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Abstract. Deep learning models are notoriously data-hungry. Thus,
there is an urging need for data-efficient techniques in medical image
analysis, where well-annotated data are costly and time consuming to
collect. Motivated by the recently revived “Copy-Paste” augmentation,
we propose TumorCP, a simple but effective object-level data augmen-
tation method tailored for tumor segmentation. TumorCP is online and
stochastic, providing unlimited augmentation possibilities for tumors’
subjects, locations, appearances, as well as morphologies. Experiments
on kidney tumor segmentation task demonstrate that TumorCP surpasses
the strong baseline by a remarkable margin of 7.12% on tumor Dice.
Moreover, together with image-level data augmentation, it beats the
current state-of-the-art by 2.32% on tumor Dice. Comprehensive ab-
lation studies are performed to validate the effectiveness of TumorCP.
Meanwhile, we show that TumorCP can lead to striking improvements
in extremely low-data regimes. Evaluated with only 10% labeled data,
TumorCP significantly boosts tumor Dice by 21.87%. To the best of
our knowledge, this is the very first work exploring and extending the
“Copy-Paste” design in medical imaging domain. Code is available at:
https://github.com/YaoZhang93/TumorCP.

Keywords: Data-efficiency · Tumor segmentation · Data augmentation.

1 Introduction

Deep learning (DL) models work remarkably well over the past few years in
computer vision tasks, including medical image analysis. Though DL models
act like de facto standard, they are notoriously data-hungry, demanding more
so than ever large and well-annotated datasets to achieve robust performance
[16]. However, high-quality annotated datasets require intense labor and domain
knowledge, which becomes more expensive in the medical domain.
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To improve data-efficient learning, several successful approaches have been
proposed from different perspectives, such as leveraging unlabeled data for semi-
supervised self-training [16,1,15] or self-supervised pre-training [19,1,12], distill-
ing priors from data as explicit constraints for model training [10,9], generat-
ing new data with the imaging of an anatomy of a different modality [8,11],
or utilizing appropriate data augmentation methods to increase data diversity
[5,14,2,15]. Some of them are designated for medical images. Particularly, Zhou et
al. [19] designed a unified self-supervised learning framework, integrating multi-
ple proxy tasks to exploit unlabeled medical data, and showed performance gains
for downstream tasks. Xue et al. [17], and Shin et al. [13] used GANs to generate
additional training data for histopathology image classification and brain tumor
segmentation. The quality of the “realness” of synthesized training data dra-
matically affects model performance due to the risk of overfitting to fake data.
Eaton et.al. [3] studied Mix-up [18] augmentation for brain tumor segmentation.
However, it requires a specific patch-level operation which involves complicated
strategies, e.g. sampling of small patches to be mixed up.

Distinct from the trend of using increasingly sophisticated methods like
GANs, we investigate “Copy-Paste”, a straightforward augmentation technique
[4,2] that has been recently revisited and made breakthroughs in natural image
instance segmentation [5]. Copy-Paste augmentation avoids costly generation
processes from representation space to pixel space by simply pasting the labeled
instance onto new background images as additional training data. Despite its
success in natural images, such method is largely unexplored in the medical im-
age realm. Moreover, its effectiveness for medical tasks remains doubtable since
the context information tends to be ignored in Copy-Paste. For instance, in
the tumor segmentation, one would argue the importance of surrounding visual
clues, i.e., context, for the emergence of a tumor. Besides, one would believe the
inherent anatomical structures in medical image make the context indispensable
for tumor segmentation. In this work, we also aim to fill the gap of understanding
the role of context in medical domain by examining the effectiveness of Copy-
Paste augmentation for tumor segmentation.

We propose TumorCP, a simple but effective object-level data augmentation
method based on Copy-Paste for tumor segmentation tasks. Straightforwardly,
TumorCP randomly chooses a tumor from a source image and paste it onto the
organs in the target image after a series of spatial, contrast, and blurring augmen-
tations. We use kidney tumor segmentation (KiTS19 dataset [6]) and a state-of-
the-art model (nnUNet[7]) as the benchmark to evaluate the proposed method.
We empirically show that though TumorCP inevitably generates artifacts after
Copy-Paste, it consistently provides solid gains over all different settings in our
experiments. Specifically, with only rigid spatial transformation and Copy-Paste
within the same patient, TumorCP can surpass the baseline by 6.24% tumor
Dice. Together with inter-patient Copy-Paste and other tumor-oriented aug-
mentations, TumorCP further outperforms the baseline by 7.12% tumor Dice.
Moreover, with image-level data augmentation (ImgDA), our best version beats
state-of-the-art by 2.3%. Going one step further, we also study TumorCP for
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extremely low-data regime, where only 10% labeled data are exploited for train-
ing. Under this setting, TumorCP with ImgDA can improve the tumor Dice by
21.87% compared with no-data-augmentation (noDA), which is unprecedented
to our knowledge, convincingly demonstrating the effectiveness of TumorCP for
data-efficiency learning.

The success of TumorCP is an empirical observation to support context-
decoupled learning even in medical domain. We briefly discuss our understanding
of the open question of the context’s role and why TumorCP works in Sec 2.2.
We hope our work can provide some useful data points to our community and
shed light on the importance of Copy-Paste augmentation, which is powerful but
unfortunately nearly absent in the medical imaging field.

2 Method
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Fig. 1. Illustration of TumorCP’s pipeline. A pair of source image and target image
are sampled from the dataset. With probability of pcp, TumorCP performs Copy-Paste
once, following the step number of 2,3,4,5, and finally to 6; otherwise, it directly goes
to step 6. In step 3, each of the transformation has its own probability (ptrans) to be
invoked. The bottom illustrates two samples performing Copy-Paste with object-level
data augmentation.

TumorCP is an online and stochastic augmentation process specified for tumor
segmentation. Its implementation is easy and straightforward. As illustrated
in Fig.1, given a set of training samples D, with the probability of (1 − pcp),
TumorCP does nothing; otherwise TumorCP samples a pair of images (xsrc, xtgt) ∼
D and conducts Copy-Paste once. Let Osrc be the set of tumor(s) on xsrc, Vtgt
be the set of volumetric coordinates of organ(s) on xtgt, and T be the set of
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stochastic data transformations, each of which has a probability parameter called
ptrans. To do once Copy-Paste, TumorCP first samples a tumor o ∼ Osrc, a set of
transformation(s) τ ∼ T , and a target location v ∼ Vtgt, followed by centering
τ(o) at v to replace the original data and annotation. To fully leverage the
advantage of TumorCP, we carefully design two modes of Copy-Paste for tumors:
intra-patient and inter-patient Copy-Paste. Meanwhile, we enhance Copy-Paste
with several object-level transformation to obtain abundant augmentations.

2.1 TumorCP’s augmentation

Intra-/Inter- Copy-Paste. In order to study the effect of inter-patient vari-
ance to TumorCP, we define two base settings: 1) intra-patient Copy-Paste (intra-
CP) if the source and target images are identical, i.e., both from the same patient
and 2) inter-patient Copy-Paste (inter-CP) if those are different. From the per-
spective of data distribution, the intra-CP is preferred as its intensity agreement
with the data as a whole, but this limits data diversity. From the perspective
of data diversity, the inter-CP is favored as it unlocks the access for leveraging
both new backgrounds and foregrounds from other patients, but it also brings
distribution discrepancy. It might be surprising that we empirically show the
inter-CP significantly outperforms intra-CP one in ablation study in Sec 3.2.

Copy-Paste with Transformations. Building from plain Copy-Paste, we nat-
urally extend it by incorporating four different object-level transformations mo-
tivated by different objectives as the followings. The detailed implementations
are summarized in appendix.

• Spatial transformation decouples context and improves morphol-
ogy diversity. Given the fixed acquired CT images, tumors always appear
along with their surrounding visual context. Though image-level spatial aug-
mentation increases data diversity in terms of perspectives (e.g., mirroring
and slight rotation), it still processes an image as a whole, remaining the cou-
pling between foreground and background. Therefore, the model can seek for
and tend to overfit to the plausible but de facto irrelevant surrounding clues.
Note that plain Copy-Paste already addressed this problem by offering new
background via the most basic spatial transformation — shifting. We fur-
ther increase the morphology diversity by applying i) rigid transformation
that includes scaling, rotation, and mirroring, and ii) elastic transformation
that deforms tumors. Fig. 1 demonstrates examples of transformed tumors.

• Gamma transformation enhances contrast and improves intensity
diversity. Given a tumor, we apply gamma transformation to adjust its
intensity distribution while retaining the whole intensity range. On the one
hand, the tumor intensity diversity is enhanced by randomly sample gamma
parameter; on the other hand, the local contrast is enhanced by power-law
non-linearity, facilitating tumor discrimination.

• Blurring transformation improves texture diversity. We use a Gaus-
sian filter as the blurring transformation. Intuitively, a Gaussian filter with
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different sigma values can filter out the noise and smooth the tumor to
some extent. Aggregating noise-perturbed low-level textures can indirectly
increase the texture diversity to relatively high-level textures.

The whole pipeline can be incorporated together with image-level augmenta-
tion. It is worth mentioning that all the instance augmentation process is both
online and random, bringing unlimited possibilities for tumors’ locations and
appearances within or across the subjects.

2.2 Intuitions on TumorCP’s Effectiveness

As aforementioned, TumorCP has two goals: i) increase the data diversity, and
ii) learn high-level and to abstract the invariant representation of tumor. Data
diversity is increased as the new combinations of tumors, and their surroundings
are generated with the augmentation. For learning high-level information, we
discuss three properties of TumorCP to explain its effectiveness.
Eliminated background bias by context-invariant prediction. As men-
tioned before, the semantic contexts are fixed for the acquired medical images.
Convolutional Neural Network (CNN) inevitably convolutes surrounding visual
contexts along with the objects themselves. This can bias the model towards
plausible but indeed tumor-irrelevant clues, increasing the risk of overfitting.
With both random and online spatial transformation, TumorCP offers access
for tumor to preciously unattached zones and thus provides unlimited possibil-
ities for tumors’ surrounding contexts. It enforces the model’s prediction to be
invariant across different visual surroundings and eliminates background bias.
Improved generalizability by transformation-invariant prediction. The
model should capture both high-level semantic information and low-level bound-
ary information for successful segmentation. With both random and online
Gamma & Blur transformations, TumorCP can generate diverse tumors in terms
of size, shape, color and texture, which increase the intra-class disparity. It tasks
the model to capture the golden semantics from the data. In other words, it en-
forces the model’s prediction to be invariant across different data transformation
(that potentially resembles real-world data) and improves generalizability.
Oversampling behavior. Data imbalance is a widely experienced problem.
Typical solutions usually re-weight loss function or re-sample training data ac-
cording to the class distribution. In this work, the distribution of background,
organ, and tumor is extremely imbalanced. From this perspective, TumorCP acts
like a data re-sampler that significantly increases the volume of tumors in mul-
tiplication degree at a minor cost.

3 Experiments and Discussion

3.1 Experiment settings

We evaluate TumorCP on KiTS19 [6], a publicly available dataset for kidney tu-
mor segmentation. We randomly split the published 210 images into a training
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set with 168 images and a validation set with 42 images. As the limited compu-
tation resources, we majorly report ablation study results on the validation set
if not specified. Note that this validation set is unaugmented and unseen i.e.,
neither used to tune hyper-parameters nor to monitor the training process. We
use Sørensen-Dice Coefficient (Dice) score in all experiments, which measures
the overlap of model’s prediction ypred and ground truth ytrue, formulated as
Dice = |ytrue ∩ ypred|/|ytrue ∪ ypred|. The average and standard deviation of the
Dice score over all patients are reported.

We use publicly available state-of-the-art nnUNet codebase for implemen-
tation, which includes data pre-processing, leading image-level augmentation
pipelines, as well as top-performance models. It almost tops all biomedical im-
age segmentation benchmarks [7]. This paper focuses on a general augmentation
method for tumor segmentation, so the choices of datasets and running models
are orthogonal to our goal. TumorCP can generalize to other segmentation models
and tumor segmentation datasets at no cost.

All experiments are conducted on Nvidia V100 GPU with 500 epochs training
of 3d fullres nnUNet, instead of 1000 epochs by nnUNet’s default. The batch
size for training is 2. During training, each epoch takes 250 iterations, which
means 250 batches of data are sampled and learned. Other settings in model
training remain its default. We refer readers to [7] and the codebase link for
more details.

3.2 Ablation Study

For simplicity and unification, we set the probability of TumorCP performing
Copy-Paste as pcp = 0.8 for all experiments.

Ablation on intra-CP with different transformations. We first in-
vestigate TumorCP under intra-CP with various object-level transformations. In
this ablation, no image-level augmentation is applied. All object-level transfor-
mations have a 0.5 probability of being invoked. For example, Intra-CP&Rigid
means rigid transformation has a 0.5 probability to be conducted when Intra-
CP is triggered. Table 1 presents the comparison on different methods. As
the first group of Table 1 demonstrates, all the models trained with TumorCP

(shaded cells) consistently outperform the baseline model, no-data-augmentation
(noDA). Specifically, the vanilla intra-CP itself can bring 1.09% Dice improve-
ment over baseline; TumorCP with only rigid transformation can increase tumor
Dice by 6.24%.

Ablation on intra-/inter-CP. Here we study the effect of intra-/inter-CP for
the considerations in Sec. 2.1. The second group in Table 1 shows that inter-
CP significantly outperforms intra-CP by 3.54% Tumor Dice, yielding a 4.63%
improvement over the baseline model. Though surprised to some extent, this

https://github.com/MIC-DKFZ/nnUNet
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Table 1. Ablation study of TumorCP. The first group shows the results of TumorCP

with different transformations in the intra-CP setting, while the second group shows
the results TumorCP with intra-CP and inter-CP settings. The shaded rows denote our
work.

Method
Mean Dice ± std / improvement over baseline (%) ↑

Kidney Tumor

noDA 96.62±2.41/baseline 72.59±26.97/baseline

Intra-CP 96.81±2.02/+0.19 73.68±26.99/+1.09
Intra-CP&Elastic 96.75±1.88/+0.13 73.95±28.20/+1.36
Intra-CP&Rigid 96.78±1.92/+0.16 78.83±19.77/+6.24
Intra-CP&Gamma 96.81±1.89/+0.19 76.32±23.97/+3.73

Intra-CP&Blur 96.89±1.92/+0.27 76.46±24.86/+3.87

Intra-CP 96.81±2.02/+0.19 73.68±26.99/+1.09
Inter-CP 96.73±2.03/+0.11 77.22±23.67/+4.63

Intra-&Inter-CP 96.78±1.98/+0.16 77.44±23.46/+4.85

result meets our expectation as both the tumors’ and the backgrounds’ diversity
from one patient are still limited compared to other patients. Copying others’
tumors and pasting them onto current patients’ cases is supposed to unlock more
novel combinations and bring more data diversity. We also aggregate intra- and
inter- CP by setting a 50% chance for each to sample data pairs from the dataset.
The last line in Table 1 presents the result and is shown to the best entry among
this ablation. It demonstrates the superiority of combining both intra- and inter-
patient’s context exchange.

Ablation on compatibility. As the last step, we accumulate the composition
of all object-level transformations and Intra-&Inter-CP to constitute TumorCP?.
Previously we improve from noDA baseline. Here we also explore the compat-
ibility between TumorCP and image-level augmentation. The image-level aug-
mentation follows nnUNetV2Trainer default setting detailed here [7]. Results in
Table 2 shows that TumorCP? is compatible with image-level augmentations, and
thus can act as a plug-in module in general augmentation pipeline. Together with
image-level augmentation, TumorCP? can improve 7.12% from no image-level aug-
mentation (noDA) baseline and 2.32% from image-level augmentation (ImgDA)
baseline. It is worthy to mention that the ImgDA baseline currently still holds
the state-of-the-art performance for KiTS Dataset, which means TumorCP? can
further boost exisiting arts to higher performance. TumorCP? can generalize to
other models and datasets at almost no cost.

TumorCP also improves organ segmentation. Though TumorCP is intended
for better tumor segmentation, it also consistently improves kidney segmen-
tation performance compared to its baselines. It also meets our intuitions for
TumorCP, since from the perspective of kidney, tumors are the relative context

https://git.io/Jqvro
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Table 2. Comparison of TumorCP and image-level augmentation. The shaded rows
denote our work.

Method
Mean Dice ± std / improvement over baseline (%) ↑

Kidney Tumor

noDA 96.62±2.41/baseline 72.59±26.97/baseline
TumorCP? 96.86±1.91/+0.24 79.71±22.56/+7.12

ImgDA 97.06±1.48/baseline 82.43±21.29/baseline
TumorCP? + ImgDA 97.15±1.43/+0.09 84.75±20.87/+2.32

Table 3. Comparison of TumorCP and image-level augmentation for data-efficient seg-
mentation. The shaded rows denote our work.

Method
Mean Dice ± std / improvement over baseline (%) ↑

Kidney Tumor

10%-data noDA 93.25±4.41/baseline 41.12±39.58/baseline
10%-data ImgDA 95.41±3.25/+2.16 54.34±31.59/+13.22

10%-data TumorCP? + ImgDA 95.53±3.25/(+2.16/+2.28) 62.99±26.92/(+13.22/+21.87)

and background to some extent, which resembles “Eliminated background bias
by context-invariant prediction” but now for the kidney.

3.3 Towards extremely low-data regime

Finally, we demonstrate the potentials of TumorCP in extremely low-data regime
via some additional ablations. Particularly, we randomly select 10% data from
the training set same as before. Then, we train three models, noDA, ImgDA and
TumorCP? + ImgDA on 10% data respectively, followed by the evaluation on the
same validation set. Table 3 shows the results. Under this setting, our method
can improve the noDA by 21.87%, which, to the best of our knowledge, is un-
precedented, convincingly demonstrating the effectiveness of TumorCP for data-
efficiency learning. It breaks the trend of using sophisticated methods or strate-
gies while achieving promising results in low-data regime of tumor segmentation.

4 Conclusion and Future Works

This key contribution of our work is the proposal and comprehensive study
of TumorCP, a simple but effective object-level data augmentation for tumor
segmentation. Extensive experiments confirm the remarkable effectiveness of our
method. In addition to surpassing current art in kidney tumor segmentation by
2.31% in tumor Dice, we also demonstrate the potential of TumorCP for the
extremely low-data regime. We prefer to call our TumorCP as a new baseline, as
it does not involve any sophisticated techniques nor extensive hyper-parameter
adjustment while achieving the new state-of-the-art. Besides, TumorCP does not
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directly handle the distribution mismatching in the inter-CP setting but still gets
fabulous performance. Future works can easily extend TumorCP for other medical
segmentation tasks without significant modifications, and are worth trying for
further improving state-of-the-art accuracy.
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A Appendix – Data augmentation details

A.1 Rigid Transformation

Rigid transformation consists of three transformation:

• Mirroring: randomly choose one from eight possible mirroring axes combi-
nation, i.e. (x), (y), (z), (x,y), (x,z), (y,z), (x,y,z), with probability of 0.5.

• Rotation: Since the 3D abdominal CT data are usually anisotropic. We only
rotate the instance around z-axis to constrain the spacing consistency. The
tumor will rotate randomly in a range of (−π, π) with the probability of 0.5.

• Scaling: With the probability of 0.5, the tumor will be re-scaled in a range
of (0.75, 1.25) with resize function of skimage package in an order 3.

A.2 Deformable Elastic Transformation

We use the implementation of batchgenerators python library, with the alpha
range (0, 900) and sigma range (9, 13).

A.3 Gamma Transformation

For gamma transformation, we force the mean and standard deviation of the
copied instance unchanged. The gamma value is sampled in a range of (0.7, 1.5).

A.4 Blurring Transformation

We use Gaussian filter with the sigma sampled from (0.5, 1) as blurring trans-
formation.

Publicly available at: https://git.io/JqfTt
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