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Abstract. The success of deep learning heavily depends on the avail-
ability of large labeled training sets. However, it is hard to get large
labeled datasets in medical image domain because of the strict privacy
concern and costly labeling efforts. Contrastive learning, an unsuper-
vised learning technique, has been proved powerful in learning image-
level representations from unlabeled data. The learned encoder can then
be transferred or fine-tuned to improve the performance of downstream
tasks with limited labels. A critical step in contrastive learning is the gen-
eration of contrastive data pairs, which is relatively simple for natural
image classification but quite challenging for medical image segmenta-
tion due to the existence of the same tissue or organ across the dataset.
As a result, when applied to medical image segmentation, most state-
of-the-art contrastive learning frameworks inevitably introduce a lot of
false negative pairs and result in degraded segmentation quality. To ad-
dress this issue, we propose a novel positional contrastive learning (PCL)
framework to generate contrastive data pairs by leveraging the position
information in volumetric medical images. Experimental results on CT
and MRI datasets demonstrate that the proposed PCL method can sub-
stantially improve the segmentation performance compared to existing
methods in both semi-supervised setting and transfer learning setting. 1

1 Introduction

Deep neural networks (DNNs) play an important role in today’s medical image
segmentation [17,23,21,20,10]. To achieve state-of-the-art accuracy, most of the
existing methods rely on supervised learning when large labeled datasets can
be used for training. However, due to the extensive annotation effort and the
requirement of expertise in the medical domain, acquiring such large labeled
datasets is usually prohibitive. In the meantime, a large amount of unlabeled
image data from modalities such as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) is generated every day all around the world. There-
fore, it is desirable that the DNNs can leverage the numerous unlabeled data

1 Code available at github.com/dewenzeng/positional cl
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to achieve higher performance with limited annotations. Contrastive learning
[3,4,8,5,14], as a self-supervised learning (SSL) method, has shown great success
in learning image-level features from large-scale unlabeled data without using
any human-annotated labels. The main idea of contrastive learning is to contrast
the similarities of sample pairs in the representation space through contrastive
loss, pulling the representations of similar pairs (a.k.a. positive pairs) together
and pushing the representations of dissimilar pairs (a.k.a. negative pairs) apart.
In SSL setting, an encoder is trained using contrastive loss with unlabeled data.
After that, the trained encoder can be used as the initialization for training
a supervised downstream task such as object detection and image segmenta-
tion. Many works have shown that the encoder learned by contrastive learning
performs better than the encoder trained with supervised learning [8,3].

Most existing contrastive learning frameworks are for image classification
where the instances in two different images have dissimilar features. When di-
rectly applying them to medical image segmentation where different images can
have similar structures or organs, a large number of false negative pairs will be
induced, leading to degraded performance. Recently, [2] attempted to address
this issue through a global contrastive learning approach for 3D medical image
segmentation. It divides each volume into several partitions and considers the
slices of corresponding partitions in different volumes as positive pairs and those
of different partitions as negative pairs. However, the last a few slices of a par-
tition can be very similar to the first a few slices of the next partition as they
are naturally adjacent, which may still result in many false negative pairs.

To alleviate the problem, we propose a novel positional contrastive learning
(PCL) framework, which generates contrastive data pairs based on the position of
a slice in volumetric medical images. Slices that are close are considered positive
pairs while those that are far apart are considered negative. Such a strategy
can better leverage the domain-specific cue of medical images as adjacent slices
typically contain similar anatomical structures, thus reducing false negatives.
We evaluate the proposed PCL framework on two CT datasets and two MRI
datasets. The experimental results show that our method can achieve better
performance compared with state-of-the-art baselines in both semi-supervised
and transfer learning settings.

2 Related Work

Recent years have seen powerful self-supervised visual feature learning approaches
with DNNs. By exploiting the information in large unlabeled datasets, a network
can learn hierarchical features that can help the training of other downstream
tasks, especially when the training labels of these tasks are limited. Early SSL
methods are mostly based on the design of pretext tasks, in which pseudo la-
bels are automatically generated for network training. As these methods rely
on ad-hoc heuristics, the learned representation lack generality [3]. Contrastive
learning has recently become a prevailing SSL method because of its superior
performance. In contrastive learning, a contrastive loss [7] is used to enforce
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representations of positive pairs to be similar and those of negative pairs to
be dissimilar [8,3,14,18,11,13]. MoCo [8] and SimCLR [3] are two different con-
trastive learning frameworks that yield state-of-the-art results. MoCo maintains
a dictionary as a queue to store negative samples for training, while SimCLR
explores the use of in-batch samples for negative sampling. Most of these works
are based on image classification tasks, assuming that the instances in two dif-
ferent images have dissimilar features. This is not the case, however, for medical
images, because the same target organ or structure usually exists in all the im-
ages across the dataset. For example, in ACDC MICCAI 2017 dataset [1], the
target structures such as the left ventricle and the right ventricle appear in al-
most every slice of the volumetric image for all patients. As such, if we follow
the method used in image classification tasks and treat the augmented images
from different slices as negative, many of them will actually be false negatives.

The state-of-the-art contrastive learning method for medical image segmen-
tation [2] attempted to address this issue through the partition of 3D medical
images. However, it will still induce false negatives as discussed in Section 1. In
contrast, the PCL method we propose uses the relative position of the slices in
the volumes to decide whether they are positive pairs, thus the false negative
issue can be alleviated. In addition, the method in [2] is only evaluated in semi-
supervised setting where contrastive learning and downstream tasks are done on
the same dataset. We extend the evaluation to transfer learning to test whether
the features learned by PCL on one dataset are transferable to another, and
show that PCL can do better than [2] in both settings.

3 Method

3.1 Framework Overview

In this work, for fair comparison we follow [2] and use 2D U-Net [17] to perform
segmentation on 2D slices of 3D images, which has shown a remarkable success
in many 3D image segmentation tasks [10,15,20,19,9]. The proposed method can
also be readily generalized to patch-based 3D U-Net and 3D-2D hybrid U-Net
approaches. Our PCL framework is shown in Fig.1. In the pre-training stage, the
input of the framework is a set of 2D slices in the xy plane sampled randomly
from unlabeled volumetric medical images. These slices are then propagated to
a U-Net encoder f(·) (also known as the feature extractor) followed by a shallow
multilayer perceptron (MLP) projection head g(·). Let xi denote an input 2D
slice. Then hi = f(xi) is the representation learned by the encoder f(·) and
zi = g(f(xi)) is the embedding vector. A contrastive loss is employed on all
the embeddings learned from the data in a mini-batch to perform contrastive
learning. After contrastive learning finishes, g(·) is thrown away and f(·) is used
as the initialization in the standard U-Net architecture to train the network on
the limited labeled dataset by supervised learning in the fine-tuning stage.
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2. Fine-tuning stage

1. Pre-training stage

Fig. 1: Overview of the proposed PCL framework. In the pre-training stage, 2D
slices (denoted as xi) in the xy plane are extracted from volumetric medical
images and fitted into a U-Net encoder for representation learning. The learned
encoder is then used as initialization in the fine-tuning stage. We use position
to denote the relative position of a slice along the z axis in a volume. Data pairs
with small position difference (e.g., ∆position < 0.1) are considered as positive
pairs and those with large position difference are considered as negative pairs.
Similar slices are marked/labeled with the same color.

3.2 Leveraging Structural Information in Medical Image

In medical images, similar anatomical structures often exist in all volumes of
different patients across the dataset. In addition, we note the following two
observations for volumetric medical images: 1) they have high spatial resolution
along z axis so that adjacent 2D slices (e.g., x1 and x2 in Fig. 1) inside a volume
usually have similar content; 2) if the volumes of different patients are perfectly
aligned, the corresponding 2D slices in different volumes (e.g., x2 and x5 in Fig.
1) often contain similar anatomical information. In this paper, we utilize these
two distinctive features in volumetric medical images to generate data pairs for
contrastive learning.

To be specific, each 2D slice extracted from a volume is associated with a
position variable. The position, which is between 0 and 1, represents the relative
or normalized position of the slice along the z axis in the volume. Suppose m is
the index of the 2D slice along the z axis and n is the total number of slices in
the z axis (see Fig. 1). Then position = m/n. This allows the proper alignment
between different volumes. Once each 2D slice in a mini-batch is assigned with
its position, we can use the position difference to decide whether each data pair
is similar or not. If the position difference of two slices is less than a thresh-
old t (e.g., 0.1 in Fig. 1), they are likely to contain similar anatomical content
and can be considered as positive pair. Otherwise, they are negative pair. The
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threshold t is a hyper-parameter that is different for different medical datasets.
Note that this approach allows the positive and negative pairs to be formed on
the fly instead of predefined such as in [2]. It is possible that (xi, xj) and (xj , xk)
are positive pairs but (xi, xk) is a negative pair. We believe this can enforce the
feature representation to be uniformly distributed on the representation hyper-
sphere which may boost the contrastive learning performance [22].

As in [8,3], a pair of random transformations is applied for each sample in the
mini-batch to help the encoder learn the spatial invariant feature of the target.
The augmentations will not change the position value of the original sample, so
our contrastive data pair generation strategy discussed above still works.

3.3 Contrastive Loss Function

Our contrastive learning loss function is based on [12]. For a set of N randomly
sampled slices, {xi}i=1...N , the corresponding mini-batch consists of 2N samples
after data augmentation, {x̃i}i=1...2N , in which x̃2i and x̃2i−1 are two random
augmentations of xi. zi represents the learned embedding of x̃i. Then the loss
function can be defined as:

LPCL =
2N∑

i=1

LPCLi , (1)

LPCLi = − 1

|Ω+
i |

∑

j∈Ω+
i

log
esim(zi,zj)/τ

∑2N
k=1 1i 6=k · esim(zi,zk)/τ

. (2)

where Ω+
i is the set of indices of positive samples to x̃i. sim(·, ·) is the cosine

similarity function that computes the similarity between two vectors in the rep-
resentation space. τ is a temperature scaling parameter. Compared with the
standard contrastive loss [3] that only has one positive pair on the numerator
for any sample xi, in Eq. 2 all positive pairs in a mini-batch (e.g., the augmented
one and any of the remaining 2(N − 2) samples whose position is close to xi)
contribute to the numerator, allowing better utilization of the proposed strategy.

4 Experiments and Results

Datasets: We evaluate the performance of the proposed PCL on four publicly
available medical image datasets. (1) The CHD dataset is a CT dataset that
consists of 68 3D cardiac images captured by a Simens biograph 64 machine [23].
The dataset covers 14 types of congenital heart disease and the segmentation
labels include seven substructures: left ventricle (LV), right ventricle (RV), left
atrium (LA), right atrium (RA), myocardium (Myo), aorta (Ao) and pulmonary
artery (PA). (2) The MMWHS dataset was hosted in STACOM and MICCAI
2017 [25,24]. It consists of 20 cardiac CT and 20 MRI images and the annotations
include the same seven substructures as the CHD dataset. (3) The ACDC
dataset was hosted in MICCAI 2017 challenge [1]. The dataset has 100 patients
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with 3D cardiac MRI images. Each patient has around 15 volumes covering
a full cardiac cycle, only volumes for the end-diastolic and end-systolic phase
are labeled by an expert. The segmentation labels include three substructures:
LV, RV, and Myo. (4) The HVSMR dataset was hosted in MICCAI 2016
challenge [16]. It has 10 3D cardiac MRI images captured in an axial view on a
1.5T scanner. Manual annotations of blood pool and Myo are provided.
Preprocessing: Following the work of [2], we first normalize the intensity of
each 3D volume x to [x1, x99], where xp is the p-th intensity percentile in x.
Then all 2D slices and the corresponding annotations are resampled to a fixed
spatial resolution fr and padded to a fixed image size fs with 0. We do not apply
cropping because it may remove important structure information in the original
slice. The fr and fs for each dataset are defined as follows (1) CHD dataset:
fr = 1.0×1.0mm2 and fs = 512×512, (2) MMWHS dataset: fr = 1.0×1.0mm2

and fs = 256×256, (3) ACDC dataset: fr = 1.25×1.25mm2 and fs = 352×352,
(4) HVSMR dataset: fr = 0.7 × 0.7mm2 and fs = 352 × 352. No additional
alignment technique is used for CHD and ACDC datasets because they are
already roughly aligned as they are acquired.

4.1 Semi-supervised Learning

In this section, we test whether the proposed PCL can improve the performance
in semi-supervised learning where contrastive learning and down-stream super-
vised learning (with limited annotation) are done on the same dataset.
Setup: We employ our PCL to pre-train a U-Net encoder on the whole CHD
and ACDC, respectively, without using any human label. Note that for ACDC,
each patient has more than 10 volumes covering a full cardiac cycle, only two
of which have annotations. Since we do not need labels anyway, we use all the
volumes from 100 patients for pre-training. Then the pre-trained model is used
as the initialization to fine-tune a U-Net segmentation network with a small
number of labeled samples on the same dataset. 5-fold cross-validation is used
to evaluate the segmentation performance. Specifically, for each cross-validation
fold on CHD, We randomly sample M patients from the 51 patients for fine-
tuning, as if we only have the labels for these patients, and evaluate the results
on the remaining 17 patients. We experiment with different values of M (e.g.,
2, 6 and 10) to assess the influence of training set size in the fine-tuning stage
on the contrastive learning performance. The same training strategy is also used
for ACDC. We choose the threshold t to be 0.1 and 0.35 for CHD and ACDC
because they have the best performance according to our experiment. The in-
fluence of thresholds on accuracy will be discussed in the supplementary. Data
augmentations, including translation, rotation, and scale, are used in both the
pre-training and fine-tuning stages. The pre-training is done on two NVIDIA
GeForce GTX 1080 GPUs with 200 epochs. SGD is used as the optimizer and
the learning rate is set to 0.1. We use cosine learning rate scheduler, batch size
is set to 32. Temperature τ is set to 0.1 as in [8,3]. In the fine-tuning stage, we
train the U-Net with cross-entropy loss for 100 epochs. The batch size is set to 5
and the learning rate is 5× e−5. Adam optimizer and cosine scheduler are used.
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Table 1: Comparison of the proposed PCL method with baseline methods on
CHD and ACDC. M is the number of patients used in the fine-tuning process.
Results are reported in the form of mean(standard deviation) on 5-fold cross-
validation. PCL provides better results than the baselines for all values of M .

CHD (68 patients in total)
Method M=2 M=6 M=10 M=15 M=20 M=30 M=51

Random 0.184(.06) 0.508(.06) 0.584(.05) 0.627(.05) 0.658(.04) 0.693(.04) 0.754(.02)
Rotation [6] 0.171(.06) 0.488(.07) 0.575(.04) 0.625(.04) 0.651(.04) 0.691(.04) 0.749(.03)
PIRL [14] 0.196(.07) 0.504(.08) 0.617(.05) 0.658(.03) 0.674(.04) 0.714(.04) 0.761(.03)
SimCLR [3] 0.192(.06) 0.515(.06) 0.599(.06) 0.631(.05) 0.666(.05) 0.699(.05) 0.756(.03)
GCL [2] 0.255(.10) 0.564(.04) 0.646(.03) 0.669(.04) 0.697(.04) 0.725(.04) 0.766(.03)
PCL 0.356(.08) 0.600(.06) 0.661(.05) 0.686(.05) 0.716(.04) 0.735(.05) 0.774(.03)

