
HAL Id: hal-03576711
https://hal.science/hal-03576711

Submitted on 16 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remote attestation of bare-metal microprocessor
software: a formally verified security monitor

Jonathan Certes, Benoît Morgan

To cite this version:
Jonathan Certes, Benoît Morgan. Remote attestation of bare-metal microprocessor software: a for-
mally verified security monitor. Database and Expert Systems Applications - DEXA 2021 Workshops:
BIOKDD, IWCFS, MLKgraphs, AI-CARES, ProTime, AISys 2021, Virtual Event, September 27–30,
2021, Proceedings, 1479, Springer International Publishing, pp.42-51, 2021, Communications in Com-
puter and Information Science book series (CCIS), 978-3-030-87100-0. �10.1007/978-3-030-87101-7_5�.
�hal-03576711�

https://hal.science/hal-03576711
https://hal.archives-ouvertes.fr


Remote attestation of bare-metal microprocessor

software: a formally verified security monitor

Jonathan Certes[0000−0001−8773−3749] and Benôıt Morgan[0000−0003−3223−3995]
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Abstract. Remote attestation is a protocol to verify that a remote algo-
rithm satisfies security properties, allowing to establish dynamic root of
trust. Modern architectures for remote attestation combine signature or
MAC primitives with hardware monitors to enforce secret confidentiality.
Our works are based on a verified hardware/software co-design for remote
attestation, VRASED. Its proof is established using formal methods and
its implementation is conducted on a simple embedded device based on a
single core microcontroller. A heavy modification of the core, along with
a hardware monitor, enforces security properties.
We propose to extend this method to microprocessors where cores cannot
be modified. In this paper, we tackle this problem with support from the
microprocessor’s debug interface and demonstrate that the same security
properties also hold.
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1 Introduction

Remote attestation consists in verifying that a machine called Prover satisfies
necessary security properties to be trusted by a remote machine called Verifier

[4]. These security properties are generally verified through a challenge-response
protocol as depicted on figure 1.

Verifier Prover

(4) Verification

(1) Request

(2) Integrity check

(3) Report

Fig. 1. Remote attestation protocol

At first, the Verifier transmits a challenge to the Prover to request the
attestation (1). The Prover computes an authenticated integrity check over its
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memory and the challenge (2) and reports the result to the Verifier (3). From
this result, the Verifier checks whether the Prover memory state is valid (4).

To authenticate the answer, remote attestation requires the execution of a
cryptographic challenge in a corrupted environment. Safety for this execution
is mandatory to ensure security for the protocol. Authentication for the answer
follows one of the following strategies:

1. either the challenge is designed so that a modification of its execution envi-
ronment from the adversary inevitably alters the computation of the answer
(which affects computation time) ;

2. or an integrity-dependent transformation for the Prover is kept secret from
the adversary.

We can cite Checkmate [8] and Pioneer [13] as representative of the works from
the first category. Works such as SMART [7] and VRASED [12] clearly fit in
the second category as they imply maintaining a secret and require hardware
support for access control.

Formal methods bring a high level of trust in verified remote attestation se-
curity. They allow to establish a proof, based on axioms or demonstrated prop-
erties, that the system and its implementation are secure. Formal verification is
generally conducted in three steps. First, the system (hardware or software) is
modelled, for example as an automaton [14]. Then, properties to be satisfied by
the system are formally described, this includes secret confidentiality for remote
attestation. In the end, model-checking conducts an exhaustive state exploration
approach or a proof demonstrates that the system verifies the properties.

Section 2 summarizes the state of the art about remote attestation, usu-
ally implemented on simple devices, and its formal verification. An approach to
extend verified remote attestation to microprocessors is descried in section 3,
the contribution is summarized in section 4 and a verified security monitor is
detailed in section 5.

2 State of the art

Eldefrawy et al. proposed SMART [7], a hardware modification for the Prover on
microcontroller Texas Instrument MSP430. They dedicated a protected memory
region to store the secret. Lugou et al. [10] tried to propose a unified method
to verify hardware/software co-designs. They applied this method on SMART
and modelled the system with Proverif. This method does not scale and comes
with imprecisions as explained by Eldefrawy et al. in [6]. In all these works,
security properties are enforced by a hardware extension, monitoring the system
and capable of restarting it in case of a leak of the secret in its next state.
Model-checking formally verifies the safety for this monitor.

De Oliveira Nunes et al. proposed VRASED (Verifiable Remote Attestation

for Simple Embedded Devices) [12], a hardware/software co-design method for
remote attestation. Their approach includes the implementation of an attesting
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software and a hardware monitor. This union guaranties security properties. The
implementation is also conducted on microcontroller MSP430.

The attesting software is based on a formally verified cryptographic library
(memory safety, functional correctness and secret independence) [15], which com-
putes the HMAC of an attested region from a shared secret. The hardware mon-
itor enforces access control to the secret as well as immutability and atomicity
for the attesting software. A heavy modification of the core enables the use of
the interruption signals, program counter and read/write addresses as inputs
for the hardware monitor. The model for the attacker is as follows: the attacker
can control the entire software state of the Prover, code and data, that is not
explicitly protected by the hardware monitor.

The following steps describe how soundness and security proofs are obtained:

1. Soundness and security are expressed using temporal logics. This includes:

– any direct access to the secret can only be performed by the attesting
software (access control) ;

– any memory region written by the attesting software (excluding the final
results of the computation) cannot be read by the attacker.

2. Properties are described in the same formalism as soundness and security.
This includes:

– The resulting HMAC computed by the attesting software is correct
(functional correctness).

– The attesting software cannot be modified by the attacker (immutabil-
ity).

– Execution of the attesting software cannot be interrupted, it starts at
the first instruction and finishes at the last (atomicity).

3. Proof for soundness and security are obtained through rewritings with Spot

[5]: when their implication by the conjunction of the properties is a tautology.
4. Model-checking with NuSMV [3] ensures that the hardware monitor verifies

the properties. Conversion tool Verilog2SMV [9] translatesVerilog Hardware
Description Language (HDL) into an automaton which is checked against the
properties.

5. Some properties are axiomatic as they are converted from the specifications
of the formally verified cryptographic library.

This co-design method for remote attestation is adapted to simple embedded
devices such as microcontrollers. Our goal is to re-use its proofs for soundness
and security as a framework to secure remote attestation on microprocessors.

3 Extension to microprocessors

Unless working with open-source architectures, it is impossible to conduct mod-
ifications on the hardware, thus microprocessor cores. As a consequence, equiva-
lent observations must be achieved from other inputs to deduce the state of the
interruption signals, program counter and read/write addresses.
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3.1 Environment

Modern Systems on Chip (SoC), such as Xilinx Zynq-7000, integrate ARM mi-
croprocessors along with programmable logic in a single device. This combines
the flexibility and the parallelism of a Field-Programmable Gate Array (FPGA)
with the performances of an Application-Specific Integrated Circuit (ASIC). Spa-
tial partitioning for sensitive memory (such as the secret or the code of the at-
testing software) and implementation of a hardware extension can take place in
the FPGA.

ARMmicroprocessors come with a debug interface called CoreSight which en-
ables real-time instruction flow tracing without slowing down execution. Traces
contain information to reconstruct the execution of a program. During the exe-
cution of the attesting software, the activation of program flow tracing, combined
with the addition of specific instructions, provides data that can be used for mon-
itoring. In particular, Program Trace Macrocell (PTM) module outputs a trace
when an interruption or an indirect branch occurs and provides the destination
address [2].

In order to enforce access control and immutability properties, the hardware
extension in the FPGA monitors access signals to the sensitive memory. To
enforce atomicity properties, it is coupled with the use of the debug interface.
A trace is generated when an interruption occurs during the execution of the
attesting software. The first and last instructions are chosen such as a trace is
generated and gives the value of the program counter: an indirect branch with
the address of the next instruction as a destination.

3.2 Refinement approach

Extension to microprocessors comes with new constraints and increases the ca-
pabilities, thus power of the attacker. To adapt, we follow a stepwise refinement
approach, in which we start from a very abstract microprocessor, similar to
microcontrollers, down to a model close from reality.

First, we consider single-core microprocessors where we abstract capabilities
for the attacker to rely on cache, Memory Management Unit (MMU) and the
configuration of CoreSight. This system is called model 0: functionalities and
targeted applications are identical to those of a microcontroller. The definitions
of the soundness and security are identical to the ones described in [12]. They
are to be proven.

Then, in a new refined model, a new constraint is added to the definition
of security ; for example: ”the attacker is capable to reconfigure CoreSight”.
The conjunction of a new property, described in temporal logic, is added to the
specification. As a consequence, the system must satisfy this new property so
that the proof stays valid. Two possible approaches are considered:

– Either the new system is translated in an automaton and the verification of
(both old and new) properties are conducted through model-checking. This
approach is identical to the one introduced by [12], it is adapted to small
automata.
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– Or a simulation relation is established: if all states of the old model are
simulated in the new one, then the new model verifies the same properties
[11]. Only the new properties are to be verified through model-checking. This
approach reduces the effort of verification in case of space-state explosion.

These operations are repeated for each new capability provided by the use of
a microprocessor. At each iteration, proof is established on the new model. The
refinement of the specification can be verified at each step with an implication
of its previous expression.

4 Contribution

To re-use proofs from VRASED and extend them to microprocessors, we re-use
their attesting software and automaton as-is. Due to the immutability of the
core, the inputs of this automaton: interruption signals, program counter and
read/write addresses, have to be deduced from external observations.

In this paper, we propose a solution based on hardware/software co-design
to deduce the value of these useful signals at critical steps of the protocol execu-
tion. Axioms describe the behaviour of CoreSight in accordance with its docu-
mentation and the content of the software. New properties are verified through
model-checking of the hardware. Then, we conduct a proof to show that the
soundness and security properties from [12] also hold on our model 0, even with
no modification of the core.

5 Verified security monitor

In this section we describe a method to prove the soundness and security on
model 0. Targeted applications are identical to microcontrollers, i.e. embedded
systems, and no hardware modification for the core is required.

5.1 Attacker model in practice

An application is loaded in the DDR, it runs bare-metal on one core of the sys-
tem and behaves as a code loader. It expects code coming from the Universal
Asynchronous Receiver-Transmitter (UART), to load it in the memory and ex-
ecute it. Depending on the application, this software might also expect code to
be transferred from the network interface. Any code can be loaded so that the
attacker can control the entire software state of the Prover. Memory is limited
so that an entire operating system does not fit.

5.2 Attesting software and monitor architectures

Both the secret and the code of attesting software are stored in dedicated ROM
located in the FPGA. A RAM is also located in the FPGA and is used as
an exclusive stack by the attesting software. CoreSight debug interface outputs
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program flow traces trough a trace port interface unit to the FPGA. Signals
are monitored by the hardware extension to obtain read/write addresses and
information about the execution of attesting software.

Figure 2 represents this implementation of a Xilinx Zynq-7000 where parti-
tioned memories are accessible through the Advanced eXtensible Interface (AXI)
communication interface [1].

Processing system Programmable logic

Hardware

extension

Program

�ow trace

Memory

access 

Critical reset

Fig. 2. Implementation on Xilinx Zynq-7000

Attesting software is re-used from [12] and wrapped around with specific
instructions to configure CoreSight and the MMU. As a consequence, during its
execution:

– first instruction is an indirect branch that forces CoreSight to output the
value of the program counter.

– MMU restricts read/write addresses to the memories located in the FPGA
and the challenge location.

– an interruption outputs a trace with exception information.
– last instruction is an indirect branch that forces CoreSight to output the

value of the program counter.

5.3 Definition of model 0

To validate our approach, a proof is conducted on model 0, where some of the
capabilities of the attacker are abstracted. Here are hypothesis that we assume
in the definition of our model:

1. the whole system is synchronous.
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2. when a trace containing a destination address is output by CoreSight, the
program counter takes this address at the next clock cycle; that is, the next
system state.

3. the attacker does not reprogram the FPGA.
4. the attacker does not reconfigure CoreSight or the MMU.
5. during the execution of the attesting software by one core of the micropro-

cessor, other cores are paused.
6. cache and registers are empty before and after an execution of the attesting

software and after a reset.

These hypotheses are expressed using temporal logics and are considered ax-
iomatic. They help proving that security properties hold and will be discarded
in the subsequent models. Future refined versions of the hardware extension must
verify that they are still enforced.

5.4 Proof strategy

The hardware extension is described in Verilog and converted into an automaton.
It contains the hardware monitor from [12]. Since the processor is left unmod-
ified, verified properties from [12] are expressed using deduced values for the
monitored signals (not their real values) and cannot be used to prove the remote
attestation security anymore. We add axioms and prove that their conjunction
implies the initial VRASED security properties. For instance, an axiom can be
”if the deduced value of the program counter is in the address range of the at-
testing software, then its real value is”. These axioms form a proof obligation to
be discharged by the other modules of the system.

The other modules of the system aim at obtaining CoreSight traces and ac-
cess signals to memories in the FPGA, then process them to deduce values that
are accepted by VRASED original automaton. The cornerstone of the deduc-
tion process is a transducer that translates the content of CoreSight traces into
deduced values for the interruption signals, program counter and read/write ad-
dresses. The automaton depicted on figure 3 represents parts of this transducer.
Its outputs are predicates where:

– pcd represents the deduced value for the program counter
– irqd represents the deduced value for the interruption signal
– CR (for Critical Region) is the address range where the attesting software

is located
– CRmin is the address of the first instruction of the attesting software
– CRmax is the address of the last instruction of the attesting software

Its inputs are events. For each label on the transitions, the event is that CoreSight
outputs a compressed trace containing branch information. Predicates for these
labels are defined as follows:

– @CRmin : destination address is equal to CRmin

– @CRmax : destination address is equal to CRmax
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pcd ∈ CR¬(pcd ∈ CR)

pcd = CRmin

pcd = CRmax

(pcd ∈ CR)
∧

irqd

@CRmin

¬@CRmin ∧ ¬@CRmax

@CRmax

exception

@CRmax

exception

exception

Fig. 3. Transducer CoreSight to VRASED : deduction of pc

– exception : trace contains exception information

This transducer verifies properties in which deduced values are expressed
using the decoded address and exception information. To demonstrate our proof
obligation, new axioms must then be added to express this decoded information
according to the real values of the program counter and the interruption signals.
With the conjunction of these new axioms and the verified properties, we prove
the implication of the proof obligation.

These axioms form the next proof obligation for the rest of the system. The
hardware is extended to decode addresses and exception information from a
decompressed trace delivered by CoreSight. This leads to new properties, verified
with model-checking, that helps to prove the next proof obligation with other
axioms.

As a consequence, the design of the hardware extension is an iterative process
which can be described as follows:

1. Security properties are defined in [12]. We re-use the same automaton to
verify a property Pn expressed from deduced predicates.

2. Axioms An are necessary to imply the security property. These axioms form
a proof obligation.

3. Axioms An are implied by the conjunction of properties Pn+1 and axioms
An+1. Rewritings with a theorem prover demonstrate that this implication
is a tautology.

4. The hardware monitor is extended to verify properties Pn+1. This hypothesis
is ensured with model-checking.

5. Steps 3 and 4 are repeated while incrementing n until the proof is based only
on axioms resulting from a translation of CoreSight documentation.
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Trace

decompresser

Trace

decoder
Transducer

Hardware monitor

(re-use)

A0�P0 � security
1�P1 � A0A1

A2�P2 � A1

A3�P3 � A2

model-checking

model-checking

model-checking

Fig. 4. Proof obligations

At the end of the design process, our hardware extension is a composition of
hardware modules: a re-used automaton from [12], a transducer, a trace decoder
and a trace decompresser. Figure 4 summarizes our proof strategy.

The role of the trace decompresser is to identify the type of packet that is
transmitted by CoreSight and inform the transducer that an event occurred.
The trace decoder transmits decoded addresses and exception information to
the transducer when an event occurs.

5.5 Results and future work

Once we re-used the automaton from [12], our hardware extension allows to
deduce all predicates and prove that all security properties from [12] also hold
on our model 0. As a consequence, remote attestation security for embedded
systems applications has been proven. Soundness has also been formally verified
on our model 0 following the same approach as in [12].

To extend formally verified remote attestation to microprocessors, our ob-
jective is to refine our model so that each hypothesis defined in section 5.3 is
discarded and the attacker capabilities are not restricted. We intend to follow
an iterative approach and extend our system to verify new security properties
as described in section 3.2.

We also aim at targeting complex applications such as software running on
an operating system. The method for remote attestation may be adapted to the
application in order to stay sound and secure.

6 Conclusion

VRASED proposed a formally verified hardware/software co-design method,
based on model-checking and proof, and is implemented on a simple architecture
with a heavy modification of the core.

Our approach to extend this method to ARM microprocessors is as follows:
CoreSight debug interface proceeds to a non-invasive collect of data that traces
the execution flow. Combined with a hardware extension and software wrapping,
we retrieve appropriate inputs to re-use VRASED hardware monitor. Regarding
hypothesis on the attacker capabilities, we have proven that soundness and secu-
rity for the remote attestation can be ensured for embedded systems applications
with no modification of the CPU core.
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To extend the use of microprocessors to remote attestation, a refinement
approach allows to achieve a formal verification in an iterative manner. When
model-checking leads to a space-state explosion, we establish a simulation rela-
tion between automata and prove that the system meets its specification. Soon,
our approach will allow to prove remote attestation soundness and security for
embedded systems applications with non-restricted capabilities for the attacker.
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