
A Study of the Floating-Point Tuning Behaviour
on the N-body Problem

Dorra Ben Khalifa1 and Matthieu Martel1,2

1 University of Perpignan, LAMPS laboratory, 52 Av. P. Alduy, Perpignan, France
2 Numalis, Cap Omega, Rond-point Benjamin Franklin, Montpellier, France

{dorra.ben-khalifa, matthieu.martel}@univ-perp.fr

Abstract. In this article, we apply a new methodology for precision tun-
ing to the N-body problem. Our technique, implemented in a tool named
POP, makes it possible to optimize the numerical data types of a pro-
gram performing floating-point computations by taking into account the
requested accuracy on the results. POP reduces the problem of finding
the minimal number of bits needed for each variable of the program to an
Integer Linear Problem (ILP) which can be optimally solved in one shot
by a classical linear programming solver. The POP tool has been suc-
cessfully tested on programs implementing several numerical algorithms
coming from mathematical libraries and other applicative domains such
as IoT. In this work, we demonstrate the efficiency of POP to tune the
classical gravitational N-body problem by considering five bodies that
interact under gravitational force from one another, subject to Newton’s
laws of motion. Results on the effect of POP in term of mixed-precision
tuning of the N-body example are discussed.

Keywords: Computer arithmetic, precision tuning, integer linear prob-
lems, N-body problem, numerical accuracy.

1 Introduction

Reducing the precision of floating-point data, also called precision tuning, pro-
vides for many practitioners in High-Performance Computing (HPC) and related
fields an opportunity for exploring trade-offs in accuracy and performance [16].
Compared to higher-precision data formats (e.g. binary64 and binary128),
lower-precision data formats result in higher performance for computational in-
tensive applications such as lower resource cost, reduced memory bandwidth
requirements and energy consumption: the performance of binary32 operations
on modern architectures is often at least twice as fast as the performance of
binary64 operations [1].

A number of tools has been developed to assist developers in exploring the
trade-off between floating-point accuracy and performance [6,9,13,14,15,21]. A
common purpose of these techniques is that they follow a try and fail strategy to
reduce the precision with respect to an accuracy constraint: they create a pro-
gram search space then tune either program variables or assembly instructions

ar
X

iv
:2

10
8.

00
22

8v
1

 [
cs

.S
E

]
 3

1
Ju

l 2
02

1

2 Ben Khalifa et al.

while the optimized data formats are dependent to the tuning inputs. If the accu-
racy of the results are not satisfying, some variables or instructions are removed
from the search space and this process is applied repeatedly until a (locally)
optimal solution is returned. In the best of cases of recent tools, the program
is no longer treated as a black-box but an analysis of the source code and the
runtime behaviour is performed in order to provide a customized search space
classification and then to identify dependencies among floating-point variables.

Unlike existing approaches, POP [2,3,4,5] implements a static technique based
on a semantical modelling of the propagation of the numerical errors through-
out the code. This results in generating a system of constraints whose minimal
solution gives the best tuning of the program, furthermore, in polynomial time.
The key feature of our method is to find directly the minimal number of bits
needed, known as bit-level precision tuning, at each control point to get a certain
accuracy on the results. Hence, it is not dependant of a certain number of data
types (e.g. the IEEE754 formats [1]) and its complexity does not increase as the
number of data types increases. In practical terms, by reasoning on the number
of significant bits of the program variables and knowing the weight of their most
significant bit thanks to a range analysis performed before the tuning phase
(details in Section 4), POP is able to reduce the problem to an Integer Linear
Problem (ILP) which can be optimally solved in one shot by a classical linear
programming solver (no iteration) − we use GLPK [17] in practice. The method
scales up to the solver limitations and the solutions are naturally found at the
bit level. Furthermore, POP implements an optimization to the previous ILP
method. The purpose of this new method is to handle carry bits by being less
pessimistic on their propagation throughout arithmetic expressions. By doing so,
a second finer set of constraints is generated by POP and the problem does not
remain any longer to a pure ILP problem (min and max operators are needed).
Then we use policy iteration (PI) technique [7] to find optimal solutions.

Proposed Contributions In this article, we validate the efficiency of our ap-
proach on one of the oldest problem of modern physics, the N-body problem [12].
An N-body simulation numerically approximates the evolution of a system of
bodies that interact with one another through some type of physical forces,
where N presents the number of bodies in the system (N = 5). The program
implements a second order differential equation which needs to be solved to get
a location of the bodies for a given timevalue. By varying the required accuracy
by the user, we show experimentally that POP succeeds in tuning the N-body
program (original program ' 330 LOCs). As a result, the transformed program
is guaranteed to use variables of lower precision with a minimal number of bits
than the original one. Prior work on the precision of N-body simulations have
been carried out for a long time [18]. Compared to other experiments carried
out with POP [2,3], the N-body example presents new difficulties, mainly more
complex computations and a wide range of values with different magnitudes.

The different experimental evaluations presented in this article are the fol-
lowing. First, we measure the distance between the exact position of the bodies,
Jupiter, Saturn, Uranus and Neptune (the Sun position is fixed), computed

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 3

with 500 bits and the position computed with n bits where n = 11, 18, 24, 34, 43
and 53 bits. These distances are given for each body with different time of sim-
ulation (10 and 30 years). Second, we demonstrate on this example the ability
of POP to generate an MPFR code [11] with the new data types returned by
the solver. Furthermore, we measure the global analysis time taken by POP and
the execution time of the MPFR generated code and we prove that POP returns
solutions in a few of a seconds. The global analysis time includes the time of the
program evaluation, the range analysis determination, the constraint generation
and their resolution by the solver.

Roadmap The rest of this article is structured as follows. Section 2 describes the
existing approaches for precision tuning. In section 3, we discuss the technique
behind POP on the illustrative example of N-Body problem. In section 4, we
point out the key contributions made by POP to tune floating-point programs.
Section 5 presents a comprehensive evaluation and the experimental results of
POP on the N-body problem and concluding remarks are discussed in Section 6.

2 Related Work

As we have discussed, the general areas for floating-point precision tuning have
been receiving a lot of attention. In order to attain optimally lowered precision,
such approaches are divided into two categories: formulating precision tuning as
an optimization problem using a static performance and accuracy model, and
dynamically searching through different precisions to find a local optimum.

Static Performance and Accuracy Model Prior work in static error analy-
sis provides a foundation for rigorously determining what precisions are required
to meet error constraints for particular closed form equations. In this context,
the FP-Taylor tool [6] has proposed a method called Symbolic Taylor Expan-
sions in order to estimate round-off errors of floating-point computations. Unlike
dynamic tools, the precision allocation guarantees to meet the error target across
all program inputs in an interval. Even so, FP-Taylor is not designed to be
a tool for complete analysis of floating-point programs: conditionals and loops
can not be handled directly. More recently, they have extended their work by
performing a broad comparison of many error bounding analyses to ensure the
mixed-precision tuning technique [24]. Darulova et al. [9] proposed a technique
to rewrite programs by adjusting the evaluation order of arithmetic expressions
prior to tuning. However, the technique is limited to rather small programs that
can be verified statically. Basically, all the above methods suffer from scalability
limitations and do not leverage community structure to guide the search. On the
other hand, concerning scalability, POP generates a linear number of constraints
and variables in the size of the analyzed program.

Dynamic Searching Applications Precimonious [21] is a dynamic auto-
mated search based tool that leverages the LLVM framework to tweak variable

4 Ben Khalifa et al.

declarations to build and prototype mixed-precision configurations. It aims at
finding the 1-minimal configuration, i.e., a configuration where changing even a
single variable from higher to lower precision would cause the configuration to
cease to be valid. A valid configuration is defined as one in which the relative
error in program output is within a given threshold and there is a performance
improvement compared to the baseline version of the program. However, it does
not use any knowledge on the structure of the program to identify potential vari-
ables of interest. Lately, a new solution called HiFPtuner [13], which is an ex-
tension Of Precimnious, uses dependence analysis and edge profiling to enable
a more efficient hierarchical search algorithm for mixed-precision configurations.
As with other dynamic tuners, HiFPtuner’s configurations are dependent on
the tuning inputs, and no accuracy guarantee is provided for untested inputs.
Craft [15] is a framework that uses binary instrumentation and modification
to build mixed-precision configurations of existing binaries that were originally
developed to use only double-precision. Stoke [23] is a general stochastic op-
timization and program synthesis tool to handle floating-point computation.
Their algorithm applies a variety of program transformations, trading bit-wise
precision for performance to enhance compiler optimization on floating-point
binaries. Another dynamic tool is Adapt [19]. It uses the reverse mode of algo-
rithmic differentiation to determine how much precision is needed in a program
inputs and intermediate results in order to achieve a desired accuracy in its out-
put, converting this information into precision recommendations. Following the
idea of program transformation, the Ampt-Ga tool [14] selects application-level
data precisions to maximize performance while satisfying accuracy constraints.
Ampt-Ga combines static analysis for casting-aware performance modeling with
dynamic analysis for modeling and enforcing precision constraints. POP only fo-
cuses on the precision tuning problem. Hence, the input codes are taken as-is
and we do not modify them. However, POP is compatible with other tools for
program transformation for numerical accuracy [8,22]. Typically, these tools re-
order the computations to make them more accurate in the computer arithmetic.
For example, for sums, numbers will be added in increasing order of magnitude.

3 Running Example

Fig. 1: Simulated movement of the bodies.

Our tool, POP, automates pre-
cision tuning of floating-point pro-
grams. We reduce the problem of
precision tuning to determining
which program variables, if any,
can have their types changed to
a lower precision while satisfying
the user accuracy assertions. In
this section, we introduce the grav-
itational planetary problem sim-
ulation code. For this example, we aim at modelling the simulation of a dynam-

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 5

1 days_per_year`11 = 365.24`10 ;

2 dt`13 = 0.01`12 ;

3 t`15 = 0.0`14 ;

4 t_max`17 = 1000.0`16 ;
5 [...]

6 xJupiter`39 = 4.8414316`38 ;

7 vxJupiter`48 = 0.0016600767`44

8 *`47 days_per_year`46 ;

9 massJupiter`63 = 9.5479196E-4`59

10 *`62 solar_mass`61 ;

11 xSaturn`65 = 8.343367`64 ;
12 [...]

13 vxSaturn`74 = -0.002767425`70

14 *`73 days_per_year`72 ;

15 massSaturn`89 = 2.8588597E-4`85

16 *`88 solar_mass`87 ;
17 [...]

18 while (t`143 <`146 t_max`145) {

19 dx`757 = xJupiter`753 -`756 xSaturn`755 ;

20 dy`763 = yJupiter`759 -`762 ySaturn`761 ;

21 dz`769 = zJupiter`765 -`768 zSaturn`767 ;

22 distance`788 = sqrt(dx`771 *`774 dx`773

23 +`780 dy`776 *`779 dy`778 +`786 dz`782

24 *`785 dz`784)`787 ;

25 mag`800 = dt`790 /`799 distance`792 *`795

26 distance`794 *`798 distance`797 ;

27 vxJupiter`812 = vxJupiter`802 -`811

28 dx`804 *`807 massSaturn`806 *`810 mag`809 ;
29 [...]

30 vxSaturn`848 = vxSaturn`838 +`847 dx`840

31 *`843 massJupiter`842 *`846 mag`845 ;
32 [...]

33 xJupiter`2602 = xJupiter`2595 +`2601

34 dt`2597 *`2600 vxJupiter`2599 ;

35 xSaturn`2683 = xSaturn`2676 +`2682 dt`2678

36 *`2681 vxSaturn`2680 ;
37 [...]

38 t`2707 = t`2703 +`2706 dt`2705 ;} ;

39 require nsb(xJupiter, 11)`2710 ;

40 require nsb(xSaturn, 11)`2716 ;
41 [...]

1 days_per_year|56| = 365.24|56|;
2 dt|56| = 0.01|56|;
3 t|54| = 0.0|54|;
4 t_max|53| = 1000.0|53|;
5 [...]
6 xJupiter|59| = 4.8414316|59|;
7 vxJupiter|61| = 0.0016600767|61|
8 *|61| days_per_year|61|;
9 massJupiter|55| = 9.5479196E-4|55|

10 *|55| solar_mass|55|;
11 xSaturn|58| = 8.343367|58|;
12 [...]
13 vxSaturn|61| = -0.002767425|61|
14 *|61| days_per_year|61|;
15 massSaturn|53| = 2.8588597E-4|53|
16 *|53| solar_mass|53|;
17 [...]
18 while (t < t_max) {
19 dx|46| = xJupiter|46| -|46| xSaturn|47|;
20 dy|45| = yJupiter|45| -|45| ySaturn|46|;
21 dz|44| = zJupiter|44| -|44| zSaturn|45|;
22 distance|44| = sqrt(dx|46| *|46|
23 dx|46| +|45| dy|45| *|45|
24 dy|45| +|44| dz|35| *|35| dz|35|)|44|;
25 mag|44| = dt|44| /|44| distance|44| *|44|
26 distance|44| *|44| distance|44|;
27 vxJupiter|58| = vxJupiter|59| -|58|
28 dx|41| *|41| massSaturn|41| *|41| mag|41|;
29 [...]
30 vxSaturn|59| = vxSaturn|60| +|59|
31 dx|43| *|43| massJupiter|43| *|43| mag|43|;
32 [...]
33 xJupiter|53| = xJupiter|54| +|53|
34 dt|47| *|47| vxJupiter|47|;
35 xSaturn|53| = xSaturn|54| +|53|
36 dt|46| *|46| vxSaturn|46|;
37 [...]
38 t|53| = t|54| +|53| dt|38|;};
39 require nsb(xJupiter, 11);
40 require nsb(xSaturn, 11);
41 [...]

Fig. 2: Left: source program annotated with labels. Right: program with POP
generated data types with ILP formulation.

ical system describing the orbits of planets in the solar system interacting with
each other gravitationally as shown in Figure 1 (note that to for the sake of
clarity of the graphic, Figure 1 uses different simulation times for each body.)

We present, in Figure 2, excerpts of code that measure the distance be-
tween the two planets Jupiter and Saturn. We assume that each body has its
own mass (e.g. massJupiter, massSaturn), position (e.g. [xJupiter, yJupiter,

6 Ben Khalifa et al.

zJupiter], [xSaturn, ySaturn, zSaturn]) and velocity (e.g. [vxJupiter,
vyJupiter, zyJupiter], [vxSaturn, vySaturn, vzSaturn]). Moreover, we sup-
pose that all variables, before POP analysis, are in double precision and that a
range determination is performed by dynamic analysis on the program variables
(we plan to use a static analyzer in the future). POP assigns to each node of
the program’s syntactic tree a unique control point in order to determine easily
the number of significant bits of the result as mentioned in the left hand side
corner of Figure 2. Some notations can be stressed about the structure of POP
code. We annotate each variable with its unique control point as we can observe
in the left hand side program of Figure 2, e.g. xJupiter`39 = 4.8414316`38 de-
notes that the variable xJupiter has the control point `39 and assigned to the
value 4.8414316 at control point `38. Considering that nsb denotes the number of
significant bits of the variables, the statements require nsb(xJupiter,11)`2710

and require nsb(xSaturn,11)`2716 on the last two lines of the code inform
the system that POP user wants to have 11 accurate binary digits on variables
xJupiter and xSaturn at their control points `2710 and `2716, respectively. Note
that a result has n significants if the relative error between the exact and ap-
proximated results is less than 2n.

The key feature of our approach is to generate a set of constraints for each
statement of our program (more details in Section 4). In other words, the accu-
racy of the arithmetic expressions assigned to variables is determined by semantic
equations, in function of the accuracy of the operands. Consider the program of
the right hand side of Figure 2. We display the POP output N-body program
coupled with the generated data types. For a user requirements of 11 bits on vari-
ables xJupiter and xSaturn, POP tunes successfully a large part of the variables
of the program (number of constraints solved by GLPK ' 3160 with 2468 vari-
ables). For instance, the result of the measured distance between Jupiter and
Saturn, on line 22 of the right hand side code of Figure 2, is computed with
44 bits at bit level. Note that the full code contains other nsb requirements for
the other bodies. The nsb given in the right hand side of Figure 2 are greater
than the nsb required on the final results since they have been skewed to ensure
the precision of the whole code at any iteration. Let us also note that even if
the computed nsb do not correspond to IEEE74 formats [1], one may either take
the IEEE754 format immediately above the computed nsb or choose a multiple
precision library such as MPFR [11] or POSIT [25] (we will discuss more about
this point later in this article).

In the next section, we detail the ILP and the PI formulations of the pre-
cision tuning problem implemented in POP. Also, we present the nature of the
constraints generated for the N-body problem and consequently the new data
types already discussed.

4 Overview of POP

POP has been extended in several ways since its first introduction in [2,3,4,5].
It supports the four elementary operations, trigonometric functions, the square

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 7

Program

+

Annotations

Parser GLPK Tuned
Program

Policy
Iteration

Integer Linear
Problem (ILP)
Formulation

Range
Analysis

Fig. 3: POP overview.

root function, loops, conditionals and arrays. Originally, the analysis in POP
were expressed as a set of first order logical propositions among relations between
linear integer expressions. Next, these constraints are checked by the Z3 SMT
solver [20] in order to return a solution with a certain weight expressing the
number of significant bits of the variables. In the most recent version of POP,
the intuition is to use no longer the non-optimizing Z3 SMT solver coupled to a
binary search. By that means, we reduce the problem of determining the lowest
precision on variables and intermediary values in programs to an Integer Linear
Problem (ILP) which can be optimally solved in one breath by a classical linear
programming solver as depicted in Figure 3.

Our technique is independent of a particular computer arithmetic. In prac-
tice, we handle numbers for which we know their unit in the first place ufp and
their number of significant bits nsb defined as follows. Recall that nsb stands for
the number of significant bits of a number. The ufp of a number x is given in
Equation (1). This function is used further to describe the way roundoff errors
are propagated across computations.

ufp(x) = min{i ∈ Z : 2i+1 > x} = blog2(x)c . (1)

Noting that the ufp of the variable values are pre-computed by a prior range
analysis. More precisely, the current version of POP performs a dynamic analysis
giving an under-approximation of the ranges. Our precision tuning is sensible to
the ufp of the values. In other words, it is sensible to the order of magnitude of the
ranges but not to the exact values. For example, we will obtain the same tuning
with the ranges [3.4, 6.1] and [2.5, 7.8]. But, obviously we get a worst tuning if
we use a much larger interval, e.g. [0.0, 1000.0]. In particular, the efficiency of
our techniques for loops depends on the precision of the range analysis for loops.

Integer Linear Problem Formulation In order to explain the obtained data
types of our N-body program already illustrated in the right hand corner of
Figure 2, we present the system of constraints that corresponds to a pure ILP

8 Ben Khalifa et al.

formulation as shown in Equation (2). For the sake of conciseness, we will focus
on lines 22 to 24 that measure the distance between the Jupiter and Saturn

bodies (tuned program in the right hand corner of Figure 2). To make it easier
to follow our reasoning, we rewrite hereafter the statement under discussion
annotated with the control points.

distance`788 = sqrt(dx`771 ×`774 dx`773 +`780 dy`776 ×`779 dy`778
+`786dz`782 ×`785 dz`784)`787

C1 =



nsb(`780) ≥ nsb(`786) + (−7) + ξ(`786)(`780, `785)− 7,
nsb(`786) ≥ nsb(`787) + (−1) + 0,
nsb(`774) ≥ nsb(`780) + 7 + ξ(`780)(`774, `779)− 7,
nsb(`779) ≥ nsb(`780) + 6 + ξ(`780)(`774, `779)− 7,
nsb(`785) ≥ nsb(`786) + (−3) + ξ(`786)(`780, `785)− 7,
nsb(`787) ≥ nsb(`788), nsb(`771) ≥ nsb(`774) + ξ(`774)(`771, `773)− 1,
...
ξ(`780)(`774, `779) ≥ 1, ξ(`786)(`780, `785) ≥ 1
ξ(`774)(`771, `773) ≥ 1, ξ(`779)(`776, `778) ≥ 1
ξ(`785)(`782, `784) ≥ 1


(2)

For this statement, POP generates 17 constraints as shown in system C1 of Equa-
tion (2). We assign to each control point (here 771 to 787) the integer variable
nsb which are determined by solving the system C1. The first two constraints
of Equation (2) are relative to the nsb of the additions stored at control points
`780 and `786 respectively. The numbers computed corresponds to the ufp of the
variable values e.g. ufp(`780) = −1. The following constraints that compute re-
spectively nsb(`774), nsb(`779) and nsb(`785) are generated for the multiplication.
The constraint nsb(`787) ≥ nsb(`788) is for the square root function. Moreover,
the constraint generated for nsb(`771) is relative to variable dx (same reasoning
for variables dy and dz on their control points). Note that POP generates such
constraints for all the statements of the N-body program.

