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Abstract. Manual rib inspections in computed tomography (CT) scans
are clinically critical but labor-intensive, as 24 ribs are typically elon-
gated and oblique in 3D volumes. Automatic rib segmentation methods
can speed up the process through rib measurement and visualization.
However, prior arts mostly use in-house labeled datasets that are pub-
licly unavailable and work on dense 3D volumes that are computationally
inefficient. To address these issues, we develop a labeled rib segmentation
benchmark, named RibSeg, including 490 CT scans (11,719 individual
ribs) from a public dataset. For ground truth generation, we used exist-
ing morphology-based algorithms and manually refined its results. Then,
considering the sparsity of ribs in 3D volumes, we thresholded and sam-
pled sparse voxels from the input and designed a point cloud-based base-
line method for rib segmentation. The proposed method achieves state-
of-the-art segmentation performance (Dice ≈ 95%) with significant effi-
ciency (10 ∼ 40× faster than prior arts). The RibSeg dataset, code, and
model in PyTorch are available at https://github.com/M3DV/RibSeg.

Keywords: rib segmentation · rib centerline · medical image dataset ·
point clouds · computed tomography.

1 Introduction

Detection and diagnosis of rib-related diseases, e.g., rib fracture and bone lesions,
is essential and common in clinical practice and forensics. For instance, rib frac-
ture detection can identify chest trauma severity that accounts for 10% ∼ 15% of
all traumatic injuries [17], and bone metastases are common in solid tumours [3].
Chest computed tomography (CT) is a primary choice for examining chest
trauma thanks to its advantage in revealing occult fractures and fracture-related
complications [6]. However, understanding ribs in CT imaging is challenging: 24
ribs in human bodies are typically elongated and oblique in 3D volumes, with
complex geometries across numerous CT sections; in other words, a large number
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Fig. 1: Illustration of RibSeg Dataset: 490 CT scans from the existing
RibFrac dataset [7] and new annotations for rib segmentation. Colors in rib
segmentation figures denotes the axial depth.

of CT slices must be evaluated sequentially, rib-by-rib and side-by-side, which
is tedious and labor-intensive for clinicians. Besides, fractures/lesions could be
inconspicuous when reading 2D slices. These challenges urge the development
and application of rib visualization tools, e.g., rib unfolding [15], whose core
technique is (automatic) rib segmentation and centerline extraction.

A few prior arts have addressed rib segmentation [16,18,8] before the era
of deep learning. Rib tracing is a popular method, while it is highly sensitive
to initially detected seed points and vulnerable to local ambiguities. Supervised
deep learning-based segmentation [9] from CT volumes is robust as it learns
hierarchical visual features from raw voxels; However, this study does not con-
sider the sparsity and elongated geometry of ribs in 3D volumes. There are also
studies focusing on rib centerline extraction instead of full rib segmentation,
e.g., rib tracing [14] and deformable template matching [21]. This study focuses
on rib segmentation, where rib centerlines could be extracted with geometric
post-processing algorithms.

Although researchers have made progress in rib segmentation and centerline
extraction, there is no public dataset in this topic, making it difficult to bench-
mark existing methods and develop downstream applications (e.g., rib fracture
detection). Besides, existing methods work on the dense 3D volumes instead of
the sparse rib voxels, which are computationally inefficient: around 5s to 20s to
segment ribs [9] or 40s to extract rib centerlines [21]. To address these issues,
we first develop a large-scale CT dataset, named RibSeg for rib segmentation
(Fig. 1). The CT scans come from the public RibFrac dataset [7] consisting
of 660 chest-abdomen CT scans for rib fracture segmentation, detection, and
classification. As ribs are relatively recognizable compared to other anatomi-
cal structures, we use hand-crafted 3D image processing algorithms to generate
segmentation and then manually check and refine the labels. This procedure,
with little annotation effort, generates visually satisfactory rib segmentation la-
bels for 490 CT scans. Moreover, considering the sparsity of ribs in 3D volumes
(< 0.5% voxels) and high HU values (> 200) of bone structures in CT scans,
we propose an efficient point cloud-based model to segment ribs, which is an or-
der of magnitude faster than previous methods. The proposed method converts
dense CT volume into sparse point clouds via thresholding and random down-
sampling, and produces high-quality and robust rib segmentation (Dice ≈ 95%).
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We can further extract rib centerlines from the predicted rib segmentation with
post-processing.

The RibSeg dataset could be used for the development of downstream rib-
related applications. Besides, considering the differences from standard medical
image datasets [1,23] with pixel/voxel grids, the elongated shapes and oblique
poses of ribs enable the RibSeg dataset to serve as a benchmark for curvilinear
structures and geometric deep learning (e.g., point clouds).

Contributions. 1) The first public benchmark for rib segmentation, which
enables downstream applications and method comparison. 2) A novel point-
based perspective on modeling 3D medical images beyond voxel grids. 3) A
point cloud-based rib segmentation baseline with high efficiency and accuracy.

2 Materials and Methods

2.1 RibSeg Dataset

Dataset Overview. The RibSeg dataset uses the public computed tomography
(CT) scans from RibFrac dataset [7], an open dataset with 660 chest-abdomen
CT scans for rib fracture segmentation, detection, and classification. The CT
scans are saved in NIFTI (.nii) format with volume sizes of N×512×512, where
512 × 512 is the size of CT slices, and N is the number of CT slices (typically
300 ∼ 400). Most cases are confirmed with complete rib cages and manually
annotated with at least one rib fracture by radiologists.

As ribs are relatively recognizable compared to other anatomical structures,
we use a semi-automatic approach (see details in the following section) to gen-
erate rib segmentation, with hand-crafted morphology-based image processing
algorithms, as well as manual checking and refinement. Though computationally
intensive, this approach produces visually satisfactory labels with few annota-
tion efforts. Finally, there are 490 qualified CT cases in the RibSeg dataset with
11,648 individual ribs in total, where each case has segmentation labels of 24 (or
22 in some cases) ribs. We also provide the rib centerline ground truth extracted
from the rib segmentation labels. Note that the rib segmentation and centerline
ground truth are imperfect, as the annotations are generated with algorithms.
Besides, only voxels with higher HU than a threshold (200) are included, mak-
ing the rib segmentation annotations in the RibSeg dataset hollow. However,
we manually check the ground truth labels for rib segmentation and centerlines
to ensure that the included 490 datasets are high-quality enough to develop
downstream applications. The data split of the RibSeg dataset is summarized in
Table 1: training set (320 cases, to train the deep learning system), development
set (a.k.a validation set, 50 cases, to tune hyperparameters of the deep learning
system), and test set (120 cases, to evaluate the model). The RibSeg training,
development, and test set are from those of the RibFrac dataset respectively, en-
abling the development of downstream applications (e.g., rib fracture detection)
in the MICCAI 2020 RibFrac challenge1.

1https://ribfrac.grand-challenge.org/

https://ribfrac.grand-challenge.org/
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Table 1: Overview of RibSeg dataest.

Subset No. of CT Scans No. of Individual Ribs

Training / Development / Test 320 / 50 / 120 7,670 / 1,187 / 2,862

Semi-Automatic Annotation and Quality Control. We describe the pri-
mary steps of the annotation procedure as follows:

Rib Segmentation. For each volume, we first filter out non-target voxels by
thresholding and removing regions outside the bodies. Considering the geometric
differences between ribs and vertebra, we separate the ribs from vertebra using
morphology-based image processing algorithms(e.g., dilation, erosion). In some
cases, the segmentation result contains parts of the clavicle and scapula. There-
fore, we manually locate those non-target voxels and remove them according to
the coordinates of their connected components.

Centerline Extraction. Based on the rib segmentation, we extract the cen-
terline by implementing the following procedure on each rib (connected compo-
nent): randomly select two points at both ends of the cylinder dilated from the
rib, calculate the shortest path between the points1 [19], and smoothen the path
to obtain centerline. This procedure produces high-quality centerlines even from
coarse rib segmentation. At the end of extraction, we label both centerlines and
rib segmentation in the order of top to bottom and left to right.

Manual Checking and Refinement. The abnormal cases, along with the pur-
suit of high annotation quality, motivate us to perform laborious checking and
refinement after both rib segmentation and centerline extraction stages. For
instance, a few cases miss floating ribs after segmentation, which reduces the
connected components in annotation to 22 or less. Hence we have to check and
refine the annotation case by case manually. To recover and annotate missed
ribs, we turn back to the previous stage to ensure segmentation completeness by
modifying the corresponding components.

2.2 Rib Segmentation from a Viewpoint of Point Clouds

The key insight of the proposed method is that simple algorithm (i.e., threshold-
ing in this study) can produce the candidate voxels for bone structures. Thus, we
can avoid heavy computation on dense voxels with sparse point clouds instead.
Besides, the point cloud methods use geometric information directly, reducing
the texture bias of pixel/voxel-based CNNs [4]. The point cloud viewpoint has
the potential to generalize to other anatomical structures whose coarse predic-
tion could be obtained cheaply.

Deep Learning for Point Cloud Analysis. Deep learning for point cloud
analysis [5] has been an emerging field in computer vision thanks to the popu-
larity of 3D sensors (e.g., LiDAR and RGB-D cameras) and computer graphics

1https://github.com/pangyuteng/simple-centerline-extraction

https://github.com/pangyuteng/simple-centerline-extraction
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Fig. 2: Rib Segmentation from a Viewpoint of Point Clouds. The CT
volumes are first binarized to obtain candidate bone voxels as inputs, then a
point cloud neural network (e.g., PointNet++ [13]) is used to segment each
point in downsampled input point clouds. Note that the downsampling scale is
different during training (30K points) and inference (250K points).

applications (e.g., games, VR/AR/MR), PointNet [12] and DeepSet [26] pioneer
this direction, where a symmetric function (e.g., shared FC) is used for learn-
ing high-level representation before aggregation (e.g., pooling). Following studies
introduces sophisticated feature aggregation based on spatial graphs [13,10] or
attention [24]. However, only a few studies have applied deep shape analysis in
medical imaging scenarios [25,20,22].

Model Pipeline. Considering the sparsity of ribs in 3D volumes (< 0.5% voxels)
and high HU values of bones in CT scans, we design a point cloud-based model
to segment ribs on binarized sparse voxels. As depicted in Fig. 2, we first set a
threshold of 200 HU (Hounsfield Unit) to filter out the non-bone voxels roughly.
The resultant binarized volumes are randomly downsampled and converted to
point sets for ease of computation before forwarding to the network.

Our point cloud-based model is expected to infer dense predictions from
large-scale point sets, which has to address the memory issue. Hence a custom
PointNet++ [13], with its adjustable memory footprint, is adopted as backbone.
Capable of learning local features with increasing contextual scales, PointNet++
has shown compelling robustness on sparse 3D point cloud segmentation tasks.
Through set abstraction, geometric features of ribs can be extracted from bina-
rized sparse voxels facilitating the rib segmentation task. For post-processing, the
model output point prediction is converted back to volumes (voxel prediction)
by morphology-based image processing algorithms.

Model Training and Inference. During the training stage, batches are down-
sampled to 30,000 points per volume considering the trade-off between batch size
and input size. We apply online data augmentations, including scaling, transla-
tion, and jittering, to all downsampled point sets before forwarding them to the
neural network. The Adam optimizer is adopted to train all models end-to-end
for 250 epochs with the batch size of 8 and cross-entropy loss (CE) as the loss
function. The initial learning rate was set at 0.001 and decayed by a factor of
0.5 every 20 epochs with the lower bound of 10−5.

During the inference stage, volumes are converted to point sets with the size
of 250,000. The model then produces dense point predictions on rib segmenta-



6 J. Yang et al.

tion. The point predictions are converted back to dense volumes by dilation, and
we obtain the voxel predictions of rib segmentation by taking the intersections
between the dilated volumes and the binarized volumes.

Model Evaluation. As the model only outputs sparse point predictions, we
post-process the point predictions back to volumes (dense voxel predictions).
Both point-wise and voxel-wise segmentation performance is evaluated,

Dice(L) = 2 · |y(L) · ŷ(L)|/(|y(L)|+ |ŷ(L)|), L ∈ {P, V }, (1)

where Dice(P,V ) indicates the sparse point-wise and dense voxel-wise Dice.
Apart from segmentation performance, we also report the missing ratio of

individual ribs to evaluate the clinical applicability. Specifically, a missing of an
individual rib i is counted if recalli < 0.5, and then the missing ratio can be calcu-
lated with ease. As the segmentation of first and twelfth rib pairs tend to be more
difficult, we calculate and report the missing ratio of all/first/intermediate/twelfth
rib pairs, as depicted in Table 2.

3 Results

3.1 Quantitative Analysis

For model accuracy comparison, we first implement a 3D UNet [2] taking patches
of CT volumes as input with the same setting of FracNet [7]. Moreover, we train
two models with and without data augmentation, respectively. The models are
evaluated with two input (point sets) sizes: 30K (input size in the training stage)
and 250K. As point-wise Dice is only a proxy metric, we focus on voxel-wise Dice,
as it is fair for any methods in rib segmentation. As depicted in Table. 2, all point-
based methods significantly outperform voxel-based 3D UNet; Besides, as point-
based methods take whole volumes as inputs, it is more efficient than voxel-based
method. The methods with data augmentation are at least 2% higher than the
methods without data augmentation, and methods with large-scale input enjoy
0.9%∼1.3% higher values, as dense point prediction leads to rich details in voxel
prediction. When it comes to the missing ratio of ribs, the method with data
augmentation and a large input size performs best. The comparison results show
that training-time data augmentation and inference-time large input volume size
can improve the result. These quantitative metrics also indicate the potentials
of our method in clinical applications.

In terms of the run-time, point-based methods have a clear advantage. While
methods with a 250K-point input size have a little bit higher time consumption
(0.8s), it is acceptable in consideration of its performance boost. The inference
time was measured with the implementation of PyTorch 1.7.1 [11] and Python
3.7, on a machine with a single NVIDIA Tesla P100 GPU with Intel(R) Xeon(R)
CPU @ 2.20 GHz and 150 G memory. As a reference, prior art [9] based on 3D
networks takes a model forward time of 5∼20 seconds, with a Dice value of 84%
at best. The previous work [21] takes 40 seconds to extract the rib centerline.
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Table 2: Quantitative metrics on RibSeg test set, including Dice over sparse
points (Dice(P )), Dice over dense voxels after post-processing (Dice(v)), ratio of
missed all/first/intermediate/twelfth rib pairs (A/F/I/T) at recall> 0.5, and the
model forward time in second. Post-processing time is not included as it heavily
depends on the implementation.

Methods Dice(P ) Dice(V ) Missed Ribs (A/F/I/T) Forward (s)

Voxel-Based 3D UNet [2,7] - 86.3% 4.6%/7.9%/2.3%/24.6% 30.63

PN++ [13] (30K) 92.3% 91.0% 1.6%/2.9%/0.7%/10.4% 0.32
PN++ [13] (250K) 91.5% 92.3% 0.9%/3.3%/0.3%/4.7% 1.12
PN++ [13] (30K) + aug. 94.9% 94.3% 1.1%/0.8%/0.4%/9.0% 0.32
PN++ [13] (250K) + aug. 94.6% 95.2% 0.6%/0.4%/0.2%/5.2% 1.12

Rib Segmentation
Ground Truth

Unseen
CT Scans

Rib Segmentation 
Point Prediction

Rib Segmentation 
Voxel Prediction

Fig. 3: Visualization of Predicted Rib Segmentation.. Red circles denote
imperfect (sparse) point prediction.

However, a direct comparison of metrics and speed is unfair since these results
were measured with different infrastructures on different datasets. Note that,
post-processing time is not included as it heavily depends on the implementation
(e.g., programming languages, parallel computing).

3.2 Qualitative Analysis

Visualization on Predicted Rib Segmentation. Fig. 3 visualizes the point-
level and voxel-level rib segmentation prediction. As depicted in Fig. 3, point
predictions of the first 3 CT scans are visually acceptable, which can smoothly
produce voxel-level segmentation predictions. The results are promising, and it
is even hard to tell the visual difference between predictions and ground truths.

As depicted in Fig. 3, the point prediction is imperfect even with high segmen-
tation Dice. After manually-tuned post-processing, these imperfect predictions
could be fixed to some degree. For instance, the point prediction of the second
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Fig. 4: Robustness Test on Extreme Cases. (a) Point prediction on unseen
incomplete rib cages. (b) Point prediction on unseen abnormal CT scans.

CT scan contains a certain part of the scapula that can be nicely filtered during
post-processing. However, the point prediction of the third CT scan suffers a
missing on the first pair of ribs, which can not be ignored. The post-process
is not able to fix it and produces incomplete voxel segmentation. Despite the
small missing part, the rib cages in the predictions on rib segmentation are still
visually acceptable.

Robustness Test on Extreme Cases. To evaluate the robustness of the
proposed point cloud-based model, three kinds of extreme cases are selected for
inference: CT scans of incomplete rib cages, CT scans of serious spinal pathology,
and CT scans containing metal objects inseparable from ribs (e.g., pacemaker).
Incomplete CT scans are rather common in clinical cases, which makes the tests
practically critical. As depicted in Fig. 4 (a), we randomly select unseen CT scans
and take the upper half of their binarized volumes for inference. Delightfully, the
point predictions are visually qualified for clinical applications.

For further robustness evaluation, we test on a case of serious spinal pathol-
ogy and a case containing a pacemaker of high density. Regarding the case with a
pacemaker, it is inseparable from ribs, which makes the segmentation extremely
laborious to obtain. Hence we save the trouble of manual segmentation by set-
ting it as an abnormal case when building the RibSeg Dataset. As depicted in
Fig. 4 (b), our prediction on the case of spinal pathology looks complete as if
it is nicely segmented. While the prediction on the other case contains a small
number of voxels belong to the pacemaker, the whole rib cage is well segmented.
Considering that all cases selected for the robustness test are unseen and geo-
metrically difficult to segment, such promising prediction results may confirm
the strong robustness of the proposed method as well as its potentials to be
clinically applicable.

Post-Processing Rib Centerlines. With the high-quality rib segmentation,
as illustrated in Fig. 5, the rib centerlines could be obtained by post-processing
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Fig. 5: Post-Processing Rib Centerlines from predicted rib segmentation.

(i.e., shortest path between points, same as the procedure with ground truth
in Sec. 2.1). Although not end-to-end, the rib centerline predictions are visually
acceptable for most cases. However, the post-processing algorithms for rib cen-
terlines are sensitive to rib fractures and other abnormal cases. Considering the
high clinical importance of rib centerlines, it urges a more robust method for
rib centerline extraction with rib segmentation and centerline labels provided by
the RibSeg dataset.

4 Conclusion and Further Work

We built the RibSeg dataset, which is the first open dataset for rib segmenta-
tion. On this dataset, we benchmarked a point cloud-based method with high
performance and significant efficiency. The proposed method shows potentials
to be clinically applicable, enhancing the efficiency and performance of down-
stream tasks, such as the diagnosis of rib fractures and bone lesions. Besides the
clinical application, the RibSeg dataset could also serve as an interesting bench-
mark for curvilinear structures and geometric deep learning (e.g., point clouds),
considering the special geometry of rib structures.

There are several limitations in this study. The annotations in this paper
are generated with hand-crafted morphological algorithms, and then manually
checked by a junior radiologist with 3D Slicers. While such pipeline reduces
the annotation cost, it cannot handle cases when the initial automatic method
fails. Thus, we only managed to annotate the segmentation for 490 cases out
of the 660 cases in the RibFrac dataset. Also, for the centerline extraction task
that is essential for rib-related applications, we take a two-stage approach and
apply heavy post-processing method to the first-stage segmentation result. Such
approach is sensitive to rib fractures and segmentation errors for other abnormal
cases and a more robust method will be favorable.
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