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Abstract
Despite their outstanding accuracy, semi-supervised segmentation methods based
on deep neural networks can still yield predictions that are considered anatomically
impossible by clinicians, for instance, containing holes or disconnected regions.
To solve this problem, we present a Context-aware Virtual Adversarial Training
(CAVAT) method for generating anatomically plausible segmentation. Unlike
approaches focusing solely on accuracy, our method also considers complex topo-
logical constraints like connectivity which cannot be easily modeled in a differen-
tiable loss function. We use adversarial training to generate examples violating the
constraints, so the network can learn to avoid making such incorrect predictions on
new examples, and employ the REINFORCE algorithm to handle non-differentiable
segmentation constraints. The proposed method offers a generic and efficient way
to add any constraint on top of any segmentation network. Experiments on two
clinically-relevant datasets show our method to produce segmentations that are
both accurate and anatomically-plausible in terms of region connectivity.

1 Introduction
Due to the high complexity and cost of generating ground-truth annotations for medical image segmen-
tation, a wide range of semi-supervised methods based on deep neural networks have been proposed
for this problem. These methods, which leverage unlabeled data to improve performance, include
distillation (Radosavovic et al., 2018), attention learning (Min and Chen, 2018), adversarial learn-
ing (Souly et al., 2017; Zhang et al., 2017), entropy minimization (Vu et al., 2019), co-training (Peng
et al., 2020a; Zhou et al., 2019b), temporal ensembling (Perone and Cohen-Adad, 2018; Cui et al.,
2019), consistency-based regularization (Bortsova et al., 2019) and data augmentation (Chaitanya
et al., 2019; Zhao et al., 2019). When very few labeled images are available, however, it may be
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impossible for a segmentation network to learn the distribution of valid shapes, even when using a
semi-supervised learning approach. As a result, the segmentation network can yield predictions that
are considered anatomically impossible by clinicians (Painchaud et al., 2020). Such predictions can
severely impact downstream analyses which rely on anatomical measures, and often require a costly
manual step to correct segmentation errors.

Various works have focused on incorporating constraints in semi-supervised or weakly-supervised
segmentation methods (Kervadec et al., 2019; Pathak et al., 2015; Jia et al., 2017; Zhou et al., 2019a;
Masoud and Ghassan, 2016). The approach in (Jia et al., 2017) uses a simple L2 penalty to impose
size constraints on segmented regions in histopathology images. Kervadec et al. (Kervadec et al.,
2019) proposed a similar differential loss to enforce inequality constraints on the size of segmented
regions. Likewise, Zhou et al. (Zhou et al., 2019a) constrain the size of segmented regions with a
loss function minimizing the KL divergence between the predicted class distribution and a target
one. Despite showing the benefit of adding constraints in a segmentation model, these methods
suffer from two important limitations. First, they are limited to simple constraints like region size or
centroid position, which are insufficient to characterize the complex shapes found in medical imaging
applications. Second, they require designing a problem-specific differentiable loss and, thus, have
low generalizability.

Recent efforts have also been invested toward adding strong anatomical priors in segmentation
networks. In (Oktay et al., 2017), Oktay et al. present an anatomically constrained neural network
(ACNN) using an autoencoder to reconstruct the segmentation mask of labeled images. The re-
construction loss of the autoencoder for a given image is then used as segmentation shape prior.
As training the autoencoder requires a sufficient amount of labeled data, this approach is poorly
suited to semi-supervised learning settings. The cardiac segmentation approach by Zotti et al. (Zotti
et al., 2018) improves accuracy by aligning a probabilistic shape atlas to the predicted segmentation
during training. Likewise, Duan et al. (Duan et al., 2019) uses a multi-task approach to locate
landmarks which guide an atlas-based label propagation during a refinement step. In spite of their
added robustness, both theses approaches need large annotated datasets to learn the atlas and are
sensitive to atlas registration errors. Recently, Painchaud et al. (Painchaud et al., 2020) proposed a
segmentation method that uses a variational autoencoder to learn the manifold of valid segmentations.
During inference, predicted segmentations are mapped to their nearest valid point in the manifold.
While it offers strong anatomical guarantees, this post-processing method requires pre-computing an
important number of valid points. Moreover, the projection of a predicted output on these points can
lead to a segmentation considerably different from the ground-truth.

