Skip to main content

Secure D2D in 5G Cellular Networks: Architecture, Requirements and Solutions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 289))

Abstract

Allowing nearby mobile devices to communicate directly without relaying the data through the conventional cellular network, device-to-device (D2D) communication is expected to improve the overall network efficiency of the 5G network and enable futuristic applications. In recent years, 3GPP has also put D2D communication under the umbrella of Proximity-based Services (ProSe) to accelerate its development. However, since D2D networks could introduce additional security issues, it is unprecedentedly important to study and mitigate the risk carefully. In this chapter, we review the security architecture, security requirements and existing solutions for the 5G D2D networks. First, we give an overview of the security architecture of the 3GPP ProSe Service. Then, we classify various security challenges and state the requirements of a secure 5G D2D network. Subsequently, we classify the major research work according to their application scenarios and present the main ideas of some of the works with security analysis. Finally, we discuss some open research issues to inspire future researchers to build more secure and robust 5G D2D solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ansari, R.I., Chrysostomou, C., Hassan, S.A., Guizani, M., Mumtaz, S., Rodriguez, J., Rodrigues, J.J.P.C.: 5G D2D networks: techniques, challenges, and future prospects. IEEE Syst. J. 12(4), 3970–3984 (2018). https://doi.org/10.1109/JSYST.2017.2773633

    Article  Google Scholar 

  2. Feng, D., Lu, L., Yi, Y.W., Li, G.Y., Feng, G., Li, S.: Device-to-device communications underlaying cellular networks. IEEE Trans. Commun. 61(8), 3541–3551 (2013). https://doi.org/10.1109/TCOMM.2013.071013.120787

    Article  Google Scholar 

  3. Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., Javed, M.A.: A survey of device-to-device communications: Research issues and challenges. IEEE Commun. Surv. Tutor. 20(3), 2133–2168 (2018). https://doi.org/10.1109/COMST.2018.2828120

    Article  Google Scholar 

  4. Zhang, A., Lin, X.: Security-aware and privacy-preserving D2D communications in 5G. IEEE Network 31(4), 70–77 (2017). https://doi.org/10.1109/MNET.2017.1600290

    Article  Google Scholar 

  5. Asadi, A., Wang, Q., Mancuso, V.: A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutor. 16(4), 1801–1819 (2014). https://doi.org/10.1109/COMST.2014.2319555

    Article  Google Scholar 

  6. 3GPP: Technical Specification Group Services and System Aspects; Proximity-based services (ProSe) (Release 15); TS23.303 (2018). [Online]. Available: https://www.3gpp.org/DynaReport/23303.htm

  7. 3GPP: Technical Specification Group Services and System Aspects; Feasibility study for Proximity Services (ProSe) (Release 12); TS22.803 (2013). [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=653

  8. Wang, M., Yan, Z.: A survey on security in D2D communications. Mobile Netw. Appl. 22(2), 195–208 (2017). https://doi.org/10.1007/s11036-016-0741-5

    Article  Google Scholar 

  9. Nait Hamoud, O., Kenaza, T., Challal, Y.: Security in device-to-device communications: a survey. IET Networks 7(1), 14–22 (2018). https://doi.org/10.1049/iet-net.2017.0119

  10. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., Jovicic, A.: FlashLinQ: a synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Trans. Networking 21(4), 1215–1228 (2013). https://doi.org/10.1109/TNET.2013.2264633

    Article  Google Scholar 

  11. Wi-Fi P2P Technical Specification v1.7. Wi-Fi Alliance, Dec 2016

    Google Scholar 

  12. 3GPP: Universal Mobile Telecommunications System (UMTS); LTE; Proximity-based Services (ProSe); Security aspects (3GPP TS 33.303 version 15.0.0 Release 15) (2018)

    Google Scholar 

  13. 3GPP: System architecture for the 5G System (5GS) (Release 15.7.0); TS 23.501. p. 353 (2019). [Online]. Available: https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

  14. Haus, M., Waqas, M., Ding, A.Y., Li, Y., Tarkoma, S., Ott, J.: Security and privacy in device-to-device (D2D) communication: a review. IEEE Commun. Surv. Tutor. 19(2), 1054–1079 (2017). https://doi.org/10.1109/COMST.2017.2649687

    Article  Google Scholar 

  15. Zhang, S., Wang, Y., Zhou, W.: Towards secure 5G networks: a survey. Comput. Netw. 162, 106871 (2019). https://doi.org/10.1016/j.comnet.2019.106871

    Article  Google Scholar 

  16. Wang, M., Yan, Z.: Security in D2D communications: a review. In: Proceedings—14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, Aug. 2015, vol. 1, pp. 1199–1204. https://doi.org/10.1109/Trustcom.2015.505

  17. Abd-Elrahman, E., Ibn-Khedher, H., Afifi, H., Toukabri, T.: Fast group discovery and non-repudiation in D2D communications using IBE. In: IWCMC 2015—11th International Wireless Communications and Mobile Computing Conference, Aug. 2015, pp. 616–621. https://doi.org/10.1109/IWCMC.2015.7289154

  18. Abd-Elrahman, E., Ibn-Khedher, H., Afifi, H.: D2D group communications security. In: International Conference on Protocol Engineering, ICPE 2015 and International Conference on New Technologies of Distributed Systems, NTDS 2015—Proceedings, Jul. 2015, pp. 1–6. https://doi.org/10.1109/NOTERE.2015.7293504

  19. Sun, Y., Cao, J., Ma, M., Li, H., Niu, B., Li, F.: Privacy-preserving device discovery and authentication scheme for D2D communication in 3GPP 5G HetNet. In: 2019 International Conference on Computing, Networking and Communications, ICNC 2019, Feb. 2019, pp. 425–431. https://doi.org/10.1109/ICCNC.2019.8685499

  20. Sedidi, R., Kumar, A.: Key exchange protocols for secure Device-to-Device (D2D) communication in 5G. In: IFIP Wireless Days, Mar. 2016, vol. 2016-April, pp. 1–6. https://doi.org/10.1109/WD.2016.7461477

  21. Zhang, A., Chen, J., Hu, R.Q., Qian, Y.: SeDS: Secure data sharing strategy for d2d communication in LTE-advanced networks. IEEE Trans. Veh. Technol. 65(4), 2659–2672 (2016). https://doi.org/10.1109/TVT.2015.2416002

    Article  Google Scholar 

  22. Schmittner, M., Asadi, A., Hollick, M.: SEMUD: secure multi-hop device-to-device communication for 5G public safety networks. In: 2017 IFIP Networking Conference, IFIP Networking 2017 and Workshops, Jun. 2017, vol. 2018-Janua, pp. 1–9. https://doi.org/10.23919/IFIPNetworking.2017.8264846

  23. Suraci, C., Pizzi, S., Iera, A., Araniti, G.: Enhance the protection of transmitted data in 5G D2D communications through the Social Internet of Things. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, Sep. 2018, vol. 2018-Septe, pp. 376–380. https://doi.org/10.1109/PIMRC.2018.8580860

  24. Suraci, C.,Pizzi, S., Garompolo, D., Araniti, G., Molinaro, A., Iera, A.: Trusted and secured D2D-aided communications in 5G networks. Ad Hoc Netw. 114(November 2019), 102403 (2021). https://doi.org/10.1016/j.adhoc.2020.102403

  25. Wang, M., Yan, Z., Niemi, V.: UAKA-D2D: universal authentication and key agreement protocol in D2D communications. Mobile Netw. Appl. 22(3), 510–525 (2017). https://doi.org/10.1007/s11036-017-0870-5

    Article  Google Scholar 

  26. Seok, B., Sicato, J.C.S., Erzhena, T.,. Xuan, C., Pan, Y., Park, J.H.: Secure D2D communication for 5G IoT network based on lightweight cryptography. Appl. Sci. (Switzerland) 10(1) (2020). https://doi.org/10.3390/app10010217

  27. Melki, R., Noura, H.N., Chehab, A.: Lightweight and Secure D2D authentication & key management based on PLS. In: IEEE Vehicular Technology Conference, Sep. 2019, vol. 2019-Septe, pp. 1–7. https://doi.org/10.1109/VTCFall.2019.8891531

  28. Baskaran, S.B.M., Raja, G.: A lightweight incognito key exchange mechanism for LTE-A assisted D2D communication. In: 2017 9th International Conference on Advanced Computing, ICoAC 2017, pp. 301–307 (2018). https://doi.org/10.1109/ICoAC.2017.8441370

  29. Chow, M.C., Ma, M.: A Lightweight D2D authentication scheme against free-riding attacks in 5G cellular network. In: Proceedings of the 2020 2nd International Electronics Communication Conference, Jul. 2020, pp. 143–149. https://doi.org/10.1145/3409934.3409952

  30. Javed, Y., Khan, A.S., Qahar, A., Abdullah, J,: EEoP: a lightweight security scheme over PKI in D2D cellular networks. J. Telecommun. Electron. Comput. Eng. 9(3–11), 99–105 (2017). [Online]. Available: http://journal.utem.edu.my/index.php/jtec/article/view/3191

  31. Abro, A., Deng, Z., Memon, K.A.: A lightweight elliptic-elgamal-based authentication scheme for secure device-to-device communication. Future Internet 11(5), 108 (2019). https://doi.org/10.3390/fi11050108

    Article  Google Scholar 

  32. Dao, N.N., Na, W., Lee, Y., Vu, D.N., Cho, S.: Prefetched asymmetric authentication for infrastructureless D2D communications: feasibility study and analysis. In: 9th International Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence, ICTC 2018, Oct. 2018, pp. 1053–1054. https://doi.org/10.1109/ICTC.2018.8539475

  33. Boubakri, W., Abdallah, W., Boudriga, N.: Access control in 5G communication networks using simple PKI certificates. In: 2017 13th International Wireless Communications and Mobile Computing Conference, IWCMC 2017, Jun. 2017, pp. 2092–2097. https://doi.org/10.1109/IWCMC.2017.7986606

  34. Hamoud, O.N., Kenaza, T., Challal, Y.: Towards using multiple KGC for CL-PKC to secure D2D communications. In: 2018 International Conference on Smart Communications in Network Technologies, SaCoNeT 2018, Oct. 2018, pp. 283–287. https://doi.org/10.1109/SaCoNeT.2018.8585671

  35. Hamoud, O.N., Kenaza, T., Challal, Y.: A new certificateless system construction for multiple key generator centers to secure device-to-device communications. In: ICETE 2019—Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, vol. 2, pp. 84–95 (2019). https://doi.org/10.5220/0007841500840095

  36. Kwon, H., Kim, D., Hahn, C., Hur, J.: Secure authentication using ciphertext policy attribute-based encryption in mobile multi-hop networks. Multimed. Tools Appl. 76(19), 19507–19521 (2017). https://doi.org/10.1007/s11042-015-3187-z

    Article  Google Scholar 

  37. Yan, Z., Xie, H., Zhang, P., Gupta, B.B.: Flexible data access control in D2D communications. Futur. Gener. Comput. Syst. 82, 738–751 (2018). https://doi.org/10.1016/j.future.2017.08.052

    Article  Google Scholar 

  38. Wang, M., Yan, Z., Song, B., Atiquzzaman, M.: AAKA-D2D : anonymous authentication and key agreement protocol in D2D communications. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (2019). https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00248

  39. Hsu, R.H., Lee, J.: Group anonymous D2D communication with end-to-end security in LTE-A. In: 2015 IEEE Conference on Communications and NetworkSecurity, CNS 2015, Sep. 2015, pp. 451–459. https://doi.org/10.1109/CNS.2015.7346857

  40. Hsu, R.H., Lee, J., Quek, T.Q.S., Chen, J.C.: GRAAD: group anonymous and accountable D2D communication in mobile networks. IEEE Trans. Inf. Forensics Secur. 13(2), 449–464 (2018). https://doi.org/10.1109/TIFS.2017.2756567

    Article  Google Scholar 

  41. Wang, L., Tian, Y., Zhang, D., Lu, Y.: Constant-round authenticated and dynamic group key agreement protocol for D2D group communications. Inf. Sci. 503, 61–71 (2019). https://doi.org/10.1016/j.ins.2019.06.067

    Article  MathSciNet  MATH  Google Scholar 

  42. Shang, Z., Ma, M., Li, X.: A certificateless authentication protocol for D2D group communications in 5G cellular networks. In: 2019 IEEE Global Communications Conference, GLOBECOM 2019—Proceedings, pp. 1–7 (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9014047

  43. Shang, Z., Ma, M., Li, X.: A secure group-oriented device-to-device authentication protocol for 5G wireless networks. IEEE Trans. Wirel. Commun. 300350(c), 1–1 (2020). https://doi.org/10.1109/TWC.2020.3007702

  44. Paula, A., Lopes, G., Gondim, P.R.L.: Group authentication protocol based on aggregated signatures for D2D communication. Comput. Netw., 107192 (2020). https://doi.org/10.1016/j.comnet.2020.107192

  45. Wang, M., Yan, Z.: Privacy-preserving authentication and key agreement protocols for D2D group communications. IEEE Trans. Industr. Inf. 14(8), 3637–3647 (2018). https://doi.org/10.1109/TII.2017.2778090

    Article  Google Scholar 

  46. Sun, Y., Cao, J., Ma, M., Zhang, Y., Li, H., Niu, B.: EAP-DDBA: efficient anonymity proximity device discovery and batch authentication mechanism for massive d2d communication devices in 3GPP 5G HetNet. IEEE Trans. Dependable Secure Comput. 14(8), 1–1 (2020). https://doi.org/10.1109/tdsc.2020.2989784

  47. Abualhaol, I., Muegge, S.: Securing D2D wireless links by continuous authenticity with legitimacy patterns. In: Proceedings of the Annual Hawaii International Conference on System Sciences, Jan. 2016, vol. 2016-March, pp. 5763–5771. https://doi.org/10.1109/HICSS.2016.713

  48. Tan, H., Song, Y., Xuan, S., Pan, S., Chung, I.: Secure D2D group authentication employing smartphone sensor behavior analysis. Symmetry 11(8), 969 (2019). https://doi.org/10.3390/sym11080969

    Article  Google Scholar 

  49. Zhang, A., Wang, L., Ye, X., Lin, X.: Light-Weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Trans. Inf. Forensics Secur. 12(3), 662–675 (2017). https://doi.org/10.1109/TIFS.2016.2631950

    Article  Google Scholar 

  50. Zhou, C.: An improved lightweight certificateless generalized signcryption scheme for mobile-health system. Int. J. Distrib. Sens. Netw. 15(1), 1550147718824465 (2019). https://doi.org/10.1177/1550147718824465

    Article  Google Scholar 

  51. Wang, L., Li, Z., Chen, M., Zhang, A., Cui, J., Zheng, B.: Secure content sharing protocol for D2D users based on profile matching in social networks. In: 2017 9th International Conference on Wireless Communications and Signal Processing, WCSP 2017—Proceedings, Oct 2017, vol. 2017-Janua, pp. 1–5. https://doi.org/10.1109/WCSP.2017.8171117

Download references

Acknowledgements

This work is supported by the MOE AcRF Tier 1 funding for the project of RG 26/18 by Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maode Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chow, M.C., Ma, M. (2022). Secure D2D in 5G Cellular Networks: Architecture, Requirements and Solutions. In: Nicopolitidis, P., Misra, S., Yang, L.T., Zeigler, B., Ning, Z. (eds) Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-87049-2_20

Download citation

Publish with us

Policies and ethics