Let us now focus on the last five constraints of system C1. We introduce
a constant function ξ. In the present ILP of Equation (2), we assume that ξ
is a constant function equal to 1. This function corresponds to the carry bit
that can be propagated at each operation which is expressed by adding a sup-
plementary bit on the elementary operation result. For instance, the constraint
ξ(`780)(`774, `779) ≥ 1 indicates that a carry bit is propagated on the result of the
addition stored at control point `780 which is correct but pessimistic (we high-
light more the utility of ξ in the next paragraph). Finally, for a user accuracy
requirement of 11 bits as displayed in Figure 2. POP calls the GLPK [17] solver
and consequently finds the least precision needed for all the N-body problem
variables as we can observe hereafter (14636 is the total number of bits of the
whole program after POP optimization).

distance|44| = sqrt(dx|46| ∗ |46|dx|46|+ |45|dy|45| ∗ |45|dy|45|
+|44|dz|35| ∗ |35|dz|35|)

Policy Iteration to Refine Carry Bit Propagation In the ILP formulation
in the above paragraph, we have over-approximated the carry bit function by
ξ = 1. In contrast, this function becomes very costly in large codes if we perform a

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 9

lot of computations and therefore the errors would be considerable. For example,
if two operands and their errors do not overlap then adding a carry bit is useless.
In what follows, we propose an optimization to use a more precise ξ function.
Accordingly, when we model this optimization the problem will not remain an
ILP any longer, with min and max operators that arise, as shown in the refined
system of constraints C2 of Equation (3). Thus, we use the policy iteration
method [7] to find an optimal solution.

C2 =



nsbe(`780) ≥ nsbe(`774),
nsbe(`780) ≥ nsbe(`779),
nsb(`780) ≥ 7− 6 + nsb(`779)− nsb(`774) + nsbe(`779) + ξ(`780, `774, `779),
nsbe(`780) ≥ 6− 7 + nsb(`774)− nsb(`779) + nsbe(`774) + ξ(`780, `774, `779),
nsbe(`786) ≥ nsbe(`780),
nsbe(`786) ≥ nsbe(`785),
nsb(`786) ≥ 7− (−3) + nsb(`785)− nsb(`780) + nsbe(`785) + ξ(`786, `780, `785),
nsbe(`786) ≥ 3− 7 + nsb(`780)− nsb(`785) + nsbe(`780) + ξ(`786, `780, `785),
nsbe(`774) ≥ nsb(`771) + nsbe(`771) + nsbe(`773)− 2,
...

ξ(`780)(`774, `779) = min

(
max

(
6− 7 + nsb(`774) + nsbe(`774), 0

)
,

max
(
7− 6 + nsb(`779) + nsbe(`779), 0

)
, 1

)
ξ(`786)(`780, `785) = min

(
max

(
− 3− 7 + nsb(`780) + nsbe(`780), 0

)
,

max
(
7− (−3) + nsb(`785) + nsbe(`785), 0

)
, 1

)



(3)

Equation (3) displays the new constraints that we add to the global system
of constraints in the case where we optimize the carry bit of the elementary
operations. Before introducing these constraints, we define in Equation (4) the
unit in the last place ulp of a number x.

ulp(x) = ufp(x)− nsb(x) + 1 . (4)

The principle of the new ξ function is as follows: if the ulp of one of the
two operands (or errors) is greater than the ufp (see Equation (1)) of the other
one (or conversely) then the two numbers are not aligned and no carry bit
can be propagated through the operation (otherwise ξ = 1). Not surprisingly,
our new system of constraint C2 introduces a new integer quantity nsbe which
corresponds to the number of significant bits of the error which needs to be
estimated. Formerly, let a number x, we define ufpe(x) and ulpe(x) as the unit
in the first place and in the last place respectively of the error on x. From
equations (1) and (4), we have ufpe(x) = ufp(x)−nsb(x) and ulpe(x) = ufpe(x)−
nsbe(x) + 1 and consequently we can compute nsbe(x).

In practice, policy iteration makes it possible to break the min in the ξ(`780)
(`774, `779) and ξ(`786)(`780, `785) functions of the two additions as shown in
Equation (3) by choosing the max between the terms. Next, it becomes possible
to solve the corresponding ILP. If no fixed point is reached, POP iterates until
a solution is found. By applying this optimization, the new data types of the
statement of lines 22 to 24 in Figure 2 are given as follows.

distance|41| = sqrt(dx|42| ∗ |42|dx|42|+ |42|dy|42| ∗ |42|dy|42|
+|41|dz|31| ∗ |31|dz|31|)

By comparing with the formats already presented with the ILP method, it
is obvious the gain of precision that we obtain on each variable and operation of

10 Ben Khalifa et al.

nsb 11 18 24 34 43 53

Simulation time: 10 years

Jupiter 5.542 · 10−4 1.650 · 10−6 1.577 · 10−7 4.998 · 10−10 5.077 · 10−10 5.076 · 10−10

Saturn 1.571 · 10−3 2.111 · 10−5 1.326 · 10−7 4.427 · 10−10 3.119 · 10−10 3.117 · 10−10

Uranus 2.952 · 10−3 2.364 · 10−5 1.140 · 10−7 3.072 · 10−10 7.212 · 10−11 7.236 · 10−11

Neptune 2.360 · 10−3 3.807 · 10−5 2.206 · 10−7 5.578 · 10−10 1.751 · 10−10 1.757 · 10−10

Runtime 2’59 2’52 2’57 2’56 3’10 2’59

POP Time 25” 22” 22” 24” 23” 24”

Simulation time: 30 years

Jupiter 7.851 · 10−4 1.282 · 10−5 3.194 · 10−8 1.066 · 10−8 1.064 · 10−8 1.064 · 10−8

Saturn 3.009 · 10−3 1.934 · 10−5 2.694 · 10−7 1.7477 · 10−8 1.777 · 10−8 1.777 · 10−8

Uranus 6.839 · 10−4 6.132 · 10−5 8.901 · 10−7 5.105 · 10−10 1.464 · 10−10 1.457 · 10−10

Neptune 2.971 · 10−3 2.0227 · 10−5 2.469 · 10−7 3.869 · 10−10 4.775 · 10−10 4.779 · 10−10

Runtime 2’39 2’45 2’43 2’56 2’48 2’40

POP Time 38” 39” 41” 37” 37” 37”

Table 1: Distances between the exact position (computed with 500 bits) and the
position computed with n bits. Distances given for each body after 10 and 30
years of simulation. Followed by POP analysis time and the execution time of
the MPFR generated code.

this statement. With the PI method, the total number of bits of the optimized
N-body program is ' 14335 (a gain of more than 300 bits compared to the
ILP formulation). In term of complexity, for both ILP and PI methods, POP
generates a linear number of constraints and variables in the size of the analyzed
program and finds the best tuning of the variables in polynomial time.

5 Experimental Results

In this section, our goal is to evaluate the performances of POP in tuning
the code simulating the behaviour of the different bodies of our example. We
note that the N-body program has been excerpted (not fully) from [10] which
relies on a second order differential equation solved by Euler’s method. Now, we
shed some light on the POP tool outline already depicted in Figure 3. POP has

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 11

1 xJupiter = mpfr(4.841431617736816 ,59)
2 yJupiter = mpfr(-1.1603200435638428 ,60)
3 zJupiter = mpfr(-0.10362204164266586 ,57)
4 vxJupiter = mpfr(mpfr(0.001660076668485999 ,61)*mpfr(days_per_year ,61)

,61)
5 vyJupiter = mpfr(mpfr(0.007699011359363794 ,61)*mpfr(days_per_year ,61)

,61)
6 vzJupiter = mpfr(mpfr(-6.904600013513118E-5,61)*mpfr(days_per_year ,61)

,61)
7 massJupiter = mpfr(mpfr(9.547919617034495E-4,55)*mpfr(solar_mass ,55) ,55)
8[...]
9 while(t<t_max):

10 dx = mpfr(mpfr(xSun ,57)-mpfr(xJupiter ,59) ,58)
11 dy = mpfr(mpfr(ySun ,60)-mpfr(yJupiter ,60) ,57)
12 dz = mpfr(mpfr(zSun ,60)-mpfr(zJupiter ,57) ,55)
13 distance = gmpy2.sqrt(mpfr(mpfr(mpfr(mpfr(dx ,58)*mpfr(dx ,58) ,58)
14 +mpfr(mpfr(dy ,57)*mpfr(dy ,57) ,57) ,57)+mpfr(mpfr(dz ,46)
15 *mpfr(dz ,46) ,46) ,56))
16 mag = mpfr(mpfr(dt ,56)/mpfr(mpfr(mpfr(distance ,56)
17 *mpfr(distance ,56) ,56)*mpfr(distance ,56) ,56) ,56)
18 vxJupiter = mpfr(mpfr(vxJupiter ,61)+mpfr(mpfr(mpfr(dx ,56)
19 *mpfr(massSun ,56) ,56)*mpfr(mag ,56) ,56) ,60)
20 vyJupiter = mpfr(mpfr(vyJupiter ,61)+mpfr(mpfr(mpfr(dy ,54)
21 *mpfr(massSun ,54) ,54)*mpfr(mag ,54) ,54) ,60)
22 vzJupiter = mpfr(mpfr(vzJupiter ,61)+mpfr(mpfr(mpfr(dz ,55)
23 *mpfr(massSun ,55) ,55)*mpfr(mag ,55) ,55) ,60)
24 [...]
25 xJupiter = mpfr(mpfr(xJupiter ,54)+mpfr(mpfr(dt ,47)
26 *mpfr(vxJupiter ,47) ,47) ,53)
27 yJupiter = mpfr(mpfr(yJupiter ,54)+mpfr(mpfr(dt ,47)
28 *mpfr(vyJupiter ,47) ,47) ,53)
29 zJupiter = mpfr(mpfr(zJupiter ,54)+mpfr(mpfr(dt ,47)
30 *mpfr(vzJupiter ,47) ,47) ,53)
31 [...]
32}

Fig. 4: Python MPFR code automatically generated by POP for the N-body
problem for a nsb requirement of 18 bits on the positions of the planets at the
end of the simulation.

been developed in JAVA. It uses the ANLTR v4.7.13 framework to parse the
different input programs. As mentioned in Section 4, we reduce the precision
tuning problem to an ILP by generating a set of semantical equations which can
be solved by a linear solver. The integer solution to this problem, computed in
polynomial time by a (real) linear programming solver, we use GLPK v4.65 [17],
gives the optimal data types at the bit level.

We ran our precision tuning analysis on the N-body problem with different
nsb requirements on the program variables: 11, 18, 24, 34, 43 and 53 bits. This
shows the ability of POP to tune programs in function of the IEEE754 formats
(11, 24, 53) [1] as well as for arbitrary word length which can be encoded using
libraries such as MPFR [11] or POSIT [25]. We test the efficiency of POP analysis
in several ways. The experiments shown in Table 1 seek to measure the distances
between the exact position of each of the bodies of our planetary system and the

3 https://www.antlr.org/

12 Ben Khalifa et al.

 1×10-11

 1×10-10

 1×10-9

 1×10-8

 1×10-7

 1×10-6

 1×10-5

 0.0001

 0.001

 0.01

 0 10 20 30 40 50 60

nsb=11
nsb=18

nsb=24
nsb=34

nsb=43
nsb=53

(a) Jupiter

 1×10-11

 1×10-10

 1×10-9

 1×10-8

 1×10-7

 1×10-6

 1×10-5

 0.0001

 0.001

 0.01

 0 10 20 30 40 50 60

nsb=11
nsb=18

nsb=24
nsb=34

nsb=43
nsb=53

(b) Saturn

 1×10-12

 1×10-10

 1×10-8

 1×10-6

 0.0001

 0.01

 0 10 20 30 40 50 60

nsb=11
nsb=18

nsb=24
nsb=34

nsb=43
nsb=53

(c) Uranus

 1×10-11

 1×10-10

 1×10-9

 1×10-8

 1×10-7

 1×10-6

 1×10-5

 0.0001

 0.001

 0.01

 0 10 20 30 40 50 60

nsb=11
nsb=18

nsb=24
nsb=34

nsb=43
nsb=53

(d) Neptune

Fig. 5: Distance between the exact and the computed position for the 5 bodies
with 11, 18, 24, 34, 43 and 53 bits.

position computed with an nsb of 11, 18, 24, 34, 43 and 53 bits. The distances
presented in Table 1 are given for a single position on the planets which follow
the orbits previously presented in Figure 1. The positions are taken after of 10
and 30 years of simulation time.

More precisely, for this experimentation, we generate the N-body program
with all computations done on 500 bits (we assume that this gives the exact
solution) and we also generate by the same manner an MPFR [11] code with
the optimized data types returned by POP. For example, as we can observe in
Table 1, for an nsb = 11, the distance measured for Jupiter is of the order of
10−4 for 10 years of simulation which confirms the usefulness of our analysis:
desirable results (also for the remaining planets) that respects the user nsb re-
quirement where the worst error is of 2−11 for nsb = 11. For a simulation of 10
and 30 years, the runtime spent to measure these distances reaches maximally 2
minutes 59 seconds for an nsb = 53. Concerning the POP time, our analysis took
as little as 25 seconds (nsb = 11) to find that we can lower the precision of the
majority of variables of the N-body program for a simulation time of 10 years
and does not exceed 41 seconds for a simulation time of 30 years (nsb = 24).
With this speed, we believe that for large codes POP achieves its best tuning in a

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 13

minimal time. Figure 4 depicts the capability of POP to generate automatically
a Python MPFR version of the N-body program on the position of the planets
at the end of the simulation. The MPFR code is annotated with the optimized
formats returned by POP after analysis for nsb = 18. In the future, we plan to
also generate code for libraries based on the POSIT number system4.

We end this section by focusing on the curves of Figure 5. For this experiment,
we plot the distance between the exact and the computed position for each
body at each instant of the simulation. This extends the results of Table 1
to all instants and not to specific ones. Consequently, we deduce from these
observations that the measured error is controlled for the different planets at
each iteration of the simulation.

6 Concluding Remarks

The primary goal of our work was to provide a new approach for mixed-precision
tuning, totally different from the existing ones. The novelty of our technique is
to propose a semantical modelling of the propagation of the numerical errors
throughout the code expressed as a set of constraints. We have defined two
variants of methods. The first one corresponds to a pure ILP with an over-
approximation of the carries in the elementary operations. The second one aims
to use a more precise carry bit function and is solved by the policy iteration
technique [7]. Both two methods have been implemented in our tool POP. We
believe this static analysis performed by our automated tool is unique. The
effectiveness of POP has already been demonstrated on a variety of programs
coming from different fields.

In this article, we have shown that POP is able to tune the N-body program
according to different number of significant bit required by the user. The results
presented are promising in term of the analysis technique, speed and efficiency.
The only limitation we can face is the size of the problem accepted by the solver.
In addition, we have also shown that POP is able to generate code for multiple
precision libraries, MPFR in practice, and we plan to integrate POSIT libraries
in the near future.

Broadly speaking, our important future directions include handling Deep
Neural Network’s (DNNs) for which saving resources is essential. Also, code
synthesis for the fixed-point arithmetic and assigning the same precision to pieces
of code are perspectives we aim at explore at short term.

References

1. ANSI/IEEE: IEEE Standard for Binary Floating-point Arithmetic, std 754-2008
edn. (2008)

2. Ben Khalifa, D., Martel, M.: Precision tuning and internet of things. In: Interna-
tional Conference on Internet of Things, Embedded Systems and Communications,
IINTEC 2019. pp. 80–85. IEEE (2019)

4 https://github.com/stillwater-sc/universal

14 Ben Khalifa et al.

3. Ben Khalifa, D., Martel, M.: Precision tuning of an accelerometer-based pedometer
algorithm for iot devices. In: IEEE International Conference on Internet of Things
and Intelligence System, IoTaIS 2020, Bali, Indonesia, January 27-28, 2021. pp.
116–122. IEEE (2020)

4. Ben Khalifa, D., Martel, M.: An evaluation of pop performance for tuning numer-
ical programs in floating-point arithmetic. In: International Conference on Infor-
mation and Computer Technologies, ICICT 2021. IEEE (2021)

5. Ben Khalifa, D., Martel, M., Adjé, A.: POP: A tuning assistant for mixed-precision
floating-point computations. In: Formal Techniques for Safety-Critical Systems -
7th International Workshop, FTSCS 2019. Communications in Computer and In-
formation Science, vol. 1165, pp. 77–94. Springer (2019)

6. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
maric, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL. pp. 300–315. ACM (2017)

7. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Computer
Aided Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland,
UK, July 6-10, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3576,
pp. 462–475. Springer (2005)

8. Damouche, N., Martel, M.: Mixed precision tuning with salsa. In: Proceedings of
the 8th International Joint Conference on Pervasive and Embedded Computing
and Communication Systems, PECCS 2018, Porto, Portugal, July 29-30, 2018. pp.
185–194. SciTePress (2018)

9. Darulova, E., Horn, E., Sharma, S.: Sound mixed-precision optimization with
rewriting. In: Proceedings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems, ICCPS. pp. 208–219. IEEE Computer Society / ACM
(2018)

10. Demeure, N.: Compromis entre précision et performance dans le calcul haute per-
formance. Ph.D. thesis, Université Paris-Saclay (January 2021)

11. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33 (2007)

12. Gardarsson, M., Kjartan, K.: Some theoretical and numerical aspects of the n-body
problem (2013), student Paper

13. Guo, H., Rubio-González, C.: Exploiting community structure for floating-point
precision tuning. In: Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2018. pp. 333–343. ACM (2018)

14. Kotipalli, P.V., Singh, R., Wood, P., Laguna, I., Bagchi, S.: AMPT-GA: automatic
mixed precision floating point tuning for GPU applications. In: Proceedings of the
ACM International Conference on Supercomputing, ICS. pp. 160–170. ACM (2019)

15. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automati-
cally adapting programs for mixed-precision floating-point computation. In: Inter-
national Conference on Supercomputing, ICS’13. pp. 369–378. ACM (2013)

16. Lam, M.O., Vanderbruggen, T., Menon, H., Schordan, M.: Tool integration for
source-level mixed precision. In: 2019 IEEE/ACM 3rd International Workshop on
Software Correctness for HPC Applications (Correctness). pp. 27–35 (2019)

17. Makhorin, A.O.: Glpk (gnu linear programming kit).
Available at http://www.gnu.org/software/glpk/glpk.html

A Study of the Floating-Point Tuning Behaviour on the N-body Problem 15

18. Makino, J., Kokubo, E., Fukushige, T.: Performance evaluation and tuning of
GRAPE-6 - towards 40 ”real” tflops. In: Proceedings of the ACM/IEEE SC2003
Conference on High Performance Networking and Computing, 15-21 November
2003, Phoenix, AZ, USA, CD-Rom. p. 2. ACM (2003)

19. Menon, H., Lam, M.O., Osei-Kuffuor, D., Schordan, M., Lloyd, S., Mohror, K.,
Hittinger, J.: Adapt: Algorithmic differentiation applied to floating-point preci-
sion tuning. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. SC ’18, IEEE Press (2018)

20. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. LNCS, vol. 4963, pp. 337–
340. Springer (2008)

21. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’13. pp. 27:1–27:12. ACM (2013)

22. Saiki, B., Flatt, O., Nandi, C., Panchekha, P., Tatlock, Z.: Combining precision
tuning and rewriting. In: IEEE Symposium on Computer Arithmetic (ARITH)
2021. IEEE (2021)

23. Schkufza, E., Sharma, R., Aiken, A.: Stochastic optimization of floating-point pro-
grams with tunable precision. In: Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 53–64. PLDI ’14,
Association for Computing Machinery (2014)

24. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions. ACM Trans. Program. Lang. Syst. 41(1) (2018)

25. Uguen, Y., Forget, L., de Dinechin, F.: Evaluating the hardware cost of the posit
number system. In: Sourdis, I., Bouganis, C., Álvarez, C., Dı́az, L.A.T., Valero-
Lara, P., Martorell, X. (eds.) 29th International Conference on Field Programmable
Logic and Applications, FPL 2019, Barcelona, Spain, September 8-12, 2019. pp.
106–113. IEEE (2019)

	A Study of the Floating-Point Tuning Behaviour on the N-body Problem

