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An Evolving Feature Weighting Framework for Granular Fuzzy 
Logic Models 

Muhammad Zaiyad Muda and George Panoutsos 

Department of Automatic Control and Systems Engineering 
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Abstract. Discovering and extracting knowledge from large databases are key elements in granular computing 
(GrC). The knowledge extracted, in the form of information granules can be used to build rule-based systems 
such as Fuzzy Logic inference systems. Algorithms for iterative data granulation in the literature treat all var-
iables equally and neglects the difference in variable importance, as a potential mechanism to influence the 
data clustering process. In this paper, an iterative data granulation algorithm with feature weighting called W-
GrC is proposed. By hypothesising that the variables or features used during the data granulation process can 
have different importance to how data granulation evolves, the weight of each feature’s influence is estimated 
based on the information granules on a given instance; this is updated in each iteration. The feature weights 
are estimated based on the sum of within granule variances. The proposed method is validated through various 
UCI classification problems:- Iris, Wine and Glass datasets. Result shows that for certain range of feature 
weight parameter, the new algorithm outperforms the conventional iterative granulation in terms of classifica-
tion accuracy. We also give attention to the interpretability-accuracy trade-off in Fuzzy Logic-based systems 
and we show that W-GrC produces higher classification performance - without significant deterioration in 
terms of its interpretability (Nauck’s index). 

Keywords: Granular Computing, Iterative Data Granulation, Fuzzy Logic, Feature Weights, Feature Rele-
vance. 

1 Introduction 

One of the key steps in building data driven Fuzzy 
Logic (FL) models is the process of extracting 
knowledge from data [1]. Granular Computing (GrC) 
and iterative data granulation algorithms are an effec-
tive approach to extract knowledge from data within the 
context of human-centric systems [2-3]. Among the 
most widely used techniques for this process are fuzzy 
c-means (FCM) and hierarchical clustering. 

In recent years, iterative data granulation algorithms, 
also known as granular clustering proposed in [3-4] 
have become a proven alternative in data mining and 
developing FL rule-bases. The main idea of this algo-
rithm is to merge two most compatible information 
granules iteratively until sufficient data compression is 
achieved [3]. The compatibility measure can simply be 
distance based (such as in hierarchical clustering algo-
rithms) or potentially involve more complex formula-
tions that combine granular density, cardinality, over-
lap etc. 

GrC algorithms have a similarity with agglomerative 
hierarchical clustering in terms of its ‘find and merge’ 
strategy. However, one main distinction between these 
algorithms is that in GrC, every granule consist of sub-
granules originating directly from the actual data. This 
contributes to strong connection between the raw data 
and the information granules. Moreover, the compati-
bility measure in GrC is very useful tool in monitoring 
the similarity between granules; this can be linked to a 

numerical criterion to terminate the granulation in order 
to avoid merging of low compatibility granules [4]. 

So far GrC algorithms treat all features equally dur-
ing the data granulation process. This is not desirable 
especially when dealing with data consisting of high 
number of features [5].  In many cases, some features 
are not as crucial as other features in the development 
of the FL model [1], while other features may have an 
importance that changes throughout the granulation 
process. This leads to the idea of continuously measur-
ing and assigning appropriate weight for each feature 
throughout the data granulation (as in adaptive feature 
weighting for classical clustering algorithms). 

Even though the feature weight concept has been in-
troduced elsewhere [4], most of the works regarding 
this algorithm such as [6] and [7] use fixed weight for 
each feature. Investigations in feature weighting for 
GrC are scarce; for example in [8] a Fast Correlation-
Based Filter which is based on symmetrical uncertainty 
to determine the most relevant features of a welding 
process. However, this is a preprocessing step (acting 
as a filter method) where the feature weights are deter-
mined in advance, and their values are constant 
throughout the evolution of the granulation process. 

In this paper, we propose a new GrC algorithm that 
assigns and updates the feature weights based on the 
importance of the input features throughout the evolu-
tion of the iterative data granulation. With this approach 
we enable the more important features to have higher 
influence in the data granulation than the less important 



features, for a given iteration. Furthermore, instead of 
assigning the weight in the preprocessing step, the fea-
ture weighting in this research is embedded in the gran-
ulation process itself. This allows the feature weights to 
be adjusted according to the information granules that 
have been formed. The hypothesis here is that as infor-
mation granules merge, and patterns develop, the im-
portance of particular features to the evolution of such 
granules may change. While this approach is new in 
GrC, it has already been proven to be effective in other 
data mining and clustering algorithms. 

Feature weighting has been applied in many cluster-
ing algorithms to overcome the problem of feature se-
lection. Wu et al. introduced a new weighted fuzzy c-
means algorithm taking into account the between-clus-
ter separability [9]. The iterative formulas of the feature 
weights and membership degrees are obtained by max-
imizing the in-cluster compactness and the between-
cluster separability. In another research, Huang et al. 
proposed W-k-means, the weighted version of k-means 
that outperformed the standard k-means in recovering 
clusters in data [5]. They also demonstrated that elimi-
nating the irrelevant features based on the feature 
weights may enhance the clustering results. In the area 
of hierarchical clustering, Amorim implemented the 
feature-weighting scheme in an improved version of 
Ward, called Wardp [10]. He demonstrated the effec-
tiveness of Wardp over the conventional Ward in par-
ticular in datasets comprising noisy data. 

2 Background: The GrC-Fuzzy Logic 
model 

The general framework for GrC-Fuzzy Logic model-
ling consists of two main steps, which are knowledge 
discovery and followed by the formation of a Fuzzy 
Logic rule-base. In the knowledge discovery step, gran-
ular computing and the process of iterative data granu-
lation mimic the cognitive human abstraction in group-
ing entities with similar features (i.e. geometrical prop-
erties, cardinality, density, etc.) [6]. The knowledge 
discovered in the form of information granules defines 
the structure of the FL rule-base, specifically the pa-
rameters of the FL membership functions. 

 
2.1 Knowledge discovery 

The process of iterative data granulation starts with 
finding the pair of granules with the highest compati-
bility measure. Next, the granules are merged together 
in a new information granule that consists of original 
granules [7]. These steps are repeated until a satisfac-
tory data abstraction level is accomplished. The com-
patibility measure of two granules A and B is defined 
as: 𝐶(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ −                                         𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻. exp(−𝛼 × 𝑅)  (1) 

where                  𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑅 = ஼ಲ,ಳ/஼௔௥ௗ௜௡௔௟௜௧௬ಾಲ೉௅ಲ,ಳ/ ௅௘௡௚௧௛ಾಲ೉               (2) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑  is defined as the sum of maximum dis-
tance in each dimension 𝑑:  

                  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ = ∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒௩ )             ௗ௩ୀଵ (3)
   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ is the average multidimensional dis-

tance between granules A and B weighted by feature 
weight 𝑤௩ :                𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ = ∑ ௪ೡ೏ೡసభ (஽భି ஽మ)ୢ               (4)

                                    
in which                  𝐷ଵ = max (𝑚𝑎𝑥஺௩ , 𝑚𝑎𝑥஻௩)                  (5)                                                

                        𝐷ଶ = min  (𝑚𝑖𝑛஺௩ , 𝑚𝑖𝑛஻௩)                      (6) 

 𝑚𝑎𝑥஺௩: maximum value in granule A for dimension 𝑣, 𝑚𝑖𝑛஺௩: minimum value in granule A for dimension 𝑣, 𝛼: weights the requirement between distance and 
density, 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦ெ஺௑: the total number of instances 
in the data set, 𝐿𝑒𝑛𝑔𝑡ℎெ஺௑: the maximum possible 
length of a granule in the data set, 𝐶஺,஻: the cardinality 
when granule A merge with granule B, and 𝐿஺,஻: length 
of the granule A and B, defined as:                    𝐿஺,஻ = ∑ (𝑚𝑎𝑥௑௩ − 𝑚𝑖𝑛௑௩)ௗ௜ୀ௩                     (7) 

Typically, the feature weight parameter 𝑤௩ in equa-
tion (4) used in most previous works is set to 1 for all 
dimensions (i.e. feature weighting is not used), or used 
at a fixed pre-determined value for each feature. The 
computation and adaptive adjustment of this parameter 
is the focus in this paper.  

Fig.1 illustrates the evolution of a data granulation 
process for a two-dimensional synthetic data set with 
150 instances. It starts with the initial raw data where 
every data instance is considered as one granule-point. 
These granules are then merged iteratively causing the 
number of granules to be reduced until the final infor-
mation granules are established (in a predetermined 
manner, or using some termination criterion). 

2.2 Formation of Fuzzy Logic rule-base 

Taking a Gaussian Fuzzy Logic membership func-
tion (MF) as an example, the MF depends on two pa-
rameters 𝜎 and 𝑐  which represent the width and the 
centre of a fuzzy set [11]. The standard deviation and 
median of data in each information granule can be used 
to determine the 𝜎 and 𝑐, respectively. Each infor-
mation granule characterises one fuzzy rule [12]. For 
example, five information granules in Fig. 1 will lead  
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Fig. 1. Data granulation process from (a) 400 data vectors 
to (b) 20 information granules and (c) 5 information gran-

ules 

to the formation of five fuzzy rules. Fig. 2 shows the 
overview of GrC-Fuzzy Logic modelling framework. 

By determining the parameters 𝜎 and 𝑐 across each 
input dimension individually in a multi-input single-
output (MISO) system, the rules based on Mamdani 
fuzzy inference system (FIS) can be written as follows: 

𝑅𝑢𝑙𝑒 1: 𝐼𝐹 (𝑖𝑛𝑝𝑢𝑡𝐴 =  𝐴ଵ 𝑎𝑛𝑑 𝑖𝑛𝑝𝑢𝑡𝐵 =  𝐵ଵ 𝑎𝑛𝑑 … )  𝑡ℎ𝑒𝑛 (𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑂ଵ) 𝑅𝑢𝑙𝑒 2: 𝐼𝐹 (𝑖𝑛𝑝𝑢𝑡𝐴 =  𝐴ଶ 𝑎𝑛𝑑 𝑖𝑛𝑝𝑢𝑡𝐵 =  𝐵ଶ 𝑎𝑛𝑑 … ) 

                       𝑡ℎ𝑒𝑛 (𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑂ଶ)      (8) 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The overview of GrC-Fuzzy Logic modelling frame-
work 

3 Proposed Methodology: Evolving 
Feature Weighting GrC 

The Weighted K-Means (WK-Means) algorithm intro-
duced by Huang et al. [5] minimises the following ob-
ject function: 

       𝑊(𝑆, 𝐶, 𝑤) =  ∑ ∑ ∑ 𝑤௩ఉ𝑑(𝑦௜௩ , 𝑐௞௩)௩∈௏௜∈ௌೖ௄௞ୀଵ     (9) 
 
The Equation above is minimised by an iterative 

method, optimising (9) for 𝑆, 𝐶, and 𝑤, where 𝑆 ={𝑆ଵ, 𝑆ଶ, … , 𝑆௞ , … , 𝑆௄}, 𝑐௞ ∈ 𝐶 is the centroid for each 
granule 𝑘, 𝑦௜  is an object in dataset 𝑌, and 𝛽 is the fea-
ture weighting parameter that balances the degree of ef-
fect between the weight and its contribution to the dis-
tance. There are two possibilities for the update of 𝑤௩, 
with S and C fixed, subject to 𝛽 > 1:      
  

                     𝑤௩ = ൞ 0, 𝑖𝑓 𝐷௩ = 0ଵ
∑ ቈವೡವೕ቉ భഁషభ೓ೕసభ

, 𝑖𝑓 𝐷௩ ≠ 0              (10)
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where ℎ is the number of features where 𝐷௩ ≠ 0. 
The parameter 𝑤௩ (feature weight) in equation (4) 

has a fixed value, often pre-determined, in works re-
lated to GrC. In this paper, the weight for each feature 
v is defined and iteratively updated based on equation 
(10).  

As shown in the equation, nonzero weight is only as-
signed to a feature where 𝐷௩ ≠ 0. 𝐷௩ = 0 indicates that 
the vth feature consists of single value in each granule 
[5] and will be assigned zero weight. In this research, 𝐷௩  is set as the sum of within granule variance: 

                     𝐷௩ = ∑ ଵேିଵ ∑ |𝑦௜௩ − 𝑐௞௩|ଶே௜ୀଵ௄௞ୀଵ               (11)  
 
where 𝑁 is the cardinality in the granule 𝑘. 

The underlying principle here is to assign higher 
weights for features with lower within granule variance 
i.e. high variance in granules is set to be undesirable, 
hence penalised in the compatibility index. High vari-
ance would translate into high sigma (width) MFs. 
Hence, features that drive the creation of low variance 
granules, in any given iteration step, are promoted by 
the use of this adaptive weight and such features are 
considered here as more important for the evolution of 
the granulation process towards the development of FL 
rule-bases for classification problems. 

3.1 Simulations and Empirical Results 

Simulations were conducted on three datasets with re-
gard to classification problems:– Iris, Wine and Glass 
(UCI Machine Learning Repository). All features are 
scaled to the interval of [0,1]. The ratio of training and 
testing data is set to 80:20. The range of feature 
weighting parameter 𝛽 is selected between 1.5 and 10. 
The root mean square error (RMSE) and prediction ac-
curacy % were calculated as the average of ten trials. 

