
Thermal Image Super-Resolution Using
Second-Order Channel Attention with Varying

Receptive Fields

Nolan B. Gutierrez and William J. Beksi ?

University of Texas at Arlington, Arlington TX, USA
nolan.gutierrez@mavs.uta.edu, william.beksi@uta.edu

Abstract. Thermal images model the long-infrared range of the electro-
magnetic spectrum and provide meaningful information even when there
is no visible illumination. Yet, unlike imagery that represents radiation
from the visible continuum, infrared images are inherently low-resolution
due to hardware constraints. The restoration of thermal images is crit-
ical for applications that involve safety, search and rescue, and military
operations. In this paper, we introduce a system to efficiently recon-
struct thermal images. Specifically, we explore how to effectively attend
to contrasting receptive fields (RFs) where increasing the RFs of a net-
work can be computationally expensive. For this purpose, we introduce
a deep attention to varying receptive fields network (AVRFN). We sup-
ply a gated convolutional layer with higher-order information extracted
from disparate RFs, whereby an RF is parameterized by a dilation rate.
In this way, the dilation rate can be tuned to use fewer parameters thus
increasing the efficacy of AVRFN. Our experimental results show an im-
provement over the state of the art when compared against competing
thermal image super-resolution (SR) methods.
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1 Introduction

The purpose of single image super-resolution (SISR) restoration is to determine
the mapping between a possibly degraded low-resolution (LR) image and its
high-resolution (HR) counterpart. Finding this arrangement is difficult due to
the intractable nature of the problem. Techniques for discovering the mapping
can be divided into two areas: interpolated and learning-based. Contemporary
SISR has been dominated by deep learning which has demonstrated superiority
over hand-crafted methods such as bicubic and bilinear interpolation.

? The authors acknowledge the Texas Advanced Computing Center (TACC) at the
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resources that have contributed to the research results reported within this paper.
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Convolutional neural networks (CNNs) have been shown to be successful at
attending to visual images on tasks such as SISR. This includes squeeze-and-
excitation methods for global excitation of feature maps [14,23], and the use
of weight excitations [32,25]. Furthermore, ablation studies have conclusively
shown that excitation networks for feature maps bring performance gains [40].
On another note, a variety of methods exist for modifying the RF of a CNN either
through concatenation [22], deformation [10], or dilation [37]. In this work, we
study how dilated convolutions offer compression through dilations. Concretely,
we show how they modify the effective receptive fields (ERFs) of a CNN and
how they interact with an existing enhancement known as second-order channel
attention (SOCA) [11].

The development of infrared thermographic cameras has spurred researchers
to carry out innovative research in the thermal image domain. Representing
traditional SR, Mandanici et al. [28] combined geometric registration with pro-
jection and interpolation to produce HR thermal images. Naturally, researchers
have recently investigated color-guided thermal image SR [8,2]. For example,
a pyramidal network provided by Gupta et al. [12] attains accurate results by
extracting edge-maps from RGB images at various levels of the network. Chu-
dasama et al. [9] present an efficient SR network for thermal images by elicit-
ing high-frequency details with a limited number of feature extraction modules.
Other works have introduced popular loss functions to the field of thermal image
SR [1,17].

In this work we not only explore the use of efficient thermal SR, but we also
provide complete benchmarks on three thermal imagery datasets. Furthermore,
we compare the results of four architectural variants to assess performance gains
or losses due to the compression of parameters in our SR network. In contrast to
previous work on SISR, our proposed model applies SOCA to a concatenation
of features produced from convolutions with changing RFs. An intermediate
convolutional layer quantifies the importance of the values from each RF before
passing this information to SOCA. The key contributions of our work are the
following: (i) we show the effectiveness of SOCA for thermal image SR; (ii) we
present a novel approach to sample from a foveated RF; (iii) we demonstrate an
efficient network for multiple upscaling factors; (iv) we establish new benchmarks
on public thermal image datasets. Our source code is available at [6].

The rest of this paper is organized as follows. We provide a summary of
related thermal image SR work in Sec. 2, and the basics of SR in Sec. 3. In Sec. 4,
we propose an architecture for transforming LR input images to super-resolved
output images. In Sec. 5, we demonstrate our dilation-rate driven deep attention
to varying receptive fields network through experimental results. Finally, we
conclude in Sec. 6.

2 Related Work

Most recent developments in the image restoration domain focus on the visual
image space [31,39,4]. The known importance of deeper CNNs in improving
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representational power has spurred the development of architectures that im-
prove stability and provide better representations [18,24]. This is done not only
through more residual connections [19,3,26], but also through structural preser-
vation [27,16], constrained hypotheses spaces [7], fast Fourier transform [33] and
generative techniques [35], and student-teacher networks [21]. Additionally, SR
works that focus on improving contextual information have employed different
attention mechanisms [29] and enhanced inception modules [30].

3 Preliminaries

The task of super-resolving an LR image to its HR counterpart may be summa-
rized by its image space and degradation model. Formally, the relationship can
be defined as

Ix = D(Iy;θ), (1)

where D (known as the degradation function) maps an HR image Iy to an LR
image Ix with degradation parameters θ. Hence, SR can be reduced to finding
the parameters of D, however it is an intractable process. Learning an SR model,
F , can be formalized as

Iy = F (Ix;θ). (2)

Furthermore, any optimization algorithm can be applied to find these parameters
by minimizing an objective function,

θ̂ = arg min
θ

L(θ̂y, Iy) + λψ(θ), (3)

where λ is a small value that represents the importance of the regularization
term ψ. This term may aid a model’s ability to generalize to data never before
seen. A common objective function to minimize is the mean squared error (MSE)
otherwise known as the 2-norm,

MSE(Ix, Iy) =
1

N

N∑
i=1

(Ix(i)− Iy(i))2, (4)

where N is the number of samples in a batch.

4 Second-Order Channel Attention with Varying
Receptive Fields

We establish a novel deep learning architecture for thermal image SR as follows.
First (Sec. 4.1), we provide a detailed description of SOCA. Second (Sec. 4.2),
we expound upon how dilated convolutions are computed. Third (Sec. 4.3), we
describe how CNNs can be compressed with respect to an ERF via compression
through dilations. Fourth (Sec. 4.4), we incorporate residual in residual to aid in
the stabilization of our network. Finally (Sec. 4.5), we apply SOCA to separate
RFs (by dilation rates) within residual in residual to assist in the SR of LR
images obtained with a bicubic degradation model.
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Fig. 1: An overview of our thermal imaging SR model.

4.1 Second-Order Channel Attention

We utilize an alternative SOCA network to enhance convolutional blocks by
supplying a covariance matrix that allows for more discriminative representa-
tions. To produce these second-order statistics, the covariance normalization is
obtained through Newton-Schulz iteration [13]. Additionally, this serves to speed
up the computation. First, a feature map of dimensionH×W×C is reshaped into
a feature map X of shape HW ×C. Second, the covariance matrix is calculated,

Σ = XIfX
>, (5)

where If = 1
s (I − 1

s1) and s = HW . I and 1 are the m ×m identity matrix
and the matrix of all ones, respectively. Then, the covariance matrix is pre-
normalized,

Σ̂ =
1

tr(Σ)
Σ, (6)

where tr(·) denotes the matrix trace. Let Y0 = Σ̂ and Z0 = I, then Yn and Zn
are obtained by

Yn =
1

2
Yn−1(3I −Zn−1Yn−1), (7)

Zn =
1

2
(3I −Zn−1Yn−1)Zn−1, (8)

with Yn and Zn quadratically converging to Y and Y −1, respectively. The final
normalized matrix after five iterations of Newton-Schulz is found by compensat-
ing the pre-normalization step with

Ŷ =
√
tr(Σ)YN . (9)
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Afterwards, global covariance pooling is applied to obtain a scalar-valued statis-
tic zi for each channel i,

zi =
1

C

C∑
j

Ŷij . (10)

This permits the channel attention to capture correlations higher than the first
order. In the next step, the sigmoid activation function serves as a gating mecha-
nism that entrusts the network to selectively choose what to add to the incoming
input features. To create this gating mechanism, we use two convolutional layers,
W0 and W1, with rectified linear unit (ReLU) and sigmoid activation functions.
Concretely,

G(z) = W1 ∗ (W0 ∗ z), (11)

where ∗ is the convolution operation and G(z) is an attention map.

4.2 Dilated Convolutions

A dilated convolution multiplies a rate l by ∆ during the convolution operation,
i.e.,

(F ∗l k)(p) =
∑
∆∈Ωr

F (p− l ·∆)k(∆), (12)

where Ωr = [−r, r]2 ∩ Z2, k : Ωr → R, p ∈ Z2 is a location on X, F : Z2 → R,
and ∗l is an l-dilated convolution. In (12), k is known as the kernel function
which slides over X. This allows a convolutional network to sample pixel values
from a larger RF over the input features.

In the case of SR, it is advantageous to sample from different sized RFs
depending on a number of factors including depth, resolution, and the scal-
ing factor. We use dilated convolutions to extract features within each residual
block. Specifically, the feature sets of three convolutional layers with varying
dilation rates are concatenated and passed to an intermediate layer which pools
the information from contrasting RFs. This intermediate layer effectively pools
information at each feature map’s location from a foveated RF where more pa-
rameters are concentrated towards the center of the field.

4.3 Compression through Dilations

We utilize dilated convolutions to artificially increase the ERFs of our CNN.
An ERF is defined as the area containing any input pixel with a non-negligible
impact on a particular output unit within a feature map [27]. In addition, we in-
troduce the concept of compression through dilations as the case in which a CNN
uses fewer parameters to increase an ERF with dilated convolutions compared
to without dilated convolutions. For example, assuming we are using bias, two
single-layer CNNs defined by Conv2D(Input Shape = (32, 32, 3), 64, (5, 5)) and
Conv2D(Input Shape = (32, 32, 3), 64, (3, 3),Dilation Rate = 2) have an ERF
area of 25. However, our CNN has 160,064 and 57,664 parameters, respectively,
giving a compression ratio of 2.776.
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4.4 Residual in Residual

We stabilize our deep channel attention network by the addition of residual in
residual (RIR) connections [40]. RIR entails two levels of connections with groups
on the outer level and blocks on the inner level. More precisely,

Ŷ = X + W ∗Rg(Rg−1(. . . R1(X) . . .)). (13)

Rg is the g-th residual group and it is formulated as

Rg(X) = X + W ∗Bt(Bt−1(. . . B1(X) . . .)), (14)

where Bt is the t-th residual channel attention block. We apply SOCA to the
features extracted from the convolutional layers with unique RFs. To obtain the
individual RFs, we make the dilation rate of each convolutional layer exclusive
and not equal to one for two of the layers. For example, if W1, W2, and W3

are the weight sets associated with three convolutional layers, then the residual
block is derived as

Bt(X) = X + SOCA([W1 ∗X,W2 ∗2 X,W3 ∗3 X]) (15)

where [W1,W2,W3] constitutes the concatenation of W1, W2, and W3 along
the channel axis.

4.5 Model Overview

Our overall model is shown in Fig. 1. To upscale an input image, features are
extracted from a series of residual groups and blocks within the RIR architecture
similar to RCAN [40]. Pixel shuffle [36] is used to rearrangeX of shape (H,W,C ·
r2) to (H · r,W · r, C) by periodically building a new feature map PS(X) with
pixel values from dissimilar channels according to the equation

PS(X)x,y,c = Xbx/rc,by/rc,C·r·mod(y,r)+C·mod(x,r)+c. (16)

Finally, a single-channel convolutional layer reduces the number of channels to
the same number as in the LR image.

5 Experimental Results

Our experiments model the downscaling of HR thermal images using a bicubic
degradation model with statistical noise.

5.1 Datasets

We use the Thermal Image Super-Resolution (TISR) 2020 Challenge dataset, the
FLIR Thermal Dataset for Algorithm Training (TDAT) [38], and the KAIST
multispectral pedestrian detection benchmark dataset [15]. The TISR dataset
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consists of three sets of 1,021 images from three distinct cameras. These cameras
include a Domo, Axis, and FLIR with a resolution of (160 × 120), (320 × 240),
and (640× 480), respectively. Of these images, 60 were kept private, leaving 951
in the training set and 50 in the test set for each camera. For TDAT, we evaluate
on only the first 100 images captured by a FLIR FC-6320 camera. Lastly, for
the KAIST dataset, we collect every 200-th image from the day and night scenes
and then evaluate on the set of 226 images. The images from the KAIST dataset
were captured by a FLIR-A35 thermal camera with a resolution of 640× 480.

The ground-truth dataset was created by first forming batches of 16 single-
channel image patches where each patch is of size scale × 48. The LR images
were then obtained by bicubicly interpolating these patches to a size of 48× 48.
For both training and testing, the images were preprocessed by adding Gaussian
noise with a mean of 0 and a variance of 10 for the bicubic with noise degradation
model. Finally, all elements of each LR patch are normalized and clipped to [0,1].

5.2 Implementation

Our final architecture uses three residual groups with six residual blocks per
group. Each convolutional layer has 64 filters resulting in a highly-efficient net-
work. During training, the Adam optimizer [20], parameterized by a learning
rate of 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−7, is applied to minimize the
MSE of each batch for 300 epochs. Training with four NVIDIA GeForce GTX
1080 Ti GPUs took less than three hours per model.

5.3 Evaluation

For the experiments, we tested four variants of our architecture to evaluate the
performance gains of the network. The variants are as follows.

– Dilated residual in residual (DDRR): SOCA in the residual block of Fig. 1 is
replaced by a convolutional layer with a 3× 3 kernel size and no activation
function.

– Residual in residual with SOCA (RRSOCA): Our different dilation rate mod-
ule in the residual block of Fig. 1 is replaced with a series of two convolutional
layers each with a kernel size of 3× 3 and a ReLU activation function.

– Compressed RCAN (CRCAN) via dilated convolutions: This architecture is
similar to RRSOCA, but the first and second convolutional layers have a
dilation rate of 1 and 2, respectively.

– Attention to varying receptive fields network (AVRFN): This is our proposed
model as shown in Fig. 1.

Fig. 2 highlights example inputs, SR predictions, and the ground-truth im-
ages from the datasets. The added Gaussian noise produces heavily pixelated
input images which presents very difficult conditions to evaluate our methods
on. In all of our experiments, we use the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) to evaluate each architectural variant. Ta-
ble 1 shows the performance of our proposed AVRFN when evaluated on each
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Test Set Scale Parameters PSNR SSIM

AXIS Domo P1290

2

2491009 30.097 0.846
AXIS Q2901 2491009 34.416 0.928

FLIR FC-6320 2491009 37.116 0.942
TDAT 2491009 31.184 0.733
KAIST 2491009 40.612 0.962

AXIS Domo P1290

3

2511809 26.831 0.747
AXIS Q2901 2511809 30.007 0.850

FLIR FC-6320 251180 33.668 0.898
TDAT 2511809 30.055 0.730
KAIST 2511809 39.065 0.958

AXIS Domo P1290

4

2507649 25.146 0.671
AXIS Q2901 2507649 27.724 0.784

FLIR FC-6320 2507649 31.574 0.857
TDAT 2507649 28.110 0.626
KAIST 2507649 37.793 0.951

Table 1: The results of our AVRFN model on images captured by the TISR [34],
TDAT [38] and KAIST [15] datasets.

of the datasets. Additionally, Table 2 provides an ablation study which com-
pares the performance of the various types of compression with different channel
attention networks. Note that we were unable to make a fair comparison with
related work found in [9] since the performance of our baseline method did not
match. However, each of our variants performed better than the baseline RCAN
architecture.

An interesting finding is that adding compression through dilations in the
residual block of RCAN leads to improved performance. After each residual con-
nection, the ERF resets to the kernel size of the succeeding CNN due to the
easy pass-through of low-level information found in residual networks [5]. Con-
temporary work has found a correlation between larger ERFs and performance
gains [5]. We hypothesize that by introducing compression through dilations in
each residual block, we increase the ERF at a faster rate thus allowing for per-
formance gains. An unexpected result is that DDRR, the only variant without
any form of channel-attention, performs significantly worse. This confirms pre-
vious ablation studies [40], but it also shows that most of the performance gains
arise from channel attention and not compression through dilations. In addi-
tion, our varying dilation rate module (AVRFN) improves performance over the
baseline which shows that attending to different RFs can improve performance.
Nonetheless, our highest performance gains are obtained when we simply add
compression through dilations to the RCAN baseline.

6 Conclusion

In this work, we showed the advantage of attending to varying resolutions for
the reconstruction of thermal images by efficiently parametrizing a convolutional
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layer with a dilation rate. Together with SOCA, our model achieves state-of-the-
art results on the task of thermal image SR and yields up-to-date benchmarks
for the research community. In the future, we intend to look at ways in which
training may be further stabilized and how attention to uncertainty maps can
improve the computational efficiency of thermal image SR.

Test Set Model Scale Parameters PSNR SSIM

AXIS Domo P1290

RRSOCA 4 1661377 25.487 0.691
DDRR 4 2839873 25.458 0.691

CRCAN 4 2839873 25.491 0.692
RCAN 4 1661377 25.239 0.682

AVRFN 4 1917313 25.368 0.685

AXIS Q2901

RRSOCA 4 1661377 28.167 0.802
DDRR 4 2839873 28.159 0.801

CRCAN 4 2839873 28.189 0.802
RCAN 4 1661377 27.923 0.795

AVRFN 4 1917313 27.990 0.797

FLIR FC-6320

RRSOCA 4 1661377 31.978 0.867
DDRR 4 2839873 31.985 0.867

CRCAN 4 2839873 32.002 0.867
RCAN 4 1661377 31.756 0.861

AVRFN 4 1917313 31.824 0.864

TDAT

RRSOCA 4 1661377 28.388 0.641
DDRR 4 2839873 28.427 0.645

CRCAN 4 2839873 28.426 0.645
RCAN 4 1661377 28.271 0.636

AVRFN 4 1917313 28.298 0.637

KAIST

RRSOCA 4 1661377 37.977 0.949
DDRR 4 2839873 37.456 0.918

CRCAN 4 2839873 37.573 0.922
RCAN 4 1661377 37.089 0.938

AVRFN 4 1917313 37.827 0.943

Table 2: The results of our ×4 model variants on images captured by the TISR
[34], TDAT [38] and KAIST [15] datasets.

9



(a) (b) 24.43/0.64 (c) GT

(d) (e) 26.64/0.83 (f) GT

(g) (h) 28.54/0.78 (i) GT

Fig. 2: Examples of (left column) downsampled images from (top row) low-
resolution, (middle row) medium-resolution, and (bottom row) high-resolution
thermal cameras, their ×4 upscaled counterparts (middle column), and the
ground truth (GT) (right column). Additionally, (b), (e), and (h) show the PSNR
and SSIM scores, respectively, when evaluated against the ground truth.
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