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Abstract. Accurate topology is key when performing meaningful anatom-
ical segmentations, however, it is often overlooked in traditional deep
learning methods. In this work we propose TEDS-Net: a novel segmen-
tation method that guarantees accurate topology. Our method is built
upon a continuous diffeomorphic framework, which enforces topology
preservation. However, in practice, diffeomorphic fields are represented
using a finite number of parameters and sampled using methods such as
linear interpolation, violating the theoretical guarantees. We therefore in-
troduce additional modifications to more strictly enforce it. Our network
learns how to warp a binary prior, with the desired topological charac-
teristics, to complete the segmentation task. We tested our method on
myocardium segmentation from an open-source 2D heart dataset. TEDS-
Net preserved topology in 100% of the cases, compared to 90% from the
U-Net, without sacrificing on Hausdorff Distance or Dice performance.
Code will be made available at: www.github.com/mwyburd/TEDS-Net.

Keywords: Diffeomorphic · Topology · Segmentation · Spatial Trans-
formers

1 Introduction

Anatomical segmentations with incorrect topology can be clinically problematic
and highly impractical. For example, when segmenting the heart’s myocardium,
topological mistakes may present as isolated segmented regions, small holes
within the wall or a disconnected perimeter. These inaccuracies can all lead
to incorrect measurements of circumference and wall thickness, which are often
required when diagnosing heart conditions such as hypertrophic cardiomyopa-
thy [11]. Post-processing morphological operations, such as binary closing, can
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be used to correct some small gaps and disconnected regions. However, they are
unaware of the structure’s overall topology and need to be customised accord-
ingly, therefore, an unified method is preferred.

Semantic segmentation of medical images is regularly performed using deep
convolutional neural networks (CNNs), such as the U-Net [15]. One alternative
segmentation method uses a combination of CNNs and spatial transformers to
learn the spatial warping required to transform a set of prior shapes into the
desired class labels [10,18,17,8,19]. Such methods have outperformed conven-
tional encoder-decoder and state-of-the-art architectures, however, they have no
topological guarantees.

Moreover, both these methods are commonly trained and evaluated using loss
functions such as Dice or binary cross-entropy, which evaluate each pixel individ-
ually and not the higher level structure, often resulting in large topological errors.
Recent work has recognised the importance of accurate whole-structure segmen-
tation, with the development of loss functions that encourage the preservation
of topology [5,14,9]. Although these techniques report an improved topology
accuracy compared to standalone pixel-wise loss functions, they only encour-
age topology preservation as opposed to enforcing it, with the best performing
method achieving 96.7% topology accuracy in myocardium segmentation [5].

In theory, topology will always be preserved by deforming a prior, with the
correct topological characteristic, with a continuous diffeomorphic field [2]. Dif-
feomorphic fields are continuous deformation fields that result in a one-to-one
mapping. Their derivatives are invertible, resulting in positive Jacobian deter-
minants, giving an unambiguous mapping between coordinates and therefore
preserving topology [2].

Resampling one diffeomorphic field by another, also known as a composition,
always results in a new diffeomorphic field [2]. In VoxelMorph’s methods [6,7],
this elegant property has been utilised for brain registration, by initialising with
a small diffeomorphic field and amplifying it through a series of novel integration
layers, based on the squaring and scaling approach [1,13], to generate a topology-
preserving large-deformation field. However, when diffeomorphisms are applied
in discrete settings, such as images stored as discrete voxels, their topological
guarantees can begin to break down. This is often indicated by the emergence of
non-positive Jacobian determinants in the deformation fields, which correspond
to folding voxels in the warped space [7]. In brain registration a small fraction
of violations may be manageable, conversely, for segmentation tasks these can
lead to topological errors in the structure of interest, defeating the purpose.
Here, we adapt VoxelMorph’s methods to be suitable for segmentation tasks
by introducing a novel topology-preserving activation function and additional
smoothing terms to counteract the negative effects of discrete sampling. These
modifications enforce true diffeomorphisms, shown to have only positive Jacobian
determinants, which results in 100% topology preservation.

In this work, we present the novel Topology Enforcing Diffeomorphic Segmen-
tation Network (TEDS-Net), which to the best of our knowledge is the first deep
learning technique to achieve 100% topology accuracy, and to combine spatial
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Fig. 1. Schematic of TEDS-Net architecture. A CNN learns two initial fields, u, at
different resolutions, from an input image X. The fields are enforced to be diffeomorphic
using an activation function, v = f(u), amplified through composition layers and
“super” upsampled to 2x the resolution of the input. The bulk displacement, ΦBulk,
samples a binary prior, P, generating YBulk, which is then sampled by the fine tuning
field, ΦFT. The asterisks show the elements removed during ablation studies.

transformer networks (STN) and diffeomorphic displacement fields to complete
a segmentation as the primary task. Our method uses CNNs to learn a warp
field that maps a binary prior on to the input image, with the warp field being
diffeomorphic by construction. We show that in the discrete setting, continuous
properties of diffeomorphisms are no longer guaranteed, therefore, we introduce
model components that enforce topology preservation in all cases.

2 Method

The aim of the proposed TEDS-Net is to predict a segmentation label, Ŷ, using
learnt diffeomorphic transformations, Φ, applied to a binary prior image, P. The
network is comprised of three main parts, shown in the bottom left corner of Fig
1. Firstly, an encoder-decoder style network is used to learn the initial velocity
fields. These fields are then enforced to be diffeomorphic and amplified using the
squaring and scaling approach [13,1]. Finally, the diffeomorphic fields are used
to sample a prior binary shape to complete the segmentation task.

CNN. An encoder-decoder network was used to extract the relevant features
from an input image, X ∈ Rh×w with dimensions [h×w], in order to predict two
initial velocity fields: a bulk field and a fine-tuning field. We used an architecture
similar to the U-Net but with two decoder branches [15,16]. Each branch con-
sisted of a series of convolutions followed by an instance normalisation and ReLU
activation function and then repeated, referred to as a convolutional block.

Branching off at the bottleneck were two decoder streams, made up of convo-
lutional blocks and a final 1x1 convolution, used to generate a two-dimensional
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field, u. The first stream, with one upsampling convolutional block, predicts a
low resolution bulk-velocity, uBulk ∈ R2×(h×w)/8, which focuses on warping the
prior shape into the correct region. The second, with three upsampling blocks,
predicts a higher resolution fine-tuning field, used to fine-tune the warped shape,
uFT ∈ R2×(h×w)/2.

Diffeomorphic Layers. To enforce that the initial fields, u, were diffeomorphic,
and therefore suitable for the scaling and squaring approach, a customised tanh
activation function, f(u), was applied to the output of each decoder branch to
enforce that the displacements were between −0.5 voxel and +0.5 voxel and
therefore topology preserving:

v(x) = f(u(x)) = 0.5

(
eu(x) − e−u(x)

eu(x) + e−u(x)

)
. (1)

A series of composition layers were then used to amplify the initial diffeo-
morphic fields, v, adapted from the VoxelMorph’s implementation [6,7].

Gaussian Smoothing: As the diffeomorphic fields are represented using a finite
number of parameters and sampled using linear interpolation, the theoretical
guarantees are violated, risking key properties such as topological preservation.
Moreover, these inaccuracies and imperfections can be amplified with the num-
ber of compositions performed [2]. To reduce these violations, we introduced
Gaussian smoothing between each integration layer. For this work we used a 5
by 5 kernel and σ = 2 and the impact of this will be investigated in future work.

Super Upsample: To further smooth the fields and minimise any abnormalities,
the amplified diffeomorphic flow fields were both “super upsampled” to double
the resolution of the input image, X, using bilinear interpolation.

Spatial Transformers. The diffeomorphic field, ΦBulk ∈ R2×2h×2w, generated
from the first decoder branch sampled the prior shape, P ∈ Rh×w, using bilinear
interpolation: YBulk = ΦBulk(P), as shown in Fig 2. The resulting warped im-
age was then sampled by the fine-tuning field generated by the second decoder
branch, Ŷ = ΦFT(YBulk), where ΦFT ∈ R2×2h×2w. The prediction, Ŷ, was then
downsampled to the same resolution as the label, Y ∈ Rh×w, using Max Pooling.

Field Regularisation: The network outputs the final label prediction, Ŷ, and
the two diffeomorphic transformation fields: ΦBulk,ΦFT, which were all used for
the training loss. A combination of Dice Loss (LDice) and a field regularisation
(LGrad) function were used for training:

L = LDice(Y, Ŷ) + βLGrad(ΦFT) + βLGrad(ΦBulk), (2)

where LGrad =
∑2h,2w

i,j=1 ‖∇Φ(i, j)‖2, which encourages smooth flow fields by
penalising large spatial gradients between neighbouring voxels, adapted from [3].
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Fig. 2. A prior is sampled with a displacement field at double the resolution, YBulk =
ΦBulk(P), before the second super upsampled displacement is applied to the shifted
image Ŷ = ΦFT(YBulk). The displacement panels show the shift in both directions.

A weighting parameter, β, was used to balance the contributions between LGrad

and LDice, in this work we used a constant β of 10, 000, in order to give all the
loss function components similar magnitudes, as measured empirically.

2.1 Experimental Setup

TEDS-Net was used to segment the myocardium from an open source dataset
of MRI heart slices in the short axis5 [4]. This dataset consisted of 2 scans from
100 patients, across five different pathologies. Five myocardium-containing slices
were taken from each scan, cropped to 144 by 208 pixels and augmented using
rotations, shifts, zooming and a combination of the three, resulting in 8,000
images split 75%, 15% and 10% for training, validation and testing, respectively.
It was assured that slices from the same patient were assigned to the same subset.

The topology of the myocardium is equivalent to a hollow circle, which we
used as the prior shape, P, shown in Fig 2. It should be noted that the patients’
scans were not aligned and therefore the location of the myocardium was incon-
sistent. Additionally, different pathologies have varying myocardium thickness.
Despite this, the same arbitrary prior shape was used throughout, illustrating
the robustness of the method.

Two main experiments were completed and evaluated on 100 unseen heart
slices without augmentations. Firstly, ablation studies were performed to show
the contribution of each additional element used in TEDS-Net to tackle the
limitations of diffeomorphic sampling, shown with the asterisks in Fig 1, using a
prior shape of radius 30 and 8 integration layers, which were empirically set. As a
comparison, we used a U-Net [15] and VoxelMorph diffeomorphic network [6,7],
using the shape prior P as the second input channel. Secondly, we investigated
the effect of the number of integration layers and radius of the binary prior.

The networks were all trained end-to-end on a NVIDIA GeForce GTX 1080
GPU and implemented in Pytorch using Python 3.6. Training was performed
over 200 epochs, using the Adam optimiser with a learning rate of 0.0001 and a
batch size of 5. TEDS-Net and the U-Net were both made up of 5 layers, with
12 initial feature maps, and a 20% dropout applied to each map.

5 The ACDC database: www.creatis.insa-lyon.fr/Challenge/acdc

www.creatis.insa-lyon.fr/Challenge/acdc
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Table 1. Comparison of myocardium segmentation performed by the baselines and
TEDS-Net, accompanied by ablation studies (A1-6). The mean and standard deviation
are given for Dice, Hausdorff Distance (HD) and percentage of non-positive Jacobian
determinants from each field. The best result from each measure is shown in bold.

Network Dice HD % |JΦBulk | ≤ 0 % |JΦFT | ≤ 0
Incorrect

Topology

U-Net (baseline) 0.87± 0.16 5.25± 13.11 N/A N/A 10/100

VoxelMorph (baseline) 0.79± 0.18 3.0± 2.4 N/A 6.7e−05 ± 0.7e−03 6/100

(A1) TEDS-Net: No Gaussian, LGrad or Super Upsample 0.82± 0.19 4.26± 5.76 56.32± 1.97 43.8± 3.46 17/100

(A2) TEDS-Net: No Gaussian Smoothing 0.86± 0.13 3.73± 8.34 67.10± 7.07 35.81± 4.41 3/100

(A3) TEDS-Net: No LGrad 0.85± 0.14 2.77± 2.01 5.94± 2.57 22.15± 3.67 35/100

(A4) TEDS-Net: No Super Upsample 0.85± 0.11 2.89± 1.61 0.0± 0.0 0.0± 0.0 0/100

(A5) TEDS-Net: Only Bulk Branch 0.77± 0.15 3.86± 3.50 0.03± 0.17 N/A 0/100

(A6) TEDS-Net: Only Fine-Tune Branch 0.85± 0.14 3.01± 2.16 N/A 0.0± 0.0 0/100

TEDS-Net (ours) 0.86± 0.12 2.76± 2.13 0.0± 0.0 0.0± 0.0 0/100

3 Results and Discussion

To evaluate segmentation performance, Dice, Hausdorff Distance (HD), and a
count of incorrect topologies were used, as seen in Table 1. A predicted seg-
mentation’s topology was classed as incorrect if their Betti numbers [12] varied
from the known topological properties of the myocardium. To assess the discrete
fields, the Jacobian determinants were also measured, as perfect diffeomorphic
fields always have strictly positive determinants.

Large topological errors were found when segmenting the myocardium with
the U-Net, as seen from Table 1. These errors were mainly expressed as large gaps
separating the myocardium, shown in Fig 3, making clinical measures of circum-
ference extremely challenging. VoxelMorph was designed to maximise registra-
tion performance using diffeomorphisms, however, when applied to segmentation
a small fraction of topology errors are observed, shown in Table 1: VoxelMorph.
Unlike the U-Net predictions, these topology violations are seen at the bound-
aries of the myocardium, forming holes or disconnected regions when defined
using 4-pixel connectivity, as done here, but not when using 8-pixel connectiv-
ity. Conversely, our TEDS-Net enforced diffeomorphisms, preserving topology
for all cases, which to the best of our knowledge, is the first deep learning seg-
mentation technique to achieve 100% topological accuracy. Therefore, TEDS-Net
additional modifications are required to prioritise topology preservation.

Paired t-tests were computed between TEDS-Net and U-Net and found that
TEDS-Net significantly outperformed the U-Net in Hausdorff Distance, with a
p-value of 0.01. Although the Dice accuracies were competitive, the U-Net per-
formed significantly better (p=0.04). Figure 3c-d shows particularly challenging
examples, where the U-Net fails to return the correct topology. However, al-
though TEDS-Net returns labels with accurate topology, the myocardial wall
appears too thick in some parts. This is likely due to the smoothing modifica-
tion, whose parameter will be further investigated in future work.
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Fig. 3. Examples of myocardium manual annotations (green), compared to U-Net and
TEDS-Net segmentations (pink) from the ACDC dataset [4].

Ablation studies were performed to show the effect of the additional smooth-
ing modifications used to encourage perfect diffeomorphisms, as shown in Table
1 (A1-6). The continuous guarantees of diffeomorphic sampling, such as topol-
ogy preservation, break down when applied in the discrete setting, shown by the
emergence of non-positive Jacobian determinants that can then lead to topologi-
cal errors. There are two sources of such violations in TEDS-Net: the composition
layers and the image sampling.

To limit the numerical inaccuracies brought about by the discrete compo-
sition of two diffeomorphic fields, we introduced Gaussian smoothing between
each layer. Without this addition, a large fraction of the Jacobian determinants
no longer remained positive, corresponding to a number of topological defects,
as shown in Table 1 (A2).

Sampling a discrete binary image with a finite warp field often results in
disconnects, due to interpolations and the use of thresholds on the resultant
image. To reduce this effect, we regularised the smoothness of the final deforma-
tion fields with LGrad. Without this term, 35 out of 100 images were found to
have topological defects and therefore, it played a vital role in mimicking perfect
diffeomorphisms, as shown in Table 1 (A3).

Removing either the bulk or fine-tuning sampling branch was found to reduce
the performance of both Dice and HD, as shown Table 1 (A5-6). As the images
are unaligned, with varying sizes of myocardium, shown in Fig 3, both branches
are required to first align the prior before fine-tuning the warped shape. TEDS-
Net performs the worst without the fine-tuning branch, which is likely due to
the lack of flexibility in the bulk transformation, as the deformation fields are
generated at a much lower resolution before being upsampled.
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(a) (b)

Fig. 4. The effect that the number of integration layers (a) and the radius of the
binary prior (b) had on segmentation performance and the diffeomorphic nature of the
generated fields. Due to the image dimensions, 50 was the maximum radius used.

Number of Integration Layers: Including Gaussian smoothing between the
integration layers played a key role in enforcing topology preservation, as shown
in Table 1 (A2). Although theoretically accuracy should increase with the num-
ber of composition layers, this requires performing more compositions that can
each bring about small violations, due to the discrete nature of the fields [2].
However, limiting the number of composition layers, limits the size of deforma-
tions. To investigate this further, we varied the number of integration layers
used in TEDS-Net and measured the segmentation performance and Jacobian
determinants of the resulting fields, shown by Fig 4a. When using 12 or fewer
integration layers, the segmentation performance is stable whilst the Jacobian
determinants all remain positive and all topology is preserved. However, when
the number of layers is increased beyond 12, non-positive Jacobian determinants
emerge. Therefore, whilst Gaussian smoothing has been shown to be essential in
the integration layers, there is a limit to the number of compositions that can
be used whilst enforcing diffeomorphic sampling.

Prior Radius: In the test set, the myocardium’s radius ranged between ap-
proximately 10 to 60 voxels, so we investigated the impact of varying the radius
on the final segmentation performance, as shown in Fig 4b. The segmentation
performance remained consistent as the radius was increased between 20 and 50
voxels. However, when the radius was set to 10 voxels, a small percentage of the
Jacobian determinants of the fine-tuning fields were non-positive, correspond-
ing to 2/100 incorrect topologies. This is likely due to the decreased number
of voxels in the prior representing the myocardium and the area enclosed by
it, in combination with the additional smoothing modification that restrict the
flexibility of the diffeomorphic fields.
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4 Conclusion

We have shown that TEDS-Net is able to achieve highly accurate myocardium
segmentations whilst ensuring topology preservation. We introduced additional
diffeomorphic-encouraging modifications, which were found to play a crucial role
in enforcing an one-to-one mappings in the generated discrete fields. Our method
successfully segmented the myocardium in unaligned MRI heart slices, with dif-
ferent pathologies that had different thicknesses and circumferences, using the
same general prior shape for all. This flexible, easy to train method has the
potential to have a high impact in future clinical segmentation work.
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