The Iris data consists of 150 instances with four in-
put features. Next, the experiment is scaled up to da-
tasets with higher feature dimensionality, which are 
Glass and Wine data with 10 and 13 input features, re-
spectively. A bootstrapping method is applied to Glass 
data to balance the number of instances for each class. 
Due to this, the number of instances increases from 214 
to 371. For comparison purposes, based on previous 
work [12], the number of granules selected for Iris and 
Wine is 5, while for Glass is 30 granules. 

3.2 Evolving feature weights 

Fig. 3 shows how the feature weights evolve throughout 
the iterative granulation process, as an example for two 
features in the Iris dataset.  The weights are plotted 
starting from the fourth iteration (out of 115 iterations), 

after which the feature weights are observed to be sta-
ble. This is due to the fact that the feature weights are 
assigned based on the within granule variance, while 
the merging process at the beginning only involves sin-
gleton granules (i.e. 𝐷௩  = 0).  
  The feature weight average is computed and is 
compared with other measures such as mutual infor-
mation and feature importance score as shown in Table 
1. Mutual information gives information about the rel-
evance between two random variables and normally be-
ing estimated between each feature and the given class 
labels [13]. The feature importance score ranks the fea-
tures using a chi-square (𝜒ଶ) test [14]. The feature im-
portance score is the negative log of chi-square tests’ p-
value [15].  

This result shows that the feature weight ranking is 
consistent with the other two independent measures, 
confirming our hypothesis in capturing feature im-
portance via the proposed method. All these three 
measures rank Petal width as the most important fea-
ture, followed by Petal length, Sepal length and Sepal 
width. 

 
(a) 

 
       (b) 

Fig. 3. Feature weights throughout the granulation for (a) 
Sepal length and (b) Sepal width 
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Table 1. Comparison of average feature weight in W-GrC with the feature importance score and mutual information 

 Average weight (W-
GrC) 

Feature importance 
score 

Mutual information 

Sepal length 0.2721 41.7358 0.6415 
Sepal width 0.2062 19.1551 0.3935 
Petal length 0.3072 97.8866 1.2663 
Petal width 0.3623 101.1028 1.3245 

3.3 Empirical Results using Simulations 

Table 2 summarises the performance of W-GrC with 
different values of 𝛽. The ‘no feature weighting’ row 
presents the results for the GrC without feature 
weighting, also known as conventional GrC. It is ob-
served that with careful selection of 𝛽, the proposed W-
GrC outperforms the standard GrC in terms of RMSE 
and accuracy. 𝛽 needs to be treated as a hypermeter 
here, which will be identified in each case (problem 
specific). 

For the Iris data, good results were obtained at 𝛽 ∈ 
{3,4,5,6,7,8,10}. The highest accuracy was achieved 
when 𝛽 = 3 and 𝛽 = 6 with 96.33% of correct predic-
tion as compared to 94% in the conventional GrC. For 
Wine data, improvement can be observed at 𝛽 ranging 
from 3 to 6. Most experiments showed accuracies of 
above 90%, except for 𝛽 = 1.5. This result is compara-
ble to other literature results, however it is recognised 
that this specific case study may be too simple to stress 

test the proposed methodology (Glass and Wine data 
offer higher complexity and dimensionality). 

In the case of the Glass dataset, we can see more 
clearly that higher values of 𝛽 (𝛽 ≥ 3) are more desir-
able to produce good result. The best performance is 
recorded at 𝛽 = 5 with 71.86% accuracy in comparison 
with 62.79% in conventional GrC.  

From Table 2, it can be observed that in general, W-
GrC outperforms the conventional GrC. It achieves 
highest accuracy for all datasets, when an appropriate 
value of 𝛽 is selected. This is because features that are 
more important for a given instance during the iterative 
granulation process are assigned with larger weights in 
forming the information granules. However, it is noted 
that the selection of 𝛽 is important to obtain high clas-
sification accuracy. From the result, we suggest (𝛽 ≥3) as the appropriate value of 𝛽, for this particular case 
study. 

 Results are benchmarked against other research 
such as [16] with 96.67% in Iris, [17] with 97.14% in 
Wine and [13] with 71.66% in Glass. 

 
 

Table 2. Average RMSE and % accuracy performance of W-GrC with various 𝛽 values, testing (unseen) 
data, 10 runs per 𝛽 value 

 Iris Wine Glass 
 RMSE Accuracy 

(%) 
RMSE Accuracy 

(%) 
RMSE Accuracy 

(%) 
No feature 
weighting 

0.1415 94 0.1173 92.3 0.2020 62.79 𝛽 = 1.5 0.1473 91.67 0.3101 66.67 0.4274 26.74 𝛽 = 2.0 0.1551 90.67 0.1238 91 0.3365 32.33 𝛽 = 3.0 0.1205 96.33 0.1082 94 0.2235 63.02 𝛽 = 4.0 0.1302 94.67 0.1123 92.67 0.2164 69.30 𝛽 = 5.0 0.1253 94.33 0.1033 95.67 0.2144 71.86 𝛽 = 6.0 0.1251 96.33 0.1067 93 0.2165 66.98 𝛽 = 7.0 0.1285 95.67 0.1230 92 0.1980 66.51 𝛽 = 8.0 0.1189 96 0.1342 90.33 0.2219 66.05 𝛽 = 9.0 0.1346 93.67 0.1186 91.67 0.2105 68.14 𝛽 = 10.0 0.1273 95 0.1212 91.33 0.2224 65.81 

3.4 Interpretability index 

In designing Fuzzy Logic systems (FLS), interpretabil-
ity and accuracy are often conflicting objectives; one 
can be enhanced by sacrificing the other, a situation that 

is termed as interpretability-accuracy trade-off. For ex-
ample the enhanced interpretability of Mamdani-based 
FLS, versus the enhanced predictive accuracy of TSK-
based FLS. Interpretability, within the FLS context, can 
be defined as the trait of a model to enable human to 
understand a system’s behavior by scrutinising its rule 



base [18]. In this study, we use the models developed 
using values of 𝛽 that perform the best in terms of ac-
curacy as in Table 2 to assess if the models’ interpreta-
bility is affected by the enhanced predictive perfor-
mance.  

The impact of feature weighting on interpretability 
measure is investigated using Nauck’s index. Nauck’s 
index is a numerical index introduced by Nauck in or-
der to assess the interpretability of FL rule-based clas-
sification systems [19-20]. It is computed as the product 
of three terms: complexity of FLS (𝑐𝑜𝑚𝑝), average nor-
malized coverage of fuzzy partition (𝑐𝑜𝑣) and average 
normalized partition index (𝑝𝑎𝑟𝑡) given by: 

               𝑁𝑎𝑢𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑚𝑝 × 𝑐𝑜𝑣 × 𝑝𝑎𝑟𝑡       (12) 
 
(readers are referred to [19] and [20] for further details). 

Table 3 summarises the comparison of the interpret-
ability index for the proposed W-GrC and the conven-
tional GrC. It is demonstrated that W-GrC is able to 
producing higher accuracy without a statistically signif-
icant deterioration in terms of model interpretability. 
The impact on interpretability index is minor, less than 
2% on the Iris data, and even less for the Wine and 
Glass case studies. Note that the Nauck’s index in Glass 
is comparatively to the other cases small due to the high 
number of rules (30 as opposed to 5 in Iris and Wine). 

Table 3. Comparison of the interpretability index  

 Nauck’s index 
 W-GrC GrC 
Iris 0.3076 0.3129 
Wine 0.0929 0.0928 
Glass 7.02 × 10ିସ 7.07 × 10ିସ 

Conclusion 

In this paper, a new iterative data granulation algorithm 
is presented with evolving feature weighting to charac-
terise the importance of data features and use such  

weights to drive the information granulation process. 
The weight for each feature is determined based on the 
sum of within granule variances from the granules that 
have been formed, at any given iteration. In each itera-
tion, the importance of all features is evaluated to iden-
tify the most important features that contribute most to 
the computation of the granules’ compatibility meas-
ure.  

The resulting importance of features, estimated via 
averaging feature weights throughout the data granula-
tion process, are compared with other methods such as 
chi-square test and mutual information; agreement in 
feature ranking is demonstrated. 

Simulation results in UCI classification problems 
have shown that the proposed W-GrC algorithm outper-
forms the conventional GrC in terms of classification 
accuracy. Improvement can be seen, in more complex 
datasets such as Glass case study. The experiment re-
sults showed that the proposed GrC-Fuzzy-modelling 
framework is able to handle data with various dimen-
sionality.  

The interpretability of the resulting models is as-
sessed, using Nauck’s index, and no significant deteri-
oration of predictive performance is observed despite 
the higher resulting % accuracy in the classification 
tasks. While this study shows positive preliminary re-
sults, a greater range of complexity in case studies can 
be investigated in the future, as well as performance can 
be assessed more extensively against non GrC-based 
methods. 
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