaxation time of the fluid (in seconds), η the zero shear-rate

viscosity (the viscosity obtained when dγ(t)
dt → 0, in Pascal × seconds), and

λ, η ≥ 0. The model can also be written in integral form as:

σ(t) =

t∫
0

G0e
− t−t

′
λ
dγ

dt′
dt′. (1)

This model is really simple and lacks a generalisation to every point in the
three-dimensional (3D) space x = (x, y, z). The state of stress of a point in the
3D space can be represented by a 3× 3 tensor (with 9 stress components),

σ(t,x) ≡ σ =

σxx σxy σxzσyx σyy σyz
σzx σzy σzz

 ,
and the rate of deformation of a body of viscoelastic material in the 3D space,
dγ(t)
dt , is related to the way the velocity of a material point varies in that space

(velocity gradient ∇u) [1] by,
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dγ(t)

dt
= 2D =

(
∇u+ (∇u)T

)
=


∂u
∂x + ∂u

∂x
∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂u
∂y + ∂v

∂x
∂v
∂y + ∂v

∂y
∂v
∂z + ∂w

∂y
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y
∂w
∂z + ∂w

∂z


where u = (u, v, w) is the velocity vector, ∇ is the gradient operator and
D(t,x) ≡ D is the rate of deformation tensor. Note that this derivation is
not trivial. More details can be found in any classical book of fluid or solid
mechanics [1].

This generalisation to the 3D space results in the Maxwell model,

σ + λ
dσ

dt
= 2ηD

that is only valid for really small deformations.
Qualitative and quantitative descriptions of physical phenomena must remain

unchanged if we make any change in the point of view from which we observe
them. This is called objectivity or frame-invariance. The Maxwell model is not
invariant and therefore cannot be used in large deformations. This is due to the
operator dσ

dt . This time derivative is not invariant, and therefore the term dσ
dt

should be replaced by some physically equivalent term. The new term should
provide the time variation of the stress tensor, and also guarantee that this
variation is always the same for all observers. A possible solution is to use:

1. Upper-Convected time derivative:

∇
σ =

∂

∂t
σ + (v · ∇)σ − (∇v)T · σ − σ · (∇v) (2)

with
D

Dt
σ =

∂σ

∂t
+ u · ∇σ

known as the material derivative. This derivative describes the time rate of
change of some physical quantity of a material element that is subjected to
a space-and-time-dependent macroscopic velocity field. In Eq. (2), the “ · ”
represents the usual dot product and the term (v · ∇)σ results in a tensor
with entry i, j given by,

u
∂σij
∂x

+ v
∂σij
∂y

+ w
∂σij
∂z

where i = x, y, z and j = x, y, z.
2. Lower-Convected time derivative:

∆
σ =

∂

∂t
σ + (v · ∇)σ + σ · (∇v)T + (∇v) · σ

3. Gordon–Schowalter time derivative:
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σ̊ =
∂

∂t
σ + (u · ∇)σ − (∇u)T · σ − σ · (∇u) + ξ(σ ·D + D · σ), (3)

where ξ is a real parameter typically set in [0,1]. The ξ parameter accounts
for the slip between the molecular network and the continuous medium.

Note that a combination of Upper-Convected, Lower-Convected and Gor-
don–Schowalter derivatives, can also be used.

The Upper-Convected Maxwell (UCM) model is therefore a generalisation
of the Maxwell material for the case of large deformations using the upper-
convected time derivative. Note that the Lower-Convected Maxwell model can
be obtained in a similar way.

The UCM model was proposed by James G. Oldroyd, and can be written as:

σ + λ
∇
σ = 2ηD. (4)

This model is frame-invariant and can be used to model large deformations. The
choice of derivative will influence the characteristics of the model, and its ability
to model real viscoelastic materials.

The Maxwell and the UCM models were obtained mechanically from springs
and dashpots but can also be derived from molecular theory.

In the recent decades, several models were developed, either based on mechan-
ical analogues of springs and dashpots, molecular theory, or, network theories.
Network theories characterise the materials as networks of entangled molecules
(see Fig. 2).

In the 1970’s a model was proposed in the literature that is apparently quite
similar to the UCM model but that can better model real fluids.

It was derived from a Lodge-Yamamoto type of network theory (see Fig. 2)
for polymeric fluids [2–5]. For the isothermal case, the model can be expressed
by the constitutive equation

K(σkk)σ + λσ̊ = 2ηD,

where σkk is the trace of the stress tensor and K(σkk) is the network destruction
function given by either a linear or an exponential function of σkk. The only
difference to the UCM model (Eq. (4)) is the presence of K(σkk) and the use of
the Gordon–Schowalter time derivative.
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(a)

network strand

1

K

the element AB of the network

is called a chain

the chain is made up of N

molecules with end-to-end

vector h.

A

B
h

A
B

h

junctionViscoelastic Material at rest

Deformed Viscoelastic Material

the original junctions were destroyed, 

and new junctions emerged

(b)

new junctions
The rate of destruction of 

junctions increases with kk

skk

Fig. 2. The lodge-Yamamoto theory. (a) The molecules entanglements are represented
by a network strand connected by junctions. (b) These junctions are destroyed with
deformation of the material and new junctions are created. Note that the rate of de-
struction of junctions (K(σkk)) is represented schematically in the graph shown in the
left bottom corner. K increases with the stress.

More recently (2019), a generalised Phan-Thien - Tanner constitutive equa-
tion (gPTT) was proposed [5], where K(σkk), the network destruction function
is defined by,

K(σkk) = Γ(β)Eα,β

(
ελ

η
σkk

)
where α, β and ε are real positive parameters, being ε known by the extensibility
parameter (in the classical model). Here the normalisation Γ(β) is used to ensure
that K(0) = 1 for all choices of the parameter β. Eα,β(.) is the generalised
Mittag-Leffler function [6]

Eα,β (z) =

∞∑
k=0

zk

Γ(αk + β)

and Γ is the Gamma function given by

Γ(t) =

∫ ∞
0

xt−1e−xdx.

We note that, for α = β = 1 the Mittag-Leffler function Eα,β(.) reduces to the
exponential function.
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The parameters α, β, ε, λ, G0 and ξ will affect the behaviour of the constitu-
tive model (recall that G0 = η/λ). The proposed mathematical model depends
on six unknown parameters that require investigation. Since the mathematical
model simulates real fluids, the parameter values can be estimated based on
experimental data. The aim of a parameter estimation optimisation problem is
to calibrate the model so that it can reproduce the experimental data. This is
performed by minimising an objective function that measures the goodness of
the fit. Therefore, it is important to develop an optimisation methodology to
obtain the fitting parameters correctly, considering different flows.

Since this model has only recently been proposed in the literature, there is
no specific optimisation approach for this type of model. Therefore, the aim of
this work is to develop a new optimisation approach that consider weak flows.

This work is organised as follows. In Section 2, we introduce the governing
equations for an isothermal incompressible fluid described by the generalised
PTT model (gPTT), and derive the equations for the storage and loss moduli
and the shear viscosity. In Section 3, we present the optimisation problems for
estimating the parameters of the model. In Section 4, we describe the optimi-
sation approach for solving the optimisation problems. We also show that the
optimal parameter values allowed the model to reproduce almost exactly the
experimental data. The paper ends with the conclusions in Section 5.

2 Equations

In this section we describe the governing equations for an isothermal incompress-
ible fluid described by the gPTT model, and the equations for the storage and
loss moduli and the shear viscosity.

2.1 Governing Equations

The equations governing the flow of an isothermal incompressible fluid are the
continuity equation,

∇ · u = 0

and the momentum equation,

ρ
Du

Dt
= −∇p+∇ · σ

together with the constitutive equation,

Γ (β)Eα,β

(
ελ

η
σkk

)
σ + λσ̊ = 2ηD (5)

where p is the pressure, t the time and ρ the mass density. The Gordon–Schowalter
derivative σ̊ is given by Eq. (3).
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2.2 The Storage and Loss Moduli

The storage and loss moduli [7] allow one to study how our model behaves when
an oscillatory deformation is imposed. We can see how much is recovered (Hook’s
law) and how much is lost (Newton’s law) when the deformation is applied. The
storage and loss are represented by G′ and G′′ respectively.

The G′ and G′′ can be determined using Laplace Transform, L, and the
convolution theorem. Let σ̄(s) and γ̄(s) denote the Laplace transform of σ(t)
and γ(t), respectively. For small deformations, the gPTT model reduces to the
integral Maxwell model (Eq. (1)) and we have that (assuming σ(t) = 0 for t = 0):

(6)

σ̄(s) = L{σ (t)}

= L

{ t∫
0

G0e
− t−t

′
λ
dγ

dt′
dt′

}

=

∞∫
0

G0e
− t
λ e−stdt

∞∫
0

dγ(t)

dt
e−stdt

=
sG0λγ̄(s)

1 + sλ
.

The ratio of σ̄(s) and γ̄(s) is given by:

σ̄(s)

γ̄(s)
=

sG0λ

1 + sλ
= G∗(s)

where σ̄(s) and γ̄(s) are proportional, as in Hook’s law, and therefore the symbol
G∗ is used to represent this modulus.

Assuming that s = iω (i =
√
−1), we have that,

G∗(iω) =
G0(λω)2

1 + (λω)2
+ i

G0λω

1 + (λω)2
= G′ + iG′′.

2.3 Weak Steady Flows

For steady simple shear flows, the explicit expressions for viscosity are easily
found. Following the work of Alves et al. [8] and considering a simple plane
shear flow aligned with the x-axis, the constitutive equation (5) reduces to:

K(σkk)σxx = (2− ξ)(λγ̇)σxy, (7)

K(σkk)σyy = −ξ(λγ̇)σxy, (8)

K(σkk)σxy = G0λγ̇ + (1− ξ/2)(λγ̇)σyy −
ξ

2
(λγ̇)σxx, (9)
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where γ̇ is the constant shear rate γ̇ = |du/dy|. The division of each mem-
ber of Eq. (7) by the respective member of Eq. (8) leads to the relationship
σyy = −σxxξ/(2− ξ), and, its substitution in Eq. (9) together with σxy obtained

from Eq. (7) and K(σkk) = Γ (β)Eα,β

(
ε
G0

(σxx + σyy)
)

leads to the following

nonlinear equation for σxx:

Γ 2(β)Eα,β

(
ε

G0

(
2− 2ξ

2− ξ

)
σxx

)2

σxx − (2− ξ)(λγ̇)2[G0 − σxxξ] = 0 (10)

that can be written in a compact form as

h(γ̇;σxx, λ,G0, α, β, ε, ξ) = 0.

The shear stress σxy as a function of γ̇ is obtained from Eq. (9), and is given by:

σxy(γ̇) =
G0λγ̇ − σxxλγ̇ξ

Γ (β)Eα,β

(
ε
G0

(
2−2ξ
2−ξ

)
σxx

) .
The steady shear viscosity, η(γ̇), is given by:

η(γ̇) =
σxy(γ̇)

γ̇
.

2.4 Prony Series

Due to the different entanglement states of the molecules in the viscoelastic ma-
terial, it is common to consider more than one mode to describe its behaviour.
Therefore, assuming the existence of N modes, the quantities of interest pre-
sented earlier are now given by:

Ĝ′ =
N∑
k=1

G0k(λkω)2

1 + (λkω)2

Ĝ′′ =

N∑
k=1

G0kλkω

1 + (λkω)2

η̂(γ̇) =

N∑
k=1

G0kλkγ̇ − σxxkλkγ̇ξk
γ̇Γ (βk)Eαk,βk

(
εk
G0k

(
2−2ξk
2−ξ

)
σxxk

) .
We have defined α = (α1, α2, ..., αN ), β = (β1, β2, ..., βN ), λ = (λ1, λ2, ..., λN ),
ξ = (ξ1, ξ2, ..., ξN ), G0 = (G01

, G02
, ..., G0N ), ε = (ε1, ε2, ..., εN ). Note that

σxx = (σxx1
, σxx2

, σxx3
, σxx4

, σxx5
, σxx6

), where each σxxk is obtained from Eq.
(10) for the given γ̇.
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3 Optimisation Problems

The parameters α, β, λ, ξ, G0, and ε are unknown, but can be estimated by
minimising two objective functions that measure the error given by the distance
between experimental values and model predicted values, over the ω and the γ̇
ranges.

Thus, to estimate the model parameters that come from two distinct exper-
iments, we propose a two-step optimisation procedure.

First, we estimate λ and G0 parameters from the storage and loss moduli
data (problem P1). Then, the optimal values λ∗ and G0

∗ are used in a second
step to estimate α, β, ε and ξ from the shear viscosity data (problem P2).

– (P1): the λ and G0 parameters estimation problem is formulated as:

min
λ,G0∈RN

EG′,G′′(λ,G0) =

NG′G′′∑
l

[ Ĝ′(ω)l
G′l

− 1

]2

+

[
Ĝ′′(ω)l
G′′l

− 1

]2


subject to : λk > 0, G0k > 0, k = 1, ..., N
λk < λk+1, k = 1, ..., N − 1
G0k ≥ G0k+1

, k = 1, ..., N − 1

with NG′G′′ the number of experimental values obtained for storage (G′l)
and loss (G′′l ) moduli.

– (P2): the α, β, ξ and ε parameters estimation problem is formulated as:

min
α,β,ε,ξ∈RN

Eη(α,β, ε, ξ) =

Nη∑
l

[
η̂(γ̇, σxx)l

ηl
− 1

]2

subject to : h(γ̇l;σxxkl , λ
∗
k, G

∗
0k
, αk, βk, εk, ξk) = 0, k = 1, ..., N, l = 1, ..., Nη

αkβk, εk, > 0, k = 1, ..., N
0 ≤ ξk < 1, k = 1, ..., N

where we set λ = λ∗ and G0 = G∗0. Nη is the number of experimental values
obtained for shear viscosity (ηl).

4 Methodologies and Numerical Experiments

4.1 Methodologies

To solve the optimisation problem P1 we have used the Ipopt solver that is
available online on the NEOS servers (http://neos.mcs.anl.gov/neos/solvers).
The Ipopt (Interior Point optimiser) is a solver for large-scale nonlinear pro-
gramming (NLP) which implements an interior point line search filter method.
The mathematical details of the method can be found in [10–14].
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Since the problem P2 involves N ×Nη nonlinear equations (Eq. (10)), this
problem is hard to solve. Thus, in this work we propose a Sequential Approach for
solving P2. Using a Sequential Approach the optimisation is carried out in the
space of the input parameters only. In the Sequential Approach the nonlinear
equations and the optimisation problem are solved sequentially, one after the
other, giving rise to the bound constrained optimisation problem P2#.

– (P2#): the new α, β, ξ and ε parameters estimation problem is formulated
as described next (Fig. 3). We now consider the minimisation problem:

min
α,β,ε,ξ∈RN

Eη(α,β, ε, ξ) =

Nη∑
l

[
η̂(γ̇, σxx)l

ηl
− 1

]2

subject to : αk, βk, εk, > 0, k = 1, ..., N
0 ≤ ξk < 1, k = 1, ..., N

and the nonlinear equations are solved numerically using an iterative proce-
dure, so that the objective function can be evaluated. Thus, the nonlinear
equations are satisfied at each iteration of the optimisation process. We note
this strategy may lead to a computational demanding process since the non-
linear equations are solved for each iteration of the NLP algorithm. Since
the experimental data for the first and second normal stress differences were
not considered, the parameters ξ were set to 0 in P2#.
We implement the proposed sequential approach in Matlab®, and we use
the fmincon function [15–19], to solve the nonlinear problem P2#. The
nonlinear equations were solved using the fsolve function [15]. The sequential
optimisation can be described schematically as shown in Fig. 3:

Type equation here.<

Initial Guess: 𝛼0 = {1,1,1,1,1,1}

β0 = {1,1,1,1,1,1}

ε0 = {1,1,1,1,1,1}

fsolve:
Solve the non-linear equation (10)

for each

using the initial guess 300000 for

each

STOP condition

YESNO

𝜶𝑗, 𝜷𝑗, 𝜺𝑗

STOP

Do for j=1, 2, …

𝜎𝑥𝑥 (
𝐾 = 1,…𝑁; 𝑙 = 1,… ,𝑁𝜂)

kl

𝝀∗, 𝑮𝟎
∗

𝜎𝑥𝑥kl

𝜶∗

𝜷∗

𝜺∗

min 𝐸𝜂(𝜶, 𝜷, 𝜺)
𝜶, 𝜷, 𝜺

𝜎𝑥𝑥 (
𝑘 = 1,…𝑁; 𝑙 = 1,… , 𝑁𝜂)

k l

Fig. 3. Algorithm used to solve problem P2#.
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The experimental data was obtained for a High Density Polyethylene (HDPE)
at 190◦C [9], and is shown in Fig. 4 (symbols) with NG′G′′ = 34 and Nη = 39.
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Fig. 4. Experimental data for a High Density Polyethylene (HDPE) at 190◦C [9]. (a)
Storage and loss moduli; (b) Shear viscosity.

4.2 Fit to experimental data (storage and loss moduli)

To obtain the optimal parameters λ∗ and G∗
0 the optimisation problem P1

was coded in AMPL - Modelling Language for Mathematical Programming. By
default, AMPL applies a presolve phase to the optimisation problem in order to
reduce the size of the problem sent to the solver. Since the decisions made by
the presolve phase rely on numerical computations, sometimes small differences
between numbers can have a large effect on the results. Thus, to avoid this issue
the presolve was disabled.

After some numerical experiments we realised that a value of N = 6 with
initial guess:
λ = (0.005, 0.05, 0.5, 0.9, 5, 50),
G0 = (100000, 85000, 70000, 40000, 10000, 1000),

could provide good results. We used the IPOPT solver with the default settings
and we fed the solver with these initial guess values.

The optimal parameter values λ∗ and G∗0 obtained after the optimisation
are:
λ∗ = (0.00113292, 0.0112355, 0.0882049, 0.576664, 3.60712, 28.496),
G∗

0 = (144113, 101039, 101039, 55374.8, 15286.3, 1625.3),
with E∗G′,G′′ = 0.104239. This optimal solution was obtained after 25 objective
function evaluations, 25 objective gradient evaluations, 25 inequality constraint
evaluations, 25 inequality constraint Jacobian evaluations and 24 Lagrangian
Hessian evaluations. The total CPU seconds in IPOPT (without function eval-
uations) was 0.041 and the total CPU seconds in NLP function evaluations was
0.065 (these computations were performed in the free NEOS computation cloud).

From Fig. 5 we can see that a very good fit was obtained, as expected from
the low error value obtained, E∗G′,G′′ = 0.104239.



12 M. Fernanda P. Costa, C. Coelho et al.

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100 1000

G'

G''

Fit

G
’’

,
G
’

[P
a]

w [rad.s-1]

Fig. 5. Experimental data for the storage and loss moduli (symbols) and fit obtained
with a 6-mode gPTT model. The fit was performed by solving problem P1.

4.3 Fit to experimental data (shear viscosity)

To obtain the optimal parameters α∗, β∗, ε∗ the optimisation problem P2# was
solved using the sequential approach described in Fig. 3 and coded in Matlab®.

Since the Mittag-Leffler function is not available in the installation package
of Matlab®, we have used the routine developed by Igor Podlubny and Martin
Kacenak (2001-2012).

The fmincon function was used with the interior-point method, considering
for stop condition the tolerance 1× 10−9. The remaining parameters were set to
default. The fsolve function was used with the trust-region dogleg algorithm [15],
where each iteration involves the approximate solution of a large linear system
using the method of Preconditioned Conjugate Gradients.

The program stopped after 6 iterations (j = 6 - see Fig. 3), resulting in the
following optimal parameters:

α∗ = (2.8249, 1.4277, 0.8429, 0.6087, 1.1905, 2.5488),

β∗ = (2.8384, 2.6732, 3.8326, 3.9366, 2.9260, 3.0454),

ε∗ = (3.7370, 4.0484, 2.8484, 2.1562, 3.0511, 3.3780).

with an error Eη = 0.3814. This error is again quite small and therefore a very
good fit was obtained (Fig. 6).
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Fig. 6. Experimental data for the shear viscosity (symbols) and fit obtained with a
6-mode gPTT model. The fit was performed by solving problem P2#.

5 Conclusions

In this paper, we propose a two-set optimisation procedure for estimating the
parameters of the differential gPTT constitutive equation, that better fit the
experimental data obtained for an HDPE at 190◦C [9].

First, we estimate λ and G0 parameters from the storage and loss moduli
data. Then, the optimal values λ∗ and G0

∗ are used in a second step to estimate
α, β and ε from the shear viscosity data.

To obtain the optimal parameter values we formulated two optimisation prob-
lems. One to fit the storage and loss moduli data, and the other to fit the shear
viscosity data.

These problems were solved using the IPOPT solver and a Sequential Ap-
proach, respectively. A very good fit was obtained for both sets of experimental
data.

The research group is now considering to optimise all parameters simultane-
ously, and using a larger set of experimental data.
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