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Abstract. In medical imaging, there are clinically relevant segmenta-
tion tasks where the output mask is a projection to a subset of input
image dimensions. In this work, we propose a novel convolutional neu-
ral network architecture that can effectively learn to produce a lower-
dimensional segmentation mask than the input image. The network re-
stores encoded representation only in a subset of input spatial dimen-
sions and keeps the representation unchanged in the others. The newly
proposed projective skip-connections allow linking the encoder and de-
coder in a UNet-like structure. We evaluated the proposed method on
two clinically relevant tasks in retinal Optical Coherence Tomography
(OCT): geographic atrophy and retinal blood vessel segmentation. The
proposed method outperformed the current state-of-the-art approaches
on all the OCT datasets used, consisting of 3D volumes and correspond-
ing 2D en-face masks. The proposed architecture fills the methodological
gap between image classification and ND image segmentation.

1 Introduction

The field of medical image segmentation is dominated by neural network based
solutions. The convolution neural networks (CNNs), notably U-Net [24] and
its variants, demonstrate state-of-the-art performance on a variety of medical
benchmarks like BraTS$ [I], LiTS [3], REFUGE [23], CHAOS [13] and ISIC [6].
Most of these benchmarks focus on the problem of segmentation, either 2D or
3D, where the input image and the output segmentation mask are of the same
dimension. However, a few medical protocols like OCT for retina [I6/17], OCT
and Ultrasound for skin [21125], Intravascular ultrasound (IVUS) pullback images
for vasculature [26], CT for diaphragm analysis [29] and online tumor tracking
[22] require the segmentation to be performed on the image projection, resulting
in the output segmentation of lower spatial dimension than the input image.
It introduces the problem of dimensionality reduction into the segmentation,
for example, segmenting a flat 2D en-face structures on the projection of a 3D
volumetric image.

This scenario has so far not been sufficiently explored in the literature and it
is currently not clear what CNN architectures are the most suitable for this task.
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Fig.1: (a) 3D retinal OCT volume. Ground truth annotations are shown in 2D
cross-sectional slices for (b) GA and (c) blood vessels in yellow. Predictions of
the proposed method are visualized in en-face projection images for (d) GA and
(e) blood vessels. Green region - true positives, orange - false positives, dark red
- false negatives.
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Here, we propose a new approach for ND — MD segmentation, where M < N |
and evaluate it on two clinically relevant tasks of 2D Geographic Atrophy (GA)
and Blood Vessels segmentation in 3D optical coherence tomography (OCT)
retinal images.

1.1 Clinical background

Geographic atrophy (GA) is an advanced form of age-related macular degen-
eration (AMD). It corresponds to localized irreversible and progressive loss of
retinal photoreceptors and leads to a devastating visual impairment. 3D optical
coherence tomography (OCT) is a gold standard modality for retinal examina-
tion in ophthalmology. In OCT, GA is characterized by hypertransmission of
OCT signal below the retina. As GA essentially denotes a loss of tissue, it does
not have “thickness”, and it is hence delineated as a 2D en-face area (Fig. .

Retinal blood vessels provide oxygen and nutrition to the retinal tissues. Retinal
vessels are typically examined using 2D fundus photographs where they can
be seen as dark lines. In OCT volumes, retinal blood vessels can be detected
in individual slices (B-scans) as interconnected morphological regions, dropping
shadows on the underlying retinal layer structures (Fig. .

1.2 Related work

Recently, several methods dealing with dimensionality reduction in segmenta-
tion tasks have been proposed [I7JI6III]. Liefers et al. [I7] introduced a fully
convolutional neural network to address the problem of ND — MD segmen-
tation. The authors evaluated their method on 2D — 1D tasks of Geographic
Atrophy (GA) and Retinal Layer segmentation. In contrast to our method, their
approach is limited by the fixed size of the input image and shortcut networks
that are prone to overfitting. This is caused by the full compression of the image
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in 2nd dimension, leading to a large receptive field but completely removing the
local context.

Recently, Li et al. [16] proposed an image projection network IPN designed for
3D-to-2D image segmentation, without any explicit shortcuts or skip-connections.
Pooling is only performed for a subset of dimensions, resulting in a highly
anisotropic receptive field. This limits the amount of context the network can
use for segmentation.

Ji et al. [T1] proposed a deep voting model for GA segmentation. First, mul-
tiple fully-connected classifiers are trained on axial depth scans (A-scans), pro-
ducing a single probability value for each A-scan (1D-to-0D reduction). During
the inference phase, the predictions of the trained classifiers are concatenated to
form the final output. This approach doesn’t account for neighboring AScans,
thus lacks spatial context, and requires additional postprocessing.

Existing approaches suffer from two main limitations: On the one hand, they
are designed to handle images of a fixed size, making patch based training diffi-
cult. This is of particular relevance as it has been shown that patch based training
improves overall generalization as it serves as additional data augmentation [15].
On the other hand, existing ND — MD methods have a large receptive field
due to a high number of pooling operations or large pooling kernel sizes, that
fail to capture local context. To illustrate this issue, we conducted a compared
receptive fields of state-of-the-art segmentation [T2I30TI7I282] and classifica-
tion methods [I85I20] for medical imaging across different benchmarks [113]6]
with popular architectures designed for natural images classification [8J9](Fig
1-2 in the supplement). We observed that current state-of-the art methods for
segmentation in a subset of input dimensions [I7JI6] fall out of the cluster with
methods designed for medical tasks, and have a receptive field comparable to
the networks designed for natural images classification. However, the amount
of training data available for medical tasks differs by the orders of magnitude
from the natural images data. Alternatively, the ND — MD segmentation task
can be solved using ND — ND methods. It can be attempted by either first
projecting the input image to the output MD space, which looses context, or by
running ND segmentation first, which is memory demanding, requires additional
postprocessing and is not effective.

Our approach is explicitly designed to overcome these limitations. We propose
a segmentation network that can handle arbitrary sized input and is on par with
state-of-the-art ND — ND medical segmentation methods in terms of receptive
field size.

1.3 Contribution

In this paper we introduce a novel CNN architecture for ND — MD segmen-
tation. The proposed approach has a decoder that operates in the same dimen-
sionality space as the encoder, and restores the compressed representation of
the bottleneck layer only in a subset of the input dimensions. The contribution
of this work is threefold: (1) We propose projective skip-connections addressing
the general problem of segmentation in a subset of dimensions; (2) We provide
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clear definitions and instructions on how to reuse the method for arbitrary in-
put and output dimensions; (3) We perform an extensive evaluation with three
different datasets on the task of Geographic Atrophy and Retinal Blood Ves-
sel 3D — 2D segmentation in retinal OCTs. The results demonstrate that the
proposed method clearly outperforms the state-of-the-art.

2 Method

Let the image I € RITS "d where N is the number of dimensions, and ng4 is
the size of the image in the corresponding dimension d. We want to find such
function f that f: I — O, where O € RITaZ ma jg output segmentation and M
is its dimensionality. We focus on the case where M < N with dimensions d < M
being target dimensions, where we perform segmentation; and M < d < N being
reducible dimensions.

We parameterize f by a convolutional neural network. The CNN architecture
we propose to use for the segmentation along dimensions M follows a U-Net
[24032] architecture. The encoder consists of multiple blocks that sequentially
process and downsample the input volume. Unlike the other methods, we don’t
perform the global pooling in the network bottleneck in the dimensions outside
of M. Instead, we freeze the size of these dimensions and propagate the fea-
tures through the decoder into the final classification layer. The decoder restores
the input resolution only across those target dimensions M where we perform
the segmentation. The decoder keeps feature maps in the remaining reducible
dimensions M < d < N compressed. Since the sizes of encoder and decoder
feature maps do not match, we propose projective skip-connections to link them.

At the last stage of the network, each location of the output MD image has
a corresponding feature tensor of compressed representation in (N — M)D (refer
to Fig.[2). We perform Global Average Pooling (GAP) and a regular convolution
to obtain MD logits.

2.1 Projective skip-connections

The purpose of projective skip-connections is to compress the reducible dimen-
sions M < d < N to the size of bottleneck and leave the target dimensions
d < M unchanged. In contrast to GAP, we don’t completely reduce the tar-
get dimensions to size of 1 (Section . Instead, we use average pooling with
varying kernel size (Fig. . Keeping in mind that the feature map size along
dimension d generated by our proposed network f of depth [ with input image

I at the level j of the encoder will be 5741, the feature map size at the level j of
the decoder will be 7/, .
; s, ifd< M ; 1, ifd< M
my =9 (1) kg = (2)

2!=7 otherwise,
We propose to perform the average pooling of the encoder feature maps with
kernel size and stride & , where d is the corresponding dimension, and j is

517, otherwise.
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Fig.2: The proposed CNN architecture solving ND — M D segmentation prob-
lem, where N = 3 and M = 2. Transformation can be any sort of operation,
residual blocks in our case. The input is a 3D crop from the SD-OCT image. The
final feature map is averaged (GAP) in dimensions that are not in M, only last
dimension in our case. Then the feature map is processed with final convolution,
that reduces the number of channels from 32 to 1. The output is a 2D en-face
segmentation mask. The network in this figure has a configuration of [ = 3,
C =1{2,4,8}, and B ={1,1,1}.

the corresponding layer of the network. After the average pooling is performed,
we concatenate the encoder and decoder feature maps.

The proposed CNN can be explicitly described with the depth or the number
of total network levels [, the number of channels per convolution for each level
C = {co x 271 : 1 <4 < [}, and the number of residual blocks at each level

= {b; : i < l}. The schematic representation of the proposed approach is
shown in Fig. [2l The network has a configuration of | = 3, C' = {2,4,8} and
B = {1,1,1}. The input is a 3D volume patch [ € RO64x128x256 g5 N — 3.
We are interested in the en-face segmentation, so M = 2. In the extreme case
where M = N, the proposed CNN is equivalent to a U-Net architecture with
residual blocks. If M = 0, the proposed CNN is equivalent to N-D ResNet with
skip-connections in the last residual blocks.

3 Experiments

3.1 Data sets

We use a rich collection of three medical datasets with annotated retinal OCT
volumes for our experiments (Table . All our datasets consist of volumetric 3D
OCT images and corresponding en-face 2D annotations (Fig , meaning that
the used datasets represent 3D — 2D segmentation problems.
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Table 1: Datasets description

Dataset Device Volumes|Eyes|Patients Depth, En-facez Dept]l EI?—face 2 De]_)th En—.face 2
. mm | area,mm” |spacing, pm| Spacing,um? |resolution, px|resolution, px
GA1 Spectralis 192 70 37 1.92 [6.68 x 6.86 3.87 156.46 x 7.91 496 43 x 867
GA 2 Spectralis 260 147 147 1.92 16.02 x 6.03 3.87 122.95 x 11.16 496 49 x 540
Vessel 1| TopconDR 1 1 1 2.3 6 x6 2.6 46.87 x 11.72 885 128 x 512
Cirrus 40 40 40 2 6.05 x 6.01 1.96 47.24 x 11.74 1024 128 x 512
Spectralis 43 43 43 1.92 |5.88 x 5.82 3.87 60.57 x 5.68 496 97 x 1024
Topcon2000 9 9 9 2.3 6x6 2.6 46.88 x 11.72 885 128 x 512
Topcon-Triton 32 32 32 2.57 TxT 2.59 27.34 x 13.67 992 256 x 512

The following are the three datasets. Dataset ‘GA1’: The scans were taken
at multiple time points from an observational longitudinal study of natural GA
progression. Annotations of GA were performed by retinal experts on 2D Fundus
Auto Fluorescence (FAF) images and transferred by image registration to the
OCT, resulting in 2D en-face OCT annotations. Dataset ‘GAZ2’: With the
OCT scans originating from a clinical trial that has en-face annotations of GA
that were annotated directly on the OCT BScans by a retinal expert. Dataset
‘Vessel 1’: A diverse set of OCT scans across device manufacturers of patients
with AMD where the retinal blood vessels were directly annotated on OCT
en-face projections by retinal experts.

3.2 Baseline methods

We exhaustively compared our approach against multiple ND — ND base-
lines: UNet 8D [32] operating on OCT volume; UNet 2D [24] operating on OCT
volume projections; UNet++ [31] operating on OCT volume projections. And
ND — MD methods: SD or Selected Dimensions [I7]; FCN or Fully Convo-
lutional Network, used as a baseline in [I7]; IPN or Image Projection Network
[16];

Ablation experiment: 3D2D is a variation of the proposed method with 3D
encoder and 2D decoder networks. The bottleneck and skip-connections perform
global pooling in the dimensions d > M. This ablation experiment was included
to study the effect of propagating deep features to the last stages of the network.

3.3 Training Details

As a part of preprocessing, we flattened the volume along the Bruch’s Membrane,
and cropped a 3D retina region with the size of 128 pixels along AScan (vertical
direction) and keep the full size in the rest of dimensions. We resampled the
images to have 119.105 x 5.671um? en-face spacing. Before processing the data,
we performed z-score normalization in cross-sectional plane. For generating OCT
projections, we employed the algorithm introduced by Chen et al. [4].

For the task of Geographic Atrophy segmentation, the proposed method has
the following configuration: [ = 4, B = {1,1,1,1}, C = {32,64, 128,256 }. We use
residual blocks [8] with 3D convolutions with kernel size of 3. Instead of Batch
Normalization [I0], we employ Instance Normalization [27], due to small batch
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size. The 8D2D network has the same configuration as the proposed method. SD
and FCN are reproduced as in the paper [I7], but with the AScan size equals to
128 and 32 channels in the first convolution. IPN network is implemented as in
the paper [I6] for 3D — 2D case with 32 channels in the first convolution. UNet
2D is reproduced as in the paper [24], but with residual blocks. UNet 3D[32]
and UNet++[31] were reproduced by following the corresponding papers. UNet
38D output masks were converted to 2D by pooling the reducible dimensions and
thresholding. For Retinal Vessel segmentation, we used the networks of the same
configuration, but we set the number of channels in the first layer equal to 4.

The models were trained with Adam [14] optimizer for 3 - 104 and 10* it-
erations with weight decay of 1072, learning rate of 1072 and decaying with a
factor of 10 at iteration 2-10* and 6-103 for GA and blood vessels segmentation
respectively. For GA segmentation, the batch size was set to 8 and patch size to
64 x 256 x 64. For the SD and FCN models we used patch size of 64 x 512 x 512
due to architecture features described in the paper [17]. For blood vessels seg-
mentation, the batch size was set to 8 and patch size was 32 x 128 x 256. The
optimizer was chosen empirically for each model. We used Dice score as a loss
function for both tasks.

3.4 Evaluation Details

For all three datasets (GA1, GA2, Vessel 1) we conducted a 5-fold cross-validation
for evaluation. The splits were made on patient level with stratification by base-
line GA size for GA datasets and by device manufacturer for Vessel I dataset.
The results marked as validation are average of all samples from all the validation
splits. The Dice score and 95th percentile of Hausdorff distance averaged across
scans (Dice and HD95) were used. To test for significant differences between the
proposed method and baselines, we conducted two-sided Wilcoxon signed-rank
tests, using a = 0.05. In addition to cross-validation results, we report perfor-
mances on hold out (ezternal) datasets: models trained on GAI were evaluated
on GA2 serving as an external test set and vice versa.

4 Results and Discussion

Cross-validation results are reported in the Table 2] The qualitative examples of
segmentations can be found in Supplementary materials. For all the tasks, the
proposed methods achieved a significant improvement in both the mean Dice and
Hausdorff distance. This improvement is also reflected in the boxplots, show-
ing higher mean Dice scores and lower variance consistently across all datasets
(Figure . Of note, SD approach outperformed FCN, successfully reproduc-
ing their results reported in [I7]. In Table 2| we can see a significant margin
in the performance between ND methods like 2D UNet,3D UNet, UNet++ and
3D — 2D methods. This indicates that the problem of 3D — 2D segmentation
cannot be solved efficiently with existing 2D or 3D methods.
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External test set results are provided in Table [2] The proposed method out-
performs all other approaches, with significant improvements in GA2. The im-
provement over SD[I7] on GA 1 dataset is slightly below the significance thresh-
old, p-value = 0.063, but the boxplots (Figure highlight the lower variance
and higher median Dice of the proposed architecture.

Table 2: Experiments results. Left: cross-validation, right: external test set. (*:

p-value< 0.05; **: p-value< 10~°; ***: p-value< 10719).
Dataset GA 1 GA 2 Vessel 1
Model Dice HD95 |Dice HD95 |Dice HD95 Dataset GA 1 GA 2

UNet 3D 0.717% {0.71"** ]0.85"** [0.58** |- - Model |Dice TD95 |Dice HD95

UNet 2D [24](0.73*** |1.43*** |0.82*** |1.18™** [0.51"** |0.63"** Fr FTr e T

UNet++ [24](0.75*** |1.22™** |0.83"** |1*** 0.50"** 10.65"** ?ISNNE% 8;8(13*** ggzg** gggg*** 8(1)3411**

FON [I7] [0.760°7[0.5887 [0.8907 0,114 03587 [0.084°| | ‘) 0817 10404 [0.905°[0.113*

IPN [16] |0.793***|0.523" |0.910"**|0.116"**|0.630"**|0.482" D 7] |o. _ P e L L
SD [[7)  |0.788"*|0.5017" [0.919"" [0.002° [0.654" |0.447"" 3D2D |0.819" [0.382  |0.906"**]0.113
3D2D 0.7917" 10.563™ 10.927°°10.070°" 10.650""0.451" Proposed|0.824 [0.310 |0.915 |0.079

Proposed |0.820 (0.336 |0.935 |0.052 |0.684 |0.367

1.0 1.0
0.8 0.8
O
0.6 ‘. 0.6 2 4
] ! g
a . Iy a L S )
0.44 ‘ H MR Method 0.4 ' Method
¢ $ B FCN = FCN
' , ' == PN ‘ H ‘ == PN
027 $ = sD 02 t * N = sD
[ ] . 302D B 302D
0.04 ‘ ‘ $ I Proposed 0.0 ‘ ; ‘ I Proposed
GA1l GA2 Vessel 1 GA1l GA2
Data Data
(a) (b)

Fig.3: Segmentation performance evaluated with (a) cross-validation and (b)
external test set.

5 Conclusion

The problem of image segmentation in a subset of dimensions is a characteristic
of a few relevant clinical applications. It can not be efficiently solved with well-
studied 2D-to-2D or 3D-to-3D segmentation methods. In this paper, we first an-
alyzed and discussed the existing approaches designed for ND — MD segmenta-
tion. For instance, existing methods share the same features, like large receptive
field and encoder performing dimensionality reduction. The skip-connections,
however, are implemented as subnetworks or not used at all.
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Based on this analysis we proposed a novel convolutional neural network ar-
chitecture for image segmentation in a subset of input dimensions. It consists of
encoder that doesn’t completely reduce any of the dimensions; the decoder that
restores only the dimensions where the segmentation is needed; and projective
skip-connections that help to link the encoder and the decoder of the network.
The proposed method was tested on three medical datasets and it clearly out-
performed the state of the art in two 3D — 2D retinal OCT segmentation tasks.
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nology and Development and the Christian Doppler Research Association is
gratefully acknowledged.
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Fig. 6: Qualitative example of the results. Geographic Atrophy and retinal blood
vessels segmentation (a),(e) FCN. (b),(f) IPN (c),(g) SD. (d),(h) Proposed
method. Green region - true positives, orange - false positives, dark red - false
negatives.
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