ACDC (100 patients in total)
Method M=2 M=6 M=10 M=15 M=20 M=30 M=80

Random 0.588(.07) 0.782(.03) 0.840(.03) 0.876(.01) 0.894(.01) 0.909(.01) 0.928(.00)
Rotation [6] 0.572(.08) 0.809(.03) 0.868(.02) 0.886(.01) 0.898(.01) 0.910(.01) 0.925(.00)
PIRL [14] 0.492(.03) 0.823(.04) 0.865(.01) 0.880(.02) 0.896(.02) 0.912(.01) 0.927(.00)
SimCLR [3] 0.352(.06) 0.725(.08) 0.824(.04) 0.869(.02) 0.894(.01) 0.913(.01) 0.927(.00)
GCL [2] 0.636(.05) 0.803(.04) 0.872(.01) 0.891(.01) 0.902(.01) 0.913(.01) 0.927(.01)
PCL 0.671(.06) 0.850(.01) 0.885(.01) 0.904(.01) 0.909(.01) 0.919(.00) 0.929(.00)

Baselines: We compare the performance of PCL with a random approach that
does not use any pre-training as well as the following state-of-the-art baselines, all
of which use the same unlabeled dataset in the pre-training and labeled dataset
in the fine-tuning as PCL: (1) Rotation [6]: a pretext-based method that uses
image rotation prediction to pre-train the encoder; (2) PIRL [14]: adopted from
a contrastive learning scheme for natural image classification, which uses con-
trastive loss to learn pretext-invariant representations. (3) SimCLR [3]: adopted
from another contrastive learning scheme for natural image classification, which
constructs positive pairs for each sample only using two random augmentations;
(4) GCL [2]: a contrastive learning scheme for 3D medical image segmentation
which divides each volume into four partitions so that slices belonging to the
same partition in different volumes are considered as positive pairs.

Results and Analysis: The results of the comparative study on both CHD
and ACDC are shown in Table 1. We report the averaging Dice of 5-fold cross-
validation results. From the table, we have the following observations. (1) Com-
paring PCL and GCL with other baselines, we can see that the performance im-
proves significantly (∆Dice > 0.1) in many settings for both CHD and ACDC,
suggesting that by leveraging domain-specific structural information in volumet-
ric medical images, the encoder can learn better task-related representation for
segmentation. (2) The performance improvement of PCL and GCL are espe-
cially high when a very small number of training samples are used (e.g., 2 and
4). The gains become lesser when the number of training samples increases. This
is because with more training samples, the information difference between the
training set for fine-tuning and the training set for contrastive learning becomes
small and the fine-tuning performance saturates. (3) SimCLR performs worse
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Table 2: Transfer learning comparison of the proposed PCL method with the
baselines. Except for Random, all the methods are pre-trained on CHD and
ACDC without labels and fine-tuned on MMWHS and HVSMR respectively.

CHD transferring to MMWHS (20 patients in total)
Method M=2 M=4 M=6 M=8 M=10 M=16

Random 0.232(.14) 0.661(.10) 0.732(.07) 0.769(.06) 0.808(.05) 0.834(.05)
Rotation [6] 0.247(.16) 0.659(.13) 0.751(.07) 0.768(.07) 0.803(.06) 0.850(.04)
PIRL [14] 0.251(.10) 0.670(.11) 0.755(.07) 0.774(.06) 0.821(.05) 0.851(.04)
SimCLR [3] 0.269(.17) 0.683(.10) 0.751(.07) 0.783(.06) 0.818(.05) 0.850(.04)
GCL [2] 0.262(.11) 0.703(.07) 0.768(.05) 0.805(.04) 0.820(.04) 0.851(.03)
PCL 0.339(.15) 0.748(.08) 0.792(.05) 0.820(.05) 0.840(.04) 0.869(.03)

ACDC transferring to HVSMR (10 patients in total)
Method M=2 M=4 M=6 M=8

Random 0.742(.06) 0.813(.05) 0.842(.03) 0.842(.04)
Rotation [6] 0.737(.07) 0.816(.06) 0.845(.03) 0.844(.03)
PIRL [14] 0.740(.05) 0.826(.04) 0.849(.03) 0.846(.03)
SimCLR [3] 0.700(.07) 0.779(.05) 0.808(.04) 0.815(.04)
GCL [2] 0.770(.05) 0.818(.05) 0.842(.03) 0.843(.03)
PCL 0.781(.05) 0.832(.05) 0.857(.03) 0.857(.03)

than Random on ACDC. This suggests that only using data augmentations to
generate contrastive data pairs may lead to a large false negative rate for datasets
like ACDC where the volumes have small z dimensions (around 10). (4) PCL
performs better than GCL in all settings. The improvement in Dice can be up
to 0.04. This shows that using the relative position difference instead of a hard
partition strategy can better utilize the structural information in medical images
and reduce false negatives to improve contrastive learning performance.

4.2 Transfer Learning

To assess whether the learned representations by PCL are transferrable, we use
the encoder pre-trained on CHD and ACDC without labels as the initialization
of a U-Net to fine-tune on MMWHS and HVSMR datasets respectively. The
experiment setup and baselines are the same as in Section 4.1. Table 2 shows the
comparison results. It can be seen that the proposed PCL framework outperforms
all baselines on both datasets. The overall improvement on HVSMR is relatively
smaller than MMWHS. This is because MMWHS is very similar to CHD which
makes the features learned on CHD more helpful on MMWHS. On the other
hand, ACDC and HVSMR are different in terms of acquisition view and image
resolution, which limits the transfer learning performance. Visualization of the
segmentation results on all datasets is shown in the supplementary.
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5 Conclusion

In this paper, we propose a novel PCL framework for representation learning in
volumetric medical images. The framework can effectively eliminate false nega-
tive pairs in existing contrastive learning methods for medical image segmenta-
tion. Experimental results on four 3D medical image datasets show that PCL
significantly improves the segmentation performance in both semi-supervised
setting and transfer learning setting.
Acknowledgements. This work is partially supported by NSF award IIS-
2039538.
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Supplementary: Positional Contrastive Learning
for Volumetric Medical Image Segmentation

Table 1: Ablation study. The influence of threshold on contrastive learning ac-
curacy. Results are reported in the form of mean(standard deviation) on 5-fold
cross-validation. M is the number of patients used in the fine-tuning stage. The
average number of positive pairs at each threshold is reported. The results show
that there exists an optimal threshold with the best contrastive learning perfor-
mance for different datasets. When the threshold is too small, the false negative
rate will increase. When the threshold is too large, the false positive rate will
increase. Both situations will induce performance degradation.

CHD
Threshold #positive pairs M=10 M=15 M=20 M=30

0.05 6.98 0.651(.06) 0.681(.05) 0.710(.06) 0.733(.05)
0.10 12.69 0.661(.05) 0.686(.05) 0.716(.04) 0.735(.05)
0.15 18.23 0.658(.05) 0.684(.06) 0.716(.04) 0.734(.06)
0.20 23.29 0.655(.05) 0.680(.07) 0.711(.05) 0.732(.06)

ACDC
Threshold #positive pairs M=10 M=15 M=20 M=30

0.20 23.66 0.877(.02) 0.904(.01) 0.910(.01) 0.915(.01)
0.25 27.66 0.879(.01) 0.901(.01) 0.912(.01) 0.917(.01)
0.30 31.93 0.870(.02) 0.904(.00) 0.912(.00) 0.918(.00)
0.35 36.69 0.885(.01) 0.904(.01) 0.913(.01) 0.919(.00)
0.40 40.32 0.877(.02) 0.897(.01) 0.905(.01) 0.918(.01)
0.50 46.82 0.883(.01) 0.900(.01) 0.910(.01) 0.919(.00)
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Fig. 1: Visualization of segmentation results on all datasets. The results of CHD
and ACDC are generated from the fine-tuned model when M = 10. The results
of MMWHS and HVSMR are generated from the fine-tuned model when M = 6.
M is the number of patients used for fine-tuning.


