Skip to main content

A Hybrid Attention Ensemble Framework for Zonal Prostate Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

  • 13k Accesses

Abstract

Accurate and automatic segmentation of the prostate sub-regions is of great importance for the diagnosis of prostate cancer and quantitative analysis of prostate. By analyzing the characteristics of prostate images, we propose a hybrid attention ensemble framework (HAEF) to automatically segment the central gland (CG) and peripheral zone (PZ) of the prostate from a 3D MR image. The proposed attention bridge module (ABM) in the HAEF helps the Unet to be more robust for cases with large differences in foreground size. In order to deal with low segmentation accuracy of the PZ caused by small proportion of PZ to CG, we gradually increase the proportion of voxels in the region of interest (ROI) in the image through a multi-stage cropping and then introduce self-attention mechanisms in the channel and spatial domain to enhance the multi-level semantic features of the target. Finally, post-processing methods such as ensemble and classification are used to refine the segmentation results. Extensive experiments on the dataset from NCI-ISBI 2013 Challenge demonstrate that the proposed framework can automatically and accurately segment the prostate sub-regions, with a mean DSC of 0.881 for CG and 0.821 for PZ, the 95% HDE of 3.57 mm for CG and 3.72 mm for PZ, and the ASSD of 1.08 mm for CG and 0.96 mm for PZ, and outperforms the state-of-the-art methods in terms of DSC for PZ and average DSC of CG and PZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer Statistics, 2017. CA Cancer J. Clin. 60(5), 277–300 (2010)

    Article  Google Scholar 

  2. Martin, S., Troccaz, J., Daanen, V.: Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med. Phys. 37(4), 1579–1590 (2010)

    Article  Google Scholar 

  3. Litjens, G., Debats, O., van de Ven, W., Karssemeijer, N., Huisman, H.: A pattern recognition approach to zonal segmentation of the prostate on MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 413–420. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_51

    Chapter  Google Scholar 

  4. Makni, N., Iancu, A., Colot, O., Puech, P., Mordon, S., et al.: Zonal segmentation of prostate using multispectral magnetic resonance images. Med. Phys. 38(11), 6093–6105 (2011)

    Article  Google Scholar 

  5. Toth, R., Ribault, J., Gentile, J., Sperling, D., Madabhushi, A.: Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets. Comput. Vis. Image Underst. 117(9), 1051–1060 (2013)

    Article  Google Scholar 

  6. Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., et al.: Dual optimization based prostate zonal segmentation in 3D MR images. Med. Image Anal. 18(4), 660–673 (2014)

    Article  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Article  Google Scholar 

  8. Clark, T., Zhang, J., Baig, S., Wong, A., Haider, M.A., Khalvati, F.: Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. J. Med. Imag. 4(4), 041307 (2017)

    Article  Google Scholar 

  9. Meyer, A., Rak, M., Schindele, D., Blaschke, S., Schostak, M., Fedorov, A., Hansen, C.: Towards patient-individual PI-RADS v2 sector map: CNN for automatic segmentation of prostatic zones from T2-weighted MRI. In: ISBI, pp. 696–700. IEEE (2019)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Liu, Y., Yang, G., Mirak, S.A., Hosseiny, M., Azadikhah, A., Zhong, X.: Automatic prostate zonal segmentation using fully convolutional network with feature pyramid attention. IEEE Access 7, 163626–163632 (2019)

    Article  Google Scholar 

  12. Luong, M. T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. Comput. Sci. (2015)

    Google Scholar 

  13. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: MIDL (2018)

    Google Scholar 

  14. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018)

    Google Scholar 

  15. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. Cancer Imag. Arch (2015). https://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Yu, L., et al.: Automatic 3D cardiovascular MR segmentation with densely-connected volumetric ConvNets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 287–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_33

    Chapter  Google Scholar 

  18. Hara, K., Kataoka, H., Satoh, Y.: Can Spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?. In: CVPR, pp. 6546–6555. IEEE (2018)

    Google Scholar 

  19. Wang, Y., et al.: Deep attentional features for prostate segmentation in ultrasound. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 523–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_60

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Innovation Action Plan of Shanghai [grant number: 19511121302], and National Natural Science Foundation of China [grant number: 82072021].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenxi Zhang or Zhijian Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, M., Zhang, C., Song, Z. (2021). A Hybrid Attention Ensemble Framework for Zonal Prostate Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics