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Abstract. Manually segmenting the hepatic vessels from Computer To-
mography (CT) is far more expertise-demanding and laborious than
other structures due to the low-contrast and complex morphology of
vessels, resulting in the extreme lack of high-quality labeled data. With-
out sufficient high-quality annotations, the usual data-driven learning-
based approaches struggle with deficient training. On the other hand,
directly introducing additional data with low-quality annotations may
confuse the network, leading to undesirable performance degradation.
To address this issue, we propose a novel mean-teacher-assisted confi-
dent learning framework to robustly exploit the noisy labeled data for
the challenging hepatic vessel segmentation task. Specifically, with the
adapted confident learning assisted by a third party, i.e., the weight-
averaged teacher model, the noisy labels in the additional low-quality
dataset can be transformed from ‘encumbrance’ to ‘treasure’ via pro-
gressive pixel-wise soft-correction, thus providing productive guidance.
Extensive experiments using two public datasets demonstrate the supe-
riority of the proposed framework as well as the effectiveness of each
component.

Keywords: Hepatic Vessel · Noisy Label · Confident Learning.

1 Introduction

Segmenting hepatic vessels from Computer Tomography (CT) is essential to
many hepatic surgeries such as liver resection and transplantation. Benefiting
from a large amount of high-quality (HQ) pixel-wise labeled data, deep learning
has greatly advanced in automatic abdominal segmentation for various struc-
tures, such as liver, kidney and spleen [9,16,13,5]. Unfortunately, due to the noises
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(a) Set A: 3DIRCADb (b) Set B: MSD8

(a) Set-HQ: 3DIRCADb (b) Set-LQ: MSD8

Fig. 1. 2D and 3D visualization of the processed example cases of (a) 3DIRCADb
dataset [1] with high-quality annotations (Set-HQ), and (b) MSD8 dataset [21] with
numerous mislabeled and unlabeled pixels (Set-LQ). Red represents the labeled vessels,
while the yellow arrows at (b) point at some unlabeled pixels.

in CT images, pathological variations, poor-contrast and complex morphology of
vessels, manually delineating the hepatic vessels is far more expertise-demanding,
laborious and error-prone than other structures. Thus, limited amount of data
with HQ pixel-wise hepatic vessel annotations, as exampled in Fig. 1(a), is avail-
able. Most data, as exampled in Fig. 1(b), have considerable unlabeled or mis-
labeled pixels, also known as “noises”.

For a typical fully-supervised segmentation method, training with tiny HQ
labeled dataset often results in overfitting and inferior performance. However,
additionally introducing data with low-quality (LQ) annotation may provide un-
desirable guidance, and offset the efficacy of the HQ labeled data. Experimen-
tally, the considerable noises become the ‘encumbrance’ for training, leading to
substantial performance degradation, as shown in Fig. 3 and Table 1. Therefore,
how to robustly exploit the additional information in the abundant LQ noisy
labeled data remains an open challenge.

Related Work. Due to the lack of HQ labeled data and the complex morphol-
ogy, few efforts have been made on hepatic vessel segmentation. Huang et al.
applied the U-Net with a new variant Dice loss to balance the foreground (vessel)
and background (liver) classes [8]. Kitrungrotsakul et al. used three deep net-
works to extract the vessel features from different planes of hepatic CT images
[11]. Neglecting the data with LQ annotation because of their potential mislead-
ing guidance, only 10 and 5 HQ labeled volumes were used for training in [8]
and [11], resulting in unsatisfactory performance. To introduce auxiliary image
information from additional dataset, Semi-Supervised Learning (SSL) technique
[22,4,24] is a promising method. However, the standard SSL-based methods fail
to exploit the potential useful information of the noisy label. To make full use
of the LQ labeled data, several efforts have been made to alleviate the negative
effects brought by the noisy labels, such as assigning lower weights to the noisy
labeled samples [28,18], modeling the label corrupting process [7] and confident
learning [17]. However, these studies focused on image-level noise identification,
while the localization of pixel-wise noises is necessary for the segmentation task.

In this paper, we propose a novel Mean-Teacher-assisted Confident Learning
(MTCL) framework for hepatic vessel segmentation to leverage the additional
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‘cumbrous’ noisy labels in LQ labeled data. Specifically, our framework shares
the same architecture as the mean-teacher model [22]. By encouraging consistent
segmentation under different perturbations for the same input, the network can
additionally exploit the image information of the LQ labeled data. Then, assisted
by the weight-averaged teacher model, we adapt the Confident Learning (CL)
technique [17], which was initially proposed for removing noisy labels in image-
level classification, to characterize the pixel-wise label noises based on the Classi-
fication Noise Process (CNP) assumption [3]. With the guidance of the identified
noise map, the proposed Smoothly Self-Denoising Module (SSDM) progressively
transforms the LQ labels from ‘encumbrance’ to ‘treasure’, allowing the network
to robustly leverage the additional noisy labels towards superior segmentation
performance. We conduct extensive experiments on two public datasets with
hepatic vessel annotations [1,21]. The results demonstrate the superiority of the
proposed framework as well as the effectiveness of each component.

2 Methods

The detailed explanation of the experimental materials, the hepatic CT prepro-
cessing approach, and the proposed Mean-Teacher-assisted Confident Learning
(MTCL) framework are presented in the following three sections, respectively.

2.1 Materials

Two public datasets, 3DIRCADb [1] and MSD8 [21], with obviously different
qualities of annotation (shown in Fig. 1) are used in this study, tersely referred
as Set-HQ (i.e., high quality) and Set-LQ (i.e., low quality), respectively.

1) Set-HQ: 3DIRCADb [1]. The first dataset, 3DIRCADb, maintained by
the French Institute of Digestive Cancer Treatment, serves as Set-HQ. It only
consists of 20 contrast-enhanced CT hepatic scans with high-quality liver and
vessel annotation. In this dataset, different volumes share the same axial slice
size (512× 512 pixels), while the pixel spacing varies from 0.57 to 0.87 mm, the
slice thickness varies from 1 to 4 mm, and the slice number is between 74 and
260.

2) Set-LQ: MSD8 [21]. The second dataset MSD8 provides 443 CT hepatic
scans collected from Memorial Sloan Kettering Cancer Center, serving as the Set-
LQ. The properties of the CT scans are similar to that of the 3DIRCADb dataset
but with low-quality annotations. According to the statistics [15], around 65.5%
of the vessel pixels are unlabeled and approximately 8.5% are mislabeled as
vessels for this dataset, resulting in the necessity of laborious manual refinement
in previous work [15].

In our experiments, the images in Set-HQ are randomly divided into two
groups: 10 cases for training, and the remaining 10 cases for testing, while all
the samples in Set-LQ are only used for training since their original low-quality
noisy labels are not appropriate for unbiased evaluation [15].
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Idea4: A Self-denoised Weakly and Semi-
supervised Framework for Robust Hepatic 
Vessel Segmentation Under Noisy Labels

…

Student 

…

Teacher

E
M

A

Abundant LQ Noisy Labeled Data (Set-LQ)

Limited HQ Labeled Data (Set-HQ)

𝓛𝒄

Teacher Set-LQ Pred

CL

Teacher Set-HQ Pred

Student Set-HQ Pred

Student Set-LQ Pred

Set-LQ Noisy Label

Identified Noise Map

𝓛𝒔

SSDM

𝓛𝒄𝒍

S
e
lf

-l
o

o
p

 U
p

d
a
te

CL: Confident Learning

SSDM: Smoothly Self-Denoising Module

Smoothly Denoised Label

𝝃

ROI (liver) Extraction

Intensity 

Normalization

Vessel Enhancement R
o

b
u

s
t 

P
re

-p
ro

c
e

s
s

෠𝑃

Img
Prob Map

Img
Prob Map

Fig. 2. Illustration of the proposed Mean-Teacher-assisted Confident Learning (MTCL)
framework for hepatic vessel segmentation.

2.2 Hepatic CT Preprocessing

A standard preprocessing strategy is firstly applied to all the CT images: (1)
the images are masked and cropped to the liver region based on the liver seg-
mentation masks. Note that for the MSD8 dataset, the liver masks are obtained
with the trained H-DenseUNet model [13] because no manual annotation of the
liver is provided. All the cropped images are adjusted to 320 × 320 ×D, where
D denotes the slice number. Since the slice thickness varies greatly, we do not
perform any resampling to avoid the potential artifacts [23] caused by the inter-
polation; (2) The intensity of each pixel is truncated to the range of [−100, 250]
HU, followed by Min-Max normalization.

However, we observe that many cases have different intensity ranges (shown
in Fig. 1) and intrinsic image noises [6], which could drive the model to be over-
sensitive to the high-intensity regions, as demonstrated in Table 1 and Fig. 3.
Therefore, the vessel probability map based on the Sato tubeness filter [20] is
introduced to provide auxiliary information. By calculating the Hessian matrix’s
eigenvectors, the similarity of the image to tubes can be obtained, so that the
potential vessel regions can be enhanced with high probability (illustrated in Fig.
2). Following the input-level fusion strategy used in other multimodal segmen-
tation tasks [27], we regard the vessel probability map as an auxiliary modality
and directly concatenate it with the processed CT images in the original input
space. By jointly considering the information in both the images and the proba-
bility maps, the network could perceive more robust vessel signals towards better
segmentation performance (demonstrated in Table 1 and Fig. 3).
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2.3 Mean-Teacher-assisted Confident Learning Framework

Learn from Images of Set-LQ. To additionally exploit the image information
of Set-LQ, the mean-teacher model (MT) [22] is adopted as our basic architec-
ture with the backbone network U-Net [19], as shown in Fig. 2. Denoting the
weights of the student model at training step t as θt, Exponential Moving Av-
erage (EMA) is applied to update the teacher model’s weights θ′t, formulated
as θ′t = αθ′t−1 + (1 − α)θt, where α is the EMA decay rate and set to 0.99
as recommended by [22]. By encouraging the teacher model’s temporal ensem-
ble prediction to be consistent with that of the student model under different
perturbations (e.g., adding random noise ξ to the input samples) for the same
inputs, superior prediction performance can be achieved as demonstrated in pre-
vious studies [22,25,24]. As shown in Fig. 2, the student model is optimized by
minimizing the supervised loss Ls on Set-HQ, along with the (unsupervised)
consistency loss Lc between predictions of the student model and the teacher
model on both datasets.

Learn from Progressively Self-Denoised Soft Labels of Set-LQ. The
above MT model can only leverage the image information, while the potential
useful information of the noisy labels is still unexploited. To further leverage
the LQ annotation without being affected by the label noises, we propose a
progressive self-denoising process to alleviate the potential misleading guidance.

Inspired by the arbitration based manual annotation procedure where a third
party, e.g., the radiologists, is consulted for disputed cases, the teacher model
serves as the ‘third party’ here to provide guidance for identifying label noises.
With its assistance, we adapt the Confident Learning [17], which was initially
proposed for pruning mislabeled samples in image-level classification, to charac-
terize the pixel-wise label noises based on the Classification Noise Process (CNP)
assumption [3]. The self-denoising process can be formulated as follows:

(1) Characterize the pixel-wise label errors via adapted CL. First, we estimate
the joint distribution Qỹ,y∗ between the noisy (observed) labels ỹ and the true
(latent) labels y∗. Given a dataset X := (x, ỹ)n consisting of n samples of x

with m-class noisy label ỹ, the out-of-sample predicted probabilities P̂ can be
obtained via the ‘third party’, i.e., our teacher model. Ideally, such a third party
is also jointly enhanced during training. If the sample x with label ỹ = i has large
enough p̂j(x) ≥ tj , the true latent label y∗ of x can be suspected to be j instead
of i. Here, the threshold tj is obtained by calculating the average (expected)
predicted probabilities p̂j(x) of the samples labeled with ỹ = j, which can be
formulated as tj := 1

|Xỹ=j |
∑

x∈Xỹ=j
p̂j(x). Based on the predicted label, we

further introduce the confusion matrix C ỹ,y∗ , where Cỹ,y∗ [i][j] is the number of
x labeled as i (ỹ = i), yet the true latent label may be j (y∗ = j). Formally,
C ỹ,y∗ can be defined as:

Cỹ,y∗ [i][j] :=
∣∣∣X̂ỹ=i,y∗=j

∣∣∣ , where

X̂ỹ=i,y∗=j :=

{
x ∈ Xỹ=i : p̂j(x) ≥ tj , j = arg max

l∈M :p̂l(x)≥tl
p̂l(x)

}
.

(1)
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With the constructed confusion matrix C ỹ,y∗ , we can further estimate the
m×m joint distribution matrix Qỹ,y∗ for p (ỹ, y∗):

Qỹ,y∗ [i][j] =

Cỹ,y∗ [i][j]∑
j∈M Cỹ,y∗ [i][j]

· |Xỹ=i|∑
i∈M,j∈M

(
Cỹ,y∗ [i][j]∑

j∈M Cỹ,y∗ [i][j]
· |Xỹ=i|

) . (2)

Then, we utilize the Prune by Class (PBC) [17] method recommended by [26]
to identify the label noises. Specifically, for each class i ∈M , PBC selects the n ·∑

j∈M :j 6=i (Qỹ,y∗ [i][j]) samples with the lowest self-confidence p̂ (ỹ = i;x ∈Xi)
as the wrong-labeled samples, thereby obtaining the binary noise identification
map Xn, where “1” denotes that the pixel has a wrong label and vice versa. It is
worth noting that the adapted CL module is computationally efficient and does
not require any extra hyper-parameters.

(2) Smoothly refine the noisy labels of Set-LQ to provide rewarding super-
vision. Experimentally, the CL still has uncertainties in distinguishing the label
noises. Therefore, instead of directly imposing the hard-correction, we introduce
the Smoothly Self-Denoising Module (SSDM) to impose a soft correction [2] on
the given noisy segmentation masks ỹ. Based on the binary noise identification
map Xn, the smoothly self-denoising operation can be formulated as follows:

ẏ(x) = ỹ(x) + I(x ∈ Xn) · (−1)ỹ · τ, (3)

where I(·) is the indicator function, and τ ∈ [0, 1] is the smooth factor, which is
empirically set as 0.8. After that, the updated soft-corrected LQ labels of Set-LQ
are used as the auxiliary CL guidance Lcl to the student model.

(3) Self-loop updating. With the proposed SSDM, we construct a self-loop
updating process that substitutes the noisy labels of Set-LQ with the updated
denoised ones for the next training epoch, so that the framework can progres-
sively refine the noisy vessel labels during training.

2.4 Loss Function

The total loss is a weighted combination of the supervised loss Ls on Set-HQ, the
perturbation consistency loss Lc on both datasets and the auxiliary self-denoised
CL loss Lcl on Set-LQ, calculated by:

L = Ls + λcLc + λclLcl, (4)

where λc and λcl are the trade-off weights for Lc and Lcl, respectively. We adopt
the time-dependent Gaussian function [4] to schedule the ramp-up weight Lc.
Meanwhile, the teacher model needs to be “warmed up” to provide reliable out-
of-sample predicted probabilities. Therefore, λcl is set as 0 in the first 4,000
iterations, and adjusted to 0.5 during the rest training iterations. Note that the
supervised loss Ls is a combination of cross-entropy loss, Dice loss, focal loss [14]
and boundary loss [10] with weights of 0.5, 0.5, 1 and 0.5, respectively, as such
a combination can provide better performance in our exploratory experiments
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Table 1. Quantitative results of different methods. Best results are shown in bold.

Method Dice ↑ PRE ↑ ASD ↓ HD ↓
Huang et al.[8] 0.5991 0.6352 2.5477 10.5088

U-Net(i) 0.6093 0.5601 2.7209 10.3103
U-Net(p) 0.6082 0.5553 2.3574 10.2864
U-Net(c) 0.6685 0.6699 2.0463 9.2078

U-Net(c, Mix) 0.6338 0.6322 1.6040 9.2038
MT(c) 0.6963 0.6931 1.4860 7.5912

MT(c)+NL w/o CL 0.6807 0.7270 1.3205 8.0893
MTCL(c) w/o SSDM 0.7046 0.7472 1.2252 8.3667

MTCL(c) 0.7245 0.7570 1.1718 7.2111

Results: Segmentation Results

GTImg Prob Map U-Net(c, Mix)U-Net(c) MTCL(c) (ours)U-Net(p)U-Net(i)

Fig. 3. Visualization of the fused segmentation results of different methods. The red
voxels represent the ground truth, while the green voxels denote the difference between
the ground truth and the segmented vessel of different methods.

with the fully supervised baseline method. The consistency loss Lc is calculated
by the voxel-wise Mean Squared Error (MSE), and the CL loss Lcl is composed
of cross-entropy loss and focal loss with equal weights.

3 Experiments and Results

Evaluation Metrics and Implementation. For inference, the student model
segments each volume slice-by-slice and the segmentation of each slice is concate-
nated back into 3D volume. Then, a post-processing step that removes very small
regions (less than 0.1% of the volume size) is performed. We adopt four metrics
for a comprehensive evaluation, including Dice score, Precision (PRE), Average
Surface Distance (ASD) and Hausdorff Distance (HD). The framework is based
on the PyTorch implementation of [25] using an NVIDIA Titan X GPU. SGD
optimizer is also adopted and the batch size is set to 4. Standard data augmen-
tation, including randomly flipping and rotating, is applied. The implementation
will be available at https://github.com/lemoshu/MTCL.

Comparison Study. A comprehensive qualitative and quantitative comparison
study is performed on the hold-out test set of Set-HQ, as shown in Fig. 3 and
Table 1. Succinctly, “i”, “p” and “c” represent different input types: processed
image, the vessel probability map and the concatenated one, respectively.

Surprisingly, the performance of 3D networks is far worse than the 2D ones
in our experiments, which may result from inadequate training data or the thick-

https://github.com/lemoshu/MTCL
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ness variation [23]. Therefore, all the rest experiments are performed in 2D. The
exploratory fully supervised experiments are performed on the Set-HQ. We can
observe that using the concatenated slices as input (U-Net(c)) achieves supe-
rior performance. Next, we additionally introduce the Set-LQ to train the model
in the fully supervised manner, denoted as U-Net(c, Mix). As predicted, the
noisy labels of Set-LQ cause unavoidable performance degradation. Compared
with U-Net(c) with only Set-HQ, U-Net(c, Mix)’s Dice score and PRE drop from
0.6685 to 0.6338, and from 0.6699 to 0.6322, respectively. Note that the previ-
ous learning-based studies [8,11,12] on hepatic vessel segmentation performed
the evaluation on manually refined annotation without making the improved
‘ground truth’ or their implementation publicly available, resulting in excessive
lack of benchmark in this field. Here, we re-implement Huang et al.’s approach
[8] in 2D as another baseline. The proposed method, denoted as MTCL(c),
achieves the best performance in terms of all four metrics and more appealing
visual results.

Ablation Study. To verify the effectiveness of each component, we perform an
ablation study with the following variants: a) MT(c): a typical mean-teacher
model that additionally uses the image information of Set-LQ, i.e., the SSL
setting; b) MT(c)+NL w/o CL: extended MT(c) by leveraging the noisy labels
(NL) of Set-LQ without CL; c) MTCL(c) w/o SSDM: MTCL without the
proposed SSDM. As shown in Table 1, with the assistance of image information of
Set-LQ, adding the perturbation consistency loss can improve the segmentation
performance, as well as alleviate the performance degradation caused by noisy
labels. Superior performance can be achieved through the self-denoising process
via the adapted CL, and further improved by the SSDM.

Effectiveness of Label Self-denoising. The visualization of two example
slices from MSD8 is shown in Fig. 4 to further illustrate the label self-denoising
process. Some noticeable noises can be identified with the proposed framework.
Moreover, an additional experiment, which uses the denoised label of Set-LQ
along with Set-HQ to train a U-Net (same setting as U-Net(c, Mix)), is per-
formed and obtains 7.67%, 8.46%, 0.61% and 3.91% improvement in terms of
Dice, PRE, ASD and HD, respectively, compared to the one using the original
label of Set-LQ. The extended experiment further demonstrates the capability of
the proposed framework in correcting the label errors, indicating a potential ap-
plication of our framework to explicably refine the label quality of large datasets
by taking advantage of limited HQ labeled data for many other tasks.

Results: Effect of Self-corrected Label

Noisy Label Identified Noise Denoised LabelSlice A Noisy Label Identified NoiseSlice B Denoised Label

Fig. 4. Illustration of the self-denoising performance for the MSD8 dataset (Set-LQ).
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4 Conclusion

In this work, we proposed a novel Mean-Teacher-assisted Confident Learning
(MTCL) framework for the challenging hepatic vessel segmentation task with
a limited amount of high-quality labeled data and abundant low-quality noisy
labeled data. The superior performance we achieved using two public datasets
demonstrated the effectiveness of the proposed framework. Furthermore, the
additional experiment with refined annotation showed that the proposed frame-
work could improve the annotation quality of noisy labeled data with only a
small amount of high-quality labeled data.
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