Skip to main content

SpineGEM: A Hybrid-Supervised Model Generation Strategy Enabling Accurate Spine Disease Classification with a Small Training Dataset

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Most deep-learning based magnetic resonance image (MRI) analysis methods require numerous amounts of labelling work manually done by specialists, which is laborious and time-consuming. In this paper, we aim to develop a hybrid-supervised model generation strategy, called SpineGEM, which can economically generate a high-performing deep learning model for the classification of multiple pathologies of lumbar degeneration disease (LDD). A unique self-supervised learning process is adopted to generate a pre-trained model, with no pathology labels or human interventions required. The anatomical priori information is explicitly integrated into the self-supervised process, through auto-generated pixel-wise masks (using MRI-SegFlow: a system with unique voting processes for unsupervised deep learning-based segmentation) of vertebral bodies (VBs) and intervertebral discs (IVDs). With finetuning of a small dataset, the model can produce accurate pathology classifications. Our SpineGEM is validated on the Hong Kong Disc Degeneration Cohort (HKDDC) dataset with pathologies including Schneiderman Score, Disc Bulging, Pfirrmann Grading and Schmorl’s Node. Results show that compared with training from scratch (n = 1280), the model generated through SpineGEM (n = 320) can achieve higher classification accuracy with much less supervision (~5% higher on mean-precision and ~4% higher on mean-recall).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen, M.C., Brant-Zawadzki, M.N., Obuchowski, N., Modic, M.T., Malkasian, D., Ross, J.S.: Magnetic resonance imaging of the lumbar spine in people without back pain. N. Engl. J. Med. 331(2), 69–73 (1994)

    Article  Google Scholar 

  2. Pfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N.: Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17), 1873–1878 (2001)

    Article  Google Scholar 

  3. Liu, J., et al.: Applications of deep learning to MRI images: a survey. Big Data Min. Anal. 1(1), 1–18 (2018)

    Article  Google Scholar 

  4. Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 41, 63–73 (2017)

    Article  Google Scholar 

  5. Jamaludin, A., Kadir, T., Zisserman, A.: Self-supervised learning for spinal MRIs. In: Cardoso, M. et al. (eds.) DLMIA 2017, ML-CDS 2017. LNCS, vol. 10553, pp. 294–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_34

  6. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  7. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  8. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  9. Guan, Q., Huang, Y.: Multi-label chest X-ray image classification via category-wise residual attention learning. Pattern Recogn. Lett. 130, 259–266 (2020)

    Article  Google Scholar 

  10. Gündel, S., Grbic, S., Georgescu, B., Liu, S., Maier, A., Comaniciu, D.: Learning to recognize abnormalities in chest X-rays with location-aware dense networks. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 757–765. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-13469-3_88

  11. Tang, Y., Wang, X., Harrison, A.P., Lu, L., Xiao, J., Summers, R.M.: Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs. In: Shi, Y., Suk, H.I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 249–258. Springer, Cham. https://doi.org/10.1007/978-3-030-00919-9_29

  12. Ding, Y., et al.: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2), 456–464 (2019)

    Article  Google Scholar 

  13. Talo, M., Baloglu, U.B., Yıldırım, Ö., Acharya, U.R.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188 (2019)

    Article  Google Scholar 

  14. Chen, S., Ma, K., Zheng, Y.: Med3D: transfer learning for 3D medical image analysis. arXiv preprint arXiv:1904.00625 (2019)

  15. Spitzer, H., Kiwitz, K., Amunts, K., Harmeling, S., Dickscheid, T.: Improving cytoarchitectonic segmentation of human brain areas with self-supervised siamese networks. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 663–671. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_76

  16. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Google Scholar 

  17. Kuang, X., Cheung, J.P., Wu, H., Dokos, S., Zhang, T.: MRI-SegFlow: a novel unsupervised deep learning pipeline enabling accurate vertebral segmentation of MRI images. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1633–1636. IEEE (2020)

    Google Scholar 

  18. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuang, X., Cheung, J.P.Y., Ding, X., Zhang, T. (2021). SpineGEM: A Hybrid-Supervised Model Generation Strategy Enabling Accurate Spine Disease Classification with a Small Training Dataset. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics