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Abstract. The success of deep convolutional neural networks (DCNNs)
benefits from high volumes of annotated data. However, annotating med-
ical images is laborious, expensive, and requires human expertise, which
induces the label scarcity problem. Especially When encountering the
domain shift, the problem becomes more serious. Although deep unsu-
pervised domain adaptation (UDA) can leverage well-established source
domain annotations and abundant target domain data to facilitate cross-
modality image segmentation and also mitigate the label paucity problem
on the target domain, the conventional UDA methods suffer from severe
performance degradation when source domain annotations are scarce. In
this paper, we explore a challenging UDA setting - limited source domain
annotations. We aim to investigate how to efficiently leverage unlabeled
data from the source and target domains with limited source annota-
tions for cross-modality image segmentation. To achieve this, we pro-
pose a new label-efficient UDA framework, termed MT-UDA, in which
the student model trained with limited source labels learns from un-
labeled data of both domains by two teacher models respectively in a
semi-supervised manner. More specifically, the student model not only
distills the intra-domain semantic knowledge by encouraging prediction
consistency but also exploits the inter-domain anatomical information
by enforcing structural consistency. Consequently, the student model can
effectively integrate the underlying knowledge beneath available data re-
sources to mitigate the impact of source label scarcity and yield improved
cross-modality segmentation performance. We evaluate our method on
MM-WHS 2017 dataset and demonstrate that our approach outperforms
the state-of-the-art methods by a large margin under the source-label
scarcity scenario.

Keywords: Segmentation · Unsupervised Domain Adaptation · Semi-
supervised Learning · Self-ensembling

1 Introduction

Deep convolutional neural networks (DCNNs) have obtained promising perfor-
mance on medical image segmentation tasks [17,18], which further promotes the
development of automated medical image analysis. DCNNs are data-hungry and
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require large amounts of well-annotated data, however, in real-world clinical set-
tings, medical image annotations are pricey and labor-intensive, which require
extensive domain knowledge from biomedical experts. This leads to that scarce
annotations are available for training DCNNs, i.e., label scarcity.

To alleviate the burden on human annotation, plenty of methods beyond
supervised learning have been proposed for improving label efficiency on med-
ical imaging [19], including self-supervised learning [27], semi-supervised learn-
ing [2,29] and disentangled representation learning [3]. In recent years, semi-
supervised learning (SSL) methods based on the self-ensembling strategy [14,20,7]
have received much attention in medical image analysis, achieving state-of-the-
art results in many SSL benchmarks. For instance, Laine and Aila [14] pro-
pose Temporal Ensembling to enforce the consistent outputs of the network-
in-training across different epochs. Tarvainen and Valpola [20] build the mean
teacher (MT) model based on the exponential moving average (EMA) of the
weights of the student network, forcing the prediction consistency and further
boosting the model performance. Subsequently, many studies have been devoted
to leveraging abundant unlabeled data based on MT to mitigate the paucity-
of-label problem in biomedical image segmentation [8,15,26]. These methods,
however, are presented for label-efficient learning on a single partially labeled
dataset, failing to use cross-domain information well when using multi-domain
datasets.

On the other hand, given the various imaging modalities with different phys-
ical principles, such as CT and MR, the domain shift problem is severe in
cross-modality image segmentation, resulting in significantly reduced perfor-
mance when applying well-trained DCNNs on one domain (e.g., MR) to an-
other domain (e.g., CT), especially in the absence of target labels. To tackle
this serious issue, much research has been devoted to investigating unsupervised
domain adaptation (UDA) for minimizing the discrepancy between the source
and target domains, consequently boosting the generalization ability on the tar-
get domain for cross-modality medical image segmentation [11,25]. Inspired by
the great success of generative adversarial networks (GANs) on image-to-image
translation [1,12,13], many approaches have been developed with adversarial
learning from different perspectives for domain alignment, including image-level
adaptation [4,28], feature-level adaptation [10,9,22] and their mixtures [5,6]. For
example, Chen et al. design a synergistic image and feature adaptation model [6],
which achieves the state-of-the-art performance in UDA for cross-modality medi-
cal image segmentation. Despite the success of adversarial learning in UDA, these
methods heavily rely on abundant source labels, which become sub-optimal when
only limited source labels are available in clinical deployment.

These motivate us to advocate studying a practical, challenging, and differ-
ent UDA setting from the past, where only limited source labels are accessible.
In this paper, we investigate the feasibility of integrating SSL into UDA un-
der source label scarcity and propose a novel label-efficient UDA framework for
cross-modality medical image segmentation. We first present a dual cycle align-
ment module (DCAM) to bridge the appearance gap across domains, synthe-
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Fig. 1. Overall framework of our proposed MT-UDA. The student model learns from la-
beled source samples Dl

s by the Lseg
stu loss, and distills the intra-domain semantic knowl-

edge and inter-domain anatomical information from source-like domain and target-like
domain by Lkd

tea and Lcon
tea , simultaneously.

sizing source-like domain images and target-like domain images via adversarial
learning [12]. We further develop an MT framework [20] for UDA, named MT-
UDA, to exploit the knowledge from both intermediate domains. In MT-UDA,
the student model distills the intra-domain semantic knowledge by encouraging
the prediction consistency of the source domain and exploits the inter-domain
anatomical information by enforcing the structural consistency across domains.
We evaluate the proposed MT-UDA on a public multi-modality cardiac im-
age segmentation dataset, MM-WHS 2017, and demonstrate that our method
outperforms the state-of-the-art methods by a lot under the challenging UDA
scenario.

2 Methodology

Let Dls = {(xsi , ysi )}
N
i=1 and Dus = {(xsi )}

M
i=N+1 denote the labeled samples and

unlabeled samples from source domain (e.g., MR), respectively. In conventional
UDA setting, abundant labeled source data Dls is given, i.e., N = M . Differ-
ently, in our setting, only limited labeled source data Dls is used for UDA, i.e.,
N << M , which is more practical and challenging. We aim to exploit Dls, Dus
and unlabeled samples Dt = {(xti)}

P
i=1from target domain (e.g., CT) for UDA

to improve the model performance on the target domain. The overview of the
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proposed method is presented in Fig. 1. Firstly, two sets of synthetic images, i.e.,
source-like domain Dss and target-like domain, Dst are generated with the pro-
posed dual cycle alignment module to alleviate the notorious domain discrepancy
in appearance (see Fig. 2). To leverage the knowledge beneath real images Ds,
Dt and synthetic ones Dss, Dst , we propose an MT framework for label-efficient
UDA, named MT-UDA, in which, the student model explore the knowledge be-
neath source-like domain and target-like domain through two teacher models
simultaneously for comprehensive integration.

2.1 Dual Cycle Alignment Module

To reduce the semantic gap across domains, we generate synthetic samples for
two domains using generative adversarial networks [12]. We design a dual cycle
alignment module (DCAM) based on CycleGANs [30] to narrow the domain shift
bidirectionally, as demonstrated in Fig. 2. To be specific, the target generator
Gt aims to transform source domain inputs to target domain distribution, i.e.,
Gt (xs) = xs→t, whereas the discriminator Dt aims to differentiate whether the
images are fake target images xs→t or real ones xt. Similarly, with xt, Gs aims
to generate xt→s, while Ds aims to classify the transferred images xt→s and the
original images xs. In CycleGAN, a reverse generator is employed to impose a
cycle consistency between source domain images xs and reconstructed images
xs→t→s. It is noted that both the reverse generator and the source generator Gs
aim to generate source-like images, therefore, we share the weights between them.
In similar fashion, we refactor Gt to generate xt→s→t. Different from CycleGAN,
we further force the discriminator Ds to differentiate source images xs, synthetic
source images xt→s or reconstructed source images xs→t→s in order to bridge
the domain gap better, Similarly, we construct a powerful discriminator Dt.
Finally, we can obtain two newly-augmented intermediate domains, i.e., source-
like domain Dss = {xt→s, xs→t→s} and target-like domain Dst = {xs→t, xt→s→t}.

Fig. 2. Overall framework of Dual Cycle Alignment Module (DCAM).
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2.2 Semantic Knowledge Transfer

Following image-level adaptation by DCAM, source-like domain images Dss and
source domain images Ds maintain a similar visual appearance, allowing us to
leverage the knowledge beneath Dss to improve the segmentation performance
on Ds under label scarcity. As shown in Fig. 1, we follow the mean teacher (MT)
paradigm and adopt the same architecture for the student and teacher models
based on self-ensembling [21]. Specifically, the teacher model fθ′ at training
step t is updated with the exponential moving average (EMA) weights of the
student model fθ, i.e., θ

′
t = αθ′t−1 + (1 − α)θt, where α is the EMA decay rate

that reflects the influence level of the current student model parameters. Given
different perturbations (e.g., noises ξ and ξ′) to the inputs of teacher and student
models, we expect their predictions to be consistent by minimizing the difference
between them with a mean square error (MSE) loss Lkdtea as

Lkdtea =
1

N

N∑
i=1

‖f (xi; θ
′
t, ξ
′)− f (xi; θt, ξ)‖

2
, (1)

where f(·) is the segmentation network. f (xi; θt, ξ) and f (xi; θt, ξ
′) represent

the outputs of the student model and the teacher model, respectively.

2.3 Structural Knowledge Transfer

Despite distinct differences like image appearance across domains, the trans-
formed images obtained from generators should have the same structural infor-
mation as the original ones. In other words, source domain image xsi and its
synthesis target-like image xs→ti should have the same segmentation masks, i.e.,
ys = ys→ti . In this regard, We propose a teacher model for keeping structural
consistency between predictions of source images and corresponding synergis-
tic target images, i.e., f(x; θ, ξ) = f(Gi[x]; θ′, ξ′), where x are source (-like)
domain images, and Gi is generator Gt or reverse generator Gs. Transferring
structural knowledge across domains not only regularizes the student model for
semi-supervised learning, but also helps increase adaptation performance at the
feature level. Instead of the conventional consistency loss, e.g., MSE loss [16],
we exploit the structural information based on weighted self-information [23,24],
and calculate the structural consistency loss Lcontea between the teacher and stu-
dent networks as

Lcontea =
1

N

N∑
i=1

1

H ×W

V∑
v=1

∥∥Isi,v − Iti,v
∥∥2 (2)

where V = {1, 2, . . . ,H × W}, Isi,v = −psi,v ◦ logpsi,v is the weighted self-
information of the predicted label at v-th pixel of i-th input from the student
network, and similarly Iti,v is that from the teacher network. The notation ◦ is
Hadamard product and log is the logarithmic expression using base 2.
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2.4 MT-UDA Framework

With the supervision of corresponding labels ys, the student model is trained by
the supervised loss Lsegstu as

Lsegstu =
1

2
[Lce (ys, psstu) + Ldice (ys, psstu)] , (3)

where Lce and Ldice are cross-entropy loss and dice loss, respectively, and
psstu is the predictions of the student model on source labeled images xs. Based
on the above discussion, we integrate Eq. 1, Eq. 2 and Eq. 3, and the training
objective for the student model is formulated as

Lstu = Lsegstu + λkdLkdtea + λconLcontea , (4)

where λkd and λcon are the trade-off parameters with the associated losses.
With the MT-UDA framework, we can distill the knowledge from source-like
domain and target-like domain together for more accurate cross-modality image
segmentation.

3 Experiments and Results

Dataset and pre-processing. We evaluated our method on the Multi-Modality
Whole Heart Segmentation (MM-WHS) 2017 dataset, consisting of unpaired 20
MR and 20 CT volumes with ground truth masks. We employed MR as source
domain and CT as target domain. Following general UDA setting as in [5], each
modality was first randomly split with 16 scans for training and 4 scans for
testing. To validate the performance under the source-label scarcity scenario,
we randomly selected 4 annotated MR scans for training in comparison experi-
ments. For data pre-processing, following previous work [9], we cropped all the
coronal slices into centering at the heart region after resampling with unit spac-
ing. Four cardiac substructures, i.e., ascending aorta (AA), left atrium blood
cavity (LAC), left ventricle blood cavity (LVC), and myocardium of the left
ventricle (MYO) were selected for segmentation.

Implementation details. We followed [30] to optimize the proposed dual cycle
alignment module for generating source-like domain images Dss and target-like
domain images Dst . Similar to [28], we verified our model on the transformed
source-like images xt→s instead of target domain images xt, since our model was
trained on source domain under source label scarcity. We implemented U-Net [18]
as our network backbone for both student and teacher models in MT-UDA. We
trained the framework for a total of 150 iterations and used Adam optimizer
with the initial learning rate of 1× 10−4, momentum of 0.9, learning rate warm
up over the first 20 iterations, and cosine decay of the learning rate with the SGD
optimizer. Following [20], the EMA decay rate α was set to 0.999 for two teacher
models, and hyperparameters λcon and λkd were ramped up individually with
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Table 1. Comparison results of different methods. suffix -4 or -16 after method names
stand for the number of labelled source scans used for training.

Method
Dice ↑ ASD ↓

AA LAC LVC MYO Avg AA LAC LVC MYO Avg

W/o Adaptation - 4 5.6 17.8 12.1 5.5 10.3 36.9 24.6 38.5 35.6 33.9

UDA-16
PnP-AdaNet [9] 74 68.9 61.9 50.8 63.9 12.8 6.3 17.4 14.7 12.8

SIFA-v1 [5] 81.1 76.4 75.7 58.7 73 10.6 7.4 6.7 7.8 8.1
SIFA-v2 [6] 81.3 79.5 73.8 61.6 74.1 7.9 6.2 5.5 8.5 7

UDA-4
DCAM 19.3 28.1 34.1 6.4 22 32.5 21.8 17.7 22.8 23.7

SIFA-v2 [6] 50.5 59.6 31.9 28.9 42.7 8.8 7.3 15.8 13.2 11.3

SSL-4
MT [20] 3.6 26.8 14.5 4.6 12.4 34.5 22.7 5.7 17.6 20.1

UA-MT [26] 20.1 40.5 2.5 11.3 18.6 40.1 23.3 43.2 20.9 31.9

UDA
+SSL-4

DCAM+MT [20] 35.3 31.6 48.4 11.2 31.6 39.9 39.8 10.5 14.6 23.7
DCAM+UA-MT [26] 61.3 59.7 46.5 19.2 46.7 5.6 8.3 8.2 10.6 8.2

MT-UDA (Ours) 72.7 71.4 60.7 41.7 61.6 5.3 5.7 6.7 6.1 5.9

Fig. 3. Visualization of segmentation results generated by different methods.

the sigmoid-shaped function λ(t) = 0.01 ·e(−5(1−t/tmax)
2), where t and tmax were

the current and the last step, respectively. Data augmentation such as random
rotation was applied in all the experiments for a fair comparison. We evaluate
different methods on Dice score and average surface distance (ASD) with the
largest 3D connected component of each substructure.

Comparison with other methods. We compare our methods with the state-
of-the-art UDA methods in cardiac segmentation, i.e., Pnp-AdaNet [10] and
SIFA [5,6], as well as two recent popular SSL approaches, including MT [20] and
UA-MT [26]. In Table 1, we list the results of PnP-AdaNet and SIFA with 16
labeled source scans in cardiac segmentation. Since SIFA-v2 [6] obtains the best
segmentation performance on each substructure, we further train SIFA-v2 on 4
labeled MR scans to simulate the source-label scarcity scenario. It is observed
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Fig. 4. Ablation results (Dice[%]) on different components.

that SIFA-v2 obtains severely degraded performance on target domain when us-
ing 4 labeled source domain scans, which can be attributed to the source label
scarcity. We also directly test the U-Net trained on 4 labeled MR scans from
the source domain as our lower bound, referred as W/o Adaptation-4. By taking
advantage of image-to-image translation i.e., DCAM, a great improvement can
be achieved when testing W/o Adaptation on fake MR images xt→s, but it is
still not optimal with the average dice of merely 22% across the substructures. It
is worth noting that MT and UA-MT can help improve the segmentation perfor-
mance on target domain by leveraging unlabeled source domain images. Along
with image appearance alignment, MT and UA-MT can achieve promising im-
provement on cross-modality segmentation, which demonstrates the feasibility of
integrating SSL into UDA for label-efficient UDA. By simultaneously exploiting
all available data sources, the proposed MT-UDA obtains the best segmenta-
tion results with the average dice of 61.6%, outperforming SIFA-v2 (4 training
MR scans) by a large margin and achieving comparable performance with the
state-of-the-art methods, but only requires 1/4 source labels. We further visual-
ize the segmentation results on testing data of different methods including the
best methods of UDA and SSL, i.e. SIFA-v2 and DCAM+UA-MT in Fig. 3. It
is observed that our method can generate more reliable masks with fewer false
positives than other methods.

Ablation studies of our method. To evaluate the effectiveness of different
components of MT-UDA, we conduct ablation experiments on various variants.
Specifically, we remove one of the teacher models, separately, i.e., W/o semantic
knowledge transfer (MT-UDA-NS) and W/o structural knowledge transfer (MT-
UDA-NT). We further implement the MSE loss in MT-UDA-NS to evaluate the
efficacy of the structural loss, i.e., MT-UDA-NS-MSE. Fig 4 demonstrates the
ablation results of different substitutes. We can see that both types of knowledge
transfer can benefit the model performance on unsupervised cross-domain seg-
mentation. In comparison with the MSE loss in structural knowledge transfer,
the proposed loss based on the weighted self-information can better improve the
segmentation performance on some substructures such as AA, benefiting from
the structural consistency across domains.
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4 Conclusion

In this work, we present a novel label-efficient UDA framework, MT-UDA, which
integrates SSL into UDA for cross-modality medical image segmentation un-
der source label scarcity. By bridging both source and target domains to in-
termediate domains through knowledge transfer, the student model can leverage
intra-domain semantic knowledge and exploit inter-domain structural knowledge
concurrently, thereby mitigating both the domain discrepancy and source label
scarcity. We evaluate the proposed MT-UDA on MM-WHS 2017 dataset, and
demonstrate that our method outperforms the state-of-the-art UDA methods by
a lot under the challenging source-label scarcity scenario.
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search (I2R), Agency for Science, Technology and Research (A*STAR), Singa-
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