To address the above-mentioned limitations, we propose a Context-Aware Virtual Adversarial Training
(CAVAT) method for semi-supervised segmentation, which considers complex constraints during
training to learn an anatomically-plausible segmentation. Unlike existing approaches, which are
limited to simple, differentiable constraints (e.g., region size, centroid position, etc.) and require
designing a customized loss function, our method can be used out-of-the-box to add any constraint,
differentiable or not, on top of a given segmentation model. Our detailed contributions are as follows:

• We propose a novel framework that helps obtain anatomically-plausible segmentations by
considering complex anatomical priors in the learning process. Our framework is based
on Virtual Adversarial Training (VAT) (Takeru et al., 2019), which optimizes a minimax
problem where adversarial examples are created from training samples so to maximize
prediction divergence of the network. Unlike VAT, our method generates adversarial exam-
ples that maximize prediction divergence as well as constraint violation. The REINFORCE
algorithm (Ronald, 1992) is used to compute gradients for non-differentiable segmentation
constraints.

• To our knowledge, our segmentation method is the first to consider complex anatomical
priors in a general semi-supervised setting. In comparison, existing approaches require a
large number of labeled images to learn a shape prior (Oktay et al., 2017; Painchaud et al.,
2020) or a complex and problem-specific step involving atlas registration (Duan et al., 2019;
Dong et al., 2020). Unlike these approaches, our method needs very few labeled examples
and can be used with any segmentation network.

In the next section, we present our Context-aware Virtual Adversarial Training (CAVAT) method
and show how it can be used to include connectivity constraints on the segmentation output. In our
experiments, we demonstrate our semi-supervised segmentation method’s ability to provide a higher
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Lsup

Figure 1: Overview of the proposed method.

accuracy and better constraint satisfaction when trained with very few labeled examples. Finally, we
conclude with a summary of main contributions and results.

2 Proposed method
We start by defining the semi-supervised segmentation problem considered in our work. Let S =

{(xs, ys)}|S|s=1 be a small set of labeled examples, where each xs ∈ R|Ω| is an image and ys ∈
{0, 1}|Ω|×|C| is the corresponding ground-truth segmentation mask. Here, Ω ⊂ Z2 denotes the set
of image pixels and C the set of segmentation classes. Given labeled images S and a larger set of
unlabeled images U = {xu}|U|u=1, we want to learn a network f parameterized by weights θ which
produces segmentations that are both accurate and anatomically-plausible.

An overview of the proposed method is shown in Fig. 1 (left). Our method is trained with both labeled
and unlabeled data by optimizing the following objective:

min
θ
Ltotal(θ; D) = Lsup(θ;S) + λLCAVAT(θ;U) (1)

The supervised loss Lsup(·) encourages individual networks to predict segmentation outputs for
labeled data that are close to the ground truth. In this work, we use the well-know cross-entropy loss:

Lsup(θ; S) = − 1

|S|
∑

(x,y)∈S

∑
i∈Ω

∑
j∈C

yij log
(
fij(x, θ)

)
(2)

The context-aware VAT loss LCAVAT(·), which uses unlabeled images, increases the robustness of
the model to adversarial noise and helps the model learn to produce valid segmentations with respect
to the given constraints. This loss is detailed in the next section.

2.1 Context-aware VAT loss
A standard approach to incorporate constraints in a semi-supervised learning scenario is to add a loss
term that penalizes the violation of these constraints (Kervadec et al., 2019; Jia et al., 2017; Zhou et al.,
2019a). This simple approach poses three major problems. First, it may not be possible to model a
given constraint with a function. For instance, testing region connectivity, which imposes each pair of
points in a region to be connected by a path inside the region, requires running an algorithm. Second,
even if such function exists, it may not be differentiable. This is often the case in segmentation due to
the discrepancy between the continuous network output and the discrete segmentation on which the
constraints are applied. Last, although both these conditions are satisfied, there is no guarantee that a
given constraint will be violated during training, especially if it models a complex relationship. If the
network never violates a constraint, it will not be able to learn how to satisfy it since the gradient
from the constraint loss will be null.
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To alleviate these problems, we define the following Context-aware VAT loss on unlabeled examples:

LCAVAT(θ;U) =
1

|U|
∑
xu∈U

max
‖r‖≤ε

[
`LDS(xu, ru; θ) + γ `cons(xu, ru; θ)

]
(3)

This loss, which is composed of a local distribution smoothness (LDS) term `LDS and reinforced
constraint term `cons is minimized with respect to network parameters θ and maximized with respect
to the image perturbation ru. γ is the weight balancing the two loss terms, which are described below.

Local distributional smoothness (LDS) The first term in Eq. (3) is the divergence-based LDS in
the original VAT method Takeru et al. (2019) which is given by

`LDS(xu, ru; θ) = DKL

(
f(xu; θ) || f(xu + ru; θ)

)
(4)

Minimizing `LDS(·) enhances the robustness of the model against adversarial examples that violates
the virtual adversarial direction, thereby improving generalization performance.

Reinforced constraint loss The second term in Eq. (3) encourages the production of adversarial
examples leading to violated constraints, which is necessary for learning these constraints. The
reinforced constraint loss is given by

`cons(xu, ru; θ) = −E ŷ∼f(xu+ru;θ)

[
J(ŷ)

]
(5)

where ŷ is discrete segmentation mask sampled from the output probability distribution pu =
f(xu+ru; θ) for an adversarial image xu + ru, and J is the reward function which outputs 1 if
the constraint is satisfied else it returns 0. Since the discrete segmentation sampling step is non-
differentiable, we resort to the REINFORCE algorithm (Ronald, 1992) to convert it into a differentiable
loss:

∇θ`cons = −
∑
ŷ

J(ŷ)∇θp(ŷ) ≈ −
1

m

m∑
ŷ(s)∼pu, s=1

J(ŷ(s))∇θ log p
(
ŷ(s)
)

(6)

where m is a given number of samples, empirically set to 10 in this paper. Assuming that outputs at
different pixels are conditionally independent given the input image, i.e. p(ŷ(s)) =

∏
i p
(
ŷ
(s)
i ), the

final loss can be expressed as

`cons(xu, ru; θ) = − 1

m

m∑
ŷ(s)∼pu, s=1

∑
i∈Ω

Ji(ŷ
(s)) log p

(
ŷ
(s)
i

)
. (7)

2.2 Local connectivity constraints
Although our method can be used with any differentiable or non-differentiable constraint, in this
paper, we illustrate it on a well-known constraint with broad applicability: connectivity. Given a
segmented region G, we say that G is connected if and only if there exists a path between each pair
of pixels p, q ∈ G such that all pixels in the path belong to G. Imposing connectivity in segmentation
leads to a highly-complex problem which can only be solved for simplified cases, for example,
by representing an image as a small set of superpixels (Shen et al., 2020). However, considering
connectivity over the whole image may not be practical since it is hard to achieve in the early training
stages. For instance, having a single disconnected noisy pixel violates the constraint. To solve this
problem, we relax the global constraint and instead consider connectivity at each local patch. Since
satisfaction at local patches is a necessary condition for global satisfaction, enforcing it helps achieve
our objective. Moreover, doing so provides a spatially-denser gradient since satisfaction can vary
from one sub-region to another.

The reward computation process is illustrated in Fig 1 (right) and detailed in Algorithm 1 of the
Supplementary Materials. First, we generate discrete segmentations ŷ(s), s = 1, . . . ,m, from the
output probability map via multinomial sampling. For each sampled ŷ(s), we then apply the flood-fill
algorithm from a chosen seed pixel to produce the connected foreground region C(s). To select the
seed pixel, we use a 1l×l convolution kernel on ŷ(s) to compute the number of foreground pixels in
a l×l window centered on each pixel of the image. Afterwards, we randomly choose a pixel with
maximum value to favor selecting large connected components as reference region. For each patch of
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Table 1: Mean DSC, HD and non-connected pixels (N-conn) for segmenting the left ventricle (LV),
right ventricle (RV) and myocardium (Myo) of ACDC, and segmenting prostate in PROMISE12. For
each task, labeled data ratio and performance metric, we highlight the best method in red and the
second best in blue.

Task / labeled % Method DSC (%)↑ HD (mm)↓ N-conn (%)↓

ACDC LV / 100 % Baseline 94.00 (0.09) 6.02 (1.13) 2.40 (0.72)

ACDC LV / 3 %

Baseline 88.14 (0.67) 20.58 (7.09) 6.90 (0.81)
Entropy min 87.54 (0.83) 16.67 (0.75) 6.49 (0.67)
VAT 88.65 (0.45) 20.66 (2.76) 6.32 (0.88)
Co-training 88.81 (0.39) 12.36 (0.81) 6.35 (0.28)
Mean Teacher 90.91 (1.13) 12.11 (1.97) 3.36 (0.99)

CAVAT (ru=0) 88.63 (0.69) 28.31 (5.78) 6.89 (0.86)
CAVAT 89.18 (0.48) 22.62 (0.45) 4.75 (0.74)
CoT + CAVAT 90.21 (0.47) 12.84 (3.56) 5.94 (0.71)
MT + CAVAT 91.04 (0.60) 9.52 (1.44) 3.20 (0.75)

ACDC Myo / 100 % Baseline 89.55 (0.09) 4.17 (0.19) 1.91 (0.58)

ACDC Myo / 3 %

Baseline 75.00 (2.55) 27.85 (3.51) 10.26 (2.23)
Entropy min 74.01 (0.95) 22.06 (3.90) 11.68 (0.62)
VAT 78.26 (0.62) 26.45 (6.69) 8.77 (0.77)
Co-training 75.82 (0.39) 13.24 (1.02) 12.50 (0.71)
Mean Teacher 82.56 (0.44) 11.62 (1.80) 4.26 (0.48)

CAVAT (ru=0) 78.44 (0.84) 27.16 (1.05) 6.48 (0.38)
CAVAT 79.59 (0.30) 26.20 (0.59) 6.52 (1.13)
CoT + CAVAT 79.25 (1.03) 12.34 (1.38) 8.92 (0.22)
MT + CAVAT 82.68 (0.43) 9.87 (0.74) 3.82 (1.56)

ACDC RV / 100 % Baseline 88.66 (0.31) 6.27 (0.38) 6.32 (0.97)

ACDC RV / 5 %

Baseline 63.17 (3.10) 17.90 (0.87) 27.50 (2.53)
Entropy min 62.09 (1.22) 16.72 (1.73) 31.58 (2.70)
VAT 69.52 (1.79) 20.46 (3.69) 25.81 (4.59)
Co-training 63.97 (0.47) 17.30 (1.58) 29.07 (1.19)
Mean Teacher 80.57 (0.65) 14.46 (1.81) 12.21 (1.05)

CAVAT (ru=0) 70.42 (1.87) 21.95 (2.75) 21.52 (1.12)
CAVAT 72.88 (1.55) 21.06 (3.42) 20.43 (2.66)
CoT + CAVAT 71.51 (1.89) 14.94 (2.04) 25.92 (1.57)
MT + CAVAT 80.70 (0.51) 11.90 (0.63) 11.45 (1.19)

PROMISE12 / 100 % Baseline 87.99 (0.20) 5.04 (0.42) 6.87 (0.19)

PROMISE12 / 5 %

Baseline 55.95 (1.80) 11.86 (5.11) 28.83 (2.18)
Entropy min 56.39 (3.01) 10.95 (1.13) 26.70 (1.88)
VAT 62.89 (4.20) 14.12 (2.06) 16.98 (4.31)
Co-training 52.60 (0.67) 12.22 (2.91) 34.60 (2.33)
Mean Teacher 71.09 (2.03) 6.76 (3.92) 16.19 (3.58)

CAVAT (ru=0) 63.68 (0.41) 15.57 (0.58) 15.12 (1.12)
CAVAT 65.38 (2.24) 14.55 (4.42) 11.55 (0.43)
CoT + CAVAT 66.65 (0.36) 15.29 (0.28) 11.57 (1.82)
MT + CAVAT 72.33 (2.57) 8.92 (0.06) 12.33 (2.37)

k×k, we measure the number of foreground pixels that are not in C(s), using a simple convolution:
S(s) = 1k×k~ (ŷ(s)−C(s)). Finally, we evaluate the constraint at pixel i as Ji(ŷ(s)) = δ(S

(s)
i = 0),

where δ(·) is the Kronecker delta.

3 Experimental setup
We evaluate our CAVAT method on the Automated Cardiac Diagnosis Challenge (ACDC)
dataset (Bernard et al., 2018) and the Prostate MR Image Segmentation (PROMISE12) Challenge
dataset (Litjens et al., 2014). Details on these datasets can be found in the Supplementary Materials.
For ACDC, segmentation masks delineate three anatomic regions: left ventricle endocardium (LV),
left ventricle myocardium (Myo) and right ventricle endocardium (RV). All these regions satisfy
the connectivity constraint and have a single connected component. For PROMISE12, the goal is to
segment the whole prostate which is also a connected region. We report three performance metrics:
Dice similarity coefficient (DSC), Hausdorff distance (HD) and Non-Connectivity (N-conn). DSC
emphasises on the overall overlap between a candidate segmentation and its ground truth; HD mea-
sures the maximum local disagreement between the two segmentation sets; the N-conn quantifies the
percentage of foreground pixels which are not connected to a randomly-selected foreground seed.
The hyper-parameters for computing the connectivity reward (see Section 2.2) were set empirically
as follows: l = 5 and k = 3.

We tested labeled data ratios of 3% and 5% for each segmentation task, and compared our CAVAT
method against using only the supervised loss Lsup (denoted as Baseline in our results) as well
as four popular approaches for semi-supervised learning: Entropy minimization (Vu et al., 2019),
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2: Visual comparison of tested methods on the validation images. (a) Ground-truth; (b) Partial
supervision baseline; (c) Entropy min; (d) VAT; (e) Co-training (CoT); (f) Mean Teacher (MT); (g)
CAVAT; (h) CoT + CAVAT; (i) MT + CAVAT

Virtual Adversarial Training (VAT) (Takeru et al., 2019), Co-training (Peng et al., 2020a), and Mean
Teacher (Cui et al., 2019). Since our method can be used on top of any semi-supervised segmentation
algorithm, we also evaluate its combination with Co-training (CoT + CAVAT) or Mean Teacher
(MT + CAVAT). Last, we test our CAVAT model with the same loss as in Eq. (3) but no adversarial
perturbation (ru = 0).

For all tested approaches, we use ENet (Adam et al., 2016) as our segmentation backbone and train
this network with a rectified Adam optimizer. The learning rate is initially set as to 1 × 10−5 and
is updated by a warm-up and cosine decay strategy. We apply the same data augmentation as in
(Peng et al., 2020b). The hyper-parameter balancing the two terms of Eq. (1) is set as follows:
λ = 1×10−3 LV, λ = 5×10−4 for Myo, λ = 1×10−4 for RV, and λ = 1×10−4 for PROMISE12.
For all experiments, we report the mean performance (standard deviation) on 3 independent runs with
different random seeds.

4 Experimental Results

Table 1 reports the DSC, HD and percentage of non-connected pixels (N-conn) on validation examples
of the ACDC and PROMISE12 datasets. As can be seen, our CAVAT method boosts performance in
all cases compared to the baseline using only labeled images (Baseline), with DSC improvements of
1.04% for ACDC LV, 4.59% for ACDC Myo, 9.71% for ACDC RV, and 9.43% for PROMISE12. Our
method also significantly reduces the number of non-connected foreground pixels (N-conn) compared
to the baseline, demonstrating its ability to learn the given constraint. Results also validate the benefit
of generating constraint-specific adversarial examples, as seen from the better DSC, HD and N-conn
scores of CAVAT compared to the setting with ru=0. Moreover, we also observe improvements
when adding CAVAT to Co-training or Mean Teacher. In particular, our MT + CAVAT combination
obtains the highest overall DSC and yields a lower N-conn than Mean Teacher, for all segmentation
tasks. Additional results with 5% labeled data for ACDC LV and ACDC Myo, and with 8% labeled
data for PROMISE12 can be found in Supplementary Materials.

In Fig. 2, we show examples of segmentations produced by the tested approaches for the three tasks,
when using 5% of labeled data. As can be seen, adding CAVAT to the baseline or a semi-supervised
learning method yields a more accurate segmentation and helps avoid disconnected regions. As last
experiment, we performed a sensitivity analysis on hyper-parameter γ which controls the weight
of the constraint loss in Eq. (3). The results and analysis for this experiment can be found in the
Supplementary Materials.

6



5 Conclusion
We proposed CAVAT, a novel method for semi-supervised segmentation that can incorporate complex
anatomical constraints on any segmentation model during training. Our method extends the virtual
adversarial training (VAT) framework, making a network robust to adversarial perturbations, by
generating examples which also cause the model to violate a given constraint. By improving its
prediction for these adversarial examples, the network can thus learn to satisfy the constraint. To
alleviate the need to define a specialized penalty function for the constraint, as well as to handle
non-differentiable constraints, our method uses the REINFORCE algorithm. As a result, it can be used
as a plug-in on any semi-supervised learning approach. Experiments on three segmentation tasks
from the ACDC and PROMISE12 datasets reveal the effectiveness of our method in terms of both the
accuracy and constraint satisfaction.

A potential limitation of the proposed method stems from its use of the REINFORCE algorithm, which
requires sampling a sufficient number of discrete segmentations from the predicted probabilities
otherwise optimization may be unstable. While we found that 10 samples gave good results, a larger
number might be required for more complex constraints. Another drawback of our method is the
computational cost of evaluating constraints during training, which might be prohibitive in some
cases. As future work, we plan to extend our method to multi-class segmentation tasks. We will also
investigate the combination of our method with other semi-supervised techniques and evaluate its
usefulness for a broader range of constraints.
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Supplementary Materials
Algorithm 1 Computation of the local connectivity reward

Input: The segmentation ŷ(s) sampling from output probability distribution of the model f , s =
1, . . . ,m
Output: Reward map Ji(ŷ(s)), i ∈ Ω

Step 1: Generating the connected foreground C(s)

Compute the number of foreground pixels A(s)
i in the patch around each pixel i through convolution

operation A(s) = 1l×l ~ ŷ(s)

Randomly select a seed pixel iseed ∈ argmaxi A
(s)
i

Run the flood-fill algorithm from iseed to get foreground connectivity map C(s)

Step 2: Estimating the reward map
Get the map of non-connected pixels via convolution S(s) = 1k×k ~ (ŷ(s) − C(s))

Compute the reward for pixel i as Ji(ŷ(s)) = δ(S
(s)
i = 0)

Datasets
Automated Cardiac Diagnosis Challenge (ACDC): This dataset consists of 200 MRI scans from
100 patients. Scans correspond to end-diastolic (ED) and end-systolic (ES) phases, and were acquired
on 1.5T and 3T systems with resolutions ranging from 0.70×0.70 mm to 1.92×1.92 mm in-plane and
5 mm to 10 mm through-plane. Three cardiac regions are labeled in the ground-truth: left ventricle
(LV), right ventricle (RV) and myocardium (Myo). In our experiments, we used a split of 75 subjects
(150 scans) for training, 25 subjects (50 scans) for validation. Slices within 3D-MRI scans were
considered as 2D images, themselves randomly cropped into patches of size 192×192. These patches
are fed as input to the network.

Prostate MR Image Segmentation (PROMISE12) Challenge: This dataset comprises multi-centric
transversal T2-weighted MR images from 50 subjects. Volumetric images were acquired with multiple
MRI vendors and different scanning protocols, and are thus representative of typical MR images
acquired in a clinical setting. Image resolution ranges from 15 × 256 × 256 to 54 × 512 × 512
voxels with a spacing ranging from 2× 0.27× 0.27 to 4× 0.75× 0.75 mm3. We slice volumetric
images to 2D images along short-axis, and then randomly crop these images into input patches of
size 192× 192. We randomly select 40 subjects as our training set and use the remaining 10 subjects
as validation set.

Results
Table 2 provides additional results on the tasks of segmenting LV and Myo of ACDC with 5% labeled
data, and segmenting prostate of PROMISE12 with 8% labeled data. As in the test cases reported in the
main paper, we see that our CAVAT method provides a better accuracy and foreground connectivity
than the baseline using only labeled images (Baseline). Moreover, when added on top of a Co-training
or Mean Teacher, it provides a notable reduction in the number of non-connected foreground pixels
(N-conn), while also giving a comparable or even better segmentation accuracy (DSC and HD).
Table 3 reports the performance of our method for different values of constraint loss weight γ. It can
be observed that increasing γ up to 0.005 improves segmentation performance consistently with an
increased DSC and reduced N-conn. On the other hand, using a too large γ hurts the performance.
This may be due to having a too important adversarial noise which makes the network optimization
unstable.
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Table 2: Mean DSC, HD and non-connected pixels for segmenting the left ventricle (LV), myocardium
(Myo) of ACDC, and segmenting prostate of PROMISE12.

Task / labeled % Method DSC (%)↑ HD (mm)↓ N-conn (%)↓

ACDC LV / 5 %

Baseline 88.47 (0.58) 10.12 (0.80) 6.31 (0.31)
Entropy min 88.89 (0.45) 11.98 (1.47) 4.99 (1.06)
VAT 89.80 (0.58) 13.38 (2.95) 5.31 (0.80)
Co-training 91.35 (0.56) 8.63 (2.93) 5.44 (0.66)
Mean Teacher 91.25 (0.48) 9.10 (1.27) 3.26 (0.41)

CAVAT (ru = 0) 89.42 (0.75) 15.34 (2.57) 4.80 (0.05)
CAVAT 89.89 (0.37) 12.15 (2.97) 4.67 (0.67)
CoT + CAVAT 91.77 (0.27) 6.20 (0.55) 5.36 (0.34)
MT + CAVAT 91.57 (0.42) 7.54 (0.45) 2.32 (0.63)

ACDC Myo / 5 %

Baseline 77.70 (1.22) 12.33 (0.69) 9.30 (1.03)
Entropy min 77.09 (1.24) 14.68 (3.61) 9.31 (0.83)
VAT 81.19 (0.68) 17.36 (0.76) 5.60 (0.55)
Co-training 77.88 (1.19) 12.94 (3.84) 10.86 (1.09)
Mean Teacher 84.28 (0.15) 11.31 (1.77) 3.20 (0.82)

CAVAT (ru = 0) 81.68 (0.86) 15.15 (4.82) 5.69 (1.03)
CAVAT 81.80 (0.28) 19.20 (2.81) 4.53 (0.25)
CoT + CAVAT 80.21 (0.41) 12.30 (2.94) 8.27 (1.11)
MT + CAVAT 84.26 (0.16) 9.43 (0.62) 1.75 (0.47)

PROMISE12 / 8 %

Baseline 66.79 (2.59) 9.75 (0.15) 21.73 (5.37)
Entropy min 68.68 (0.79) 8.66 (0.52) 21.28 (1.29)
VAT 73.33 (0.64) 9.87 (0.81) 13.16 (0.53)
Co-training 67.64 (0.84) 8.68 (0.87) 24.07 (1.49)
Mean Teacher 75.08 (0.89) 8.48 (1.21) 16.17 (1.46)

CAVAT(ru = 0) 73.53 (0.89) 11.76 (1.02) 11.74 (0.65)
CAVAT 75.37 (1.79) 11.58 (1.07) 9.44 (0.40)
CoT + CAVAT 75.47 (0.67) 8.52 (0.65) 13.02 (1.36)
MT + CAVAT 77.24 (0.48) 8.65 (1.19) 11.68 (2.07)

Table 3: Impact of constraint loss weight γ on the ACDC Myo segmentation task with 5% labeled
data.

Labeled % γ
Myo

DSC (%)↑ N-conn (%)↓

5 %

γ = 0.01 79.26 (1.25) 3.17 (0.99)
γ = 0.008 81.24 (0.71) 3.33 (0.50)
γ = 0.006 81.61 (0.77) 5.12 (0.65)
γ = 0.005 81.80 (0.28) 4.53 (0.25)
γ = 0.001 79.30 (1.43) 8.50 (0.48)
γ = 0.0005 78.78 (0.96) 8.22 (0.76)
γ = 0.0001 78.30 (0.25) 8.57 (1.08)
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