Skip to main content

High-Resolution Segmentation of Lumbar Vertebrae from Conventional Thick Slice MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Imaging plays a crucial role in treatment planning for lumbar spine related problems. Magnetic Resonance Imaging (MRI) in particular holds great potential for visualizing soft tissue and, to a lesser extent, the bones, thus enabling the construction of detailed patient-specific 3D anatomical models. One challenge in MRI of the lumbar spine is that the images are acquired with thick slices to shorten acquisitions in order to minimize patient discomfort as well as motion artifacts. In this work we investigate whether detailed 3D segmentation of the vertebrae can be obtained from thick-slice acquisitions. To this end, we extend a state-of-the-art segmentation algorithm with a simple segmentation reconstruction network, which aims to recover fine-scale shape details from segmentations obtained from thick-slice images. The overall method is evaluated on a paired dataset of MRI and corresponding Computed Tomography (CT) images for a number of subjects. Fine scale segmentations obtained from CT are compared with those reconstructed from thick-slice MRI. Results demonstrate that detailed 3D segmentations can be recovered to a great extent from thick-slice MRI acquisitions for the vertebral bodies and processes in the lumbar spine.

Partially supported by Hochschulmedizin Zürich through the Surgent project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8), 1676–1693 (2015)

    Article  Google Scholar 

  2. Caprara, S., Carrillo, F., Snedeker, J.G., Farshad, M., Senteler, M.: Automated pipeline to generate anatomically accurate patient-specific biomechanical models of healthy and pathological FSUs. Front. Bioeng. Biotechnol. 9 (2021)

    Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Clogenson, M., et al.: A statistical shape model of the human second cervical vertebra. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1097–1107 (2014). https://doi.org/10.1007/s11548-014-1121-x

    Article  Google Scholar 

  5. Ge, Y., et al.: Unpaired MR to CT synthesis with explicit structural constrained adversarial learning. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1096–1099 (2019). https://doi.org/10.1109/ISBI.2019.8759529

  6. Hiasa, Y., et al.: Cross-modality image synthesis from unpaired data using CycleGAN. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 31–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_4

    Chapter  Google Scholar 

  7. Iglesias, J.E., Konukoglu, E., Zikic, D., Glocker, B., Van Leemput, K., Fischl, B.: Is synthesizing MRI contrast useful for inter-modality analysis? In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 631–638. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_79

    Chapter  Google Scholar 

  8. Lessmann, N., Van Ginneken, B., De Jong, P.A., Išgum, I.: Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med. Image Anal. 53, 142–155 (2019)

    Article  Google Scholar 

  9. Lyu, Q., et al.: Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 39(9), 2738–2749 (2020). https://doi.org/10.1109/TMI.2020.2974858

    Article  Google Scholar 

  10. Löffler, M.T., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020). https://doi.org/10.1148/ryai.2020190138

  11. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  12. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  13. Pang, S., et al.: SpineParseNet: Spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation. IEEE Trans. Med. Imaging 40(1), 262–273 (2021). https://doi.org/10.1109/TMI.2020.3025087

    Article  Google Scholar 

  14. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Sekuboyina, A., et al.: VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Elsevier (2020, under review)

    Google Scholar 

  17. Sekuboyina, A., Rempfler, M., Valentinitsch, A., Menze, B.H., Kirschke, J.S.: Labeling vertebrae with two-dimensional reformations of multidetector CT images: an adversarial approach for incorporating prior knowledge of spine anatomy. Radiol. Artif. Intell. 2(2), e190074 (2020). https://doi.org/10.1148/ryai.2020190074

    Article  Google Scholar 

  18. Turella, F.: High-resolution segmentation of lumbar vertebrae from conventional thick-slice MRI code (2021). https://github.com/FedeTure/ReconNet

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Turella .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 560 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turella, F. et al. (2021). High-Resolution Segmentation of Lumbar Vertebrae from Conventional Thick Slice MRI. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics