Skip to main content

ReSGAN: Intracranial Hemorrhage Segmentation with Residuals of Synthetic Brain CT Scans

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Intracranial hemorrhage (ICH) is a dangerous condition of bleeding within the skull that calls for rapid and precise diagnosis due to potentially fatal consequences. In this paper, we propose Residual Segmentation with Generative Adversarial Networks (ReSGAN) to accurately localize the hemorrhage from computerized tomography (CT) scans with a GAN-based model. Although convolutional neural networks have shown success in the ICH segmentation task, precise localization remains challenging due to in-balance and scarcity of labeled training data. Synthetic samples from generative models, and aligned templates as reference from brain atlas have been demonstrated to alleviate the issues. We consider synthetic templates as another candidate and solve the problem by directly applying a generative model to segmentation. Our ReSGAN learns a distribution of pseudo-normal brain CT scans, that through residuals, reliably delineates the hemorrhaging areas. We perform experiments on two datasets and compare our model against a well established baseline, that consistently shows significant improvements, therefore demonstrating the validity of our novel method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  2. Bhadauria, H., Singh, A., Dewal, M.: An integrated method for hemorrhage segmentation from brain CT imaging. Comput. Electric. Eng. 39(5), 1527–1536 (2013)

    Article  Google Scholar 

  3. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  4. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218, https://doi.org/10.1161/01.CIR.101.23.e215

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  7. Hssayeni, M.: Computed tomography images for intracranial hemorrhage detection and segmentation (2020). https://doi.org/10.13026/4nae-zg36

  8. Hssayeni, M.D., Croock, M.S., Salman, A.D., Al-khafaji, H.F., Yahya, Z.A., Ghoraani, B.: Intracranial hemorrhage segmentation using a deep convolutional model. Data 5(1), 14 (2020)

    Article  Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Kuo, W., Häne, C., Yuh, E., Mukherjee, P., Malik, J.: Patchfcn for intracranial hemorrhage detection. arXiv preprint arXiv:1806.03265 (2018)

  11. Kwon, D., et al.: Siamese U-Net with healthy template for accurate segmentation of intracranial hemorrhage. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 848–855. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_94

    Chapter  Google Scholar 

  12. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  15. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (cyclegan) to improve generalizability in ct segmentation tasks. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  16. Shin, H.C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  17. Tan, Z., et al.: Efficient semantic image synthesis via class-adaptive normalization. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  18. Tan, Z., et al.: Rethinking spatially-adaptive normalization. arXiv preprint arXiv:2004.02867 (2020)

  19. Xi, G., Keep, R.F., Hoff, J.T.: Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 5(1), 53–63 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-No. 2021R1A2C3011169)[30%], Electronics and Telecommunications Research Institute(ETRI) grant funded by the Korean government[21ZS1100, Core Technology Research for Self-Improving Integrated Artificial Intelligence System][30%], and the Industrial Strategic Technology Development Program(20011875, Development of AI based diagnostic technology for medical imaging devices) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea)[40%]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 480 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toikkanen, M., Kwon, D., Lee, M. (2021). ReSGAN: Intracranial Hemorrhage Segmentation with Residuals of Synthetic Brain CT Scans. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics