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Abstract. Deep neural networks (DNNs) trained on one set of medical
images often experience severe performance drop on unseen test images,
due to various domain discrepancy between the training images (source
domain) and the test images (target domain), which raises a domain
adaptation issue. In clinical settings, it is difficult to collect enough an-
notated target domain data in a short period. Few-shot domain adap-
tation, i.e., adapting a trained model with a handful of annotations, is
highly practical and useful in this case. In this paper, we propose a Poly-
morphic Transformer (Polyformer), which can be incorporated into any
DNN backbones for few-shot domain adaptation. Specifically, after the
polyformer layer is inserted into a model trained on the source domain,
it extracts a set of prototype embeddings, which can be viewed as a “ba-
sis” of the source-domain features. On the target domain, the polyformer
layer adapts by only updating a projection layer which controls the inter-
actions between image features and the prototype embeddings. All other
model weights (except BatchNorm parameters) are frozen during adap-
tation. Thus, the chance of overfitting the annotations is greatly reduced,
and the model can perform robustly on the target domain after being
trained on a few annotated images. We demonstrate the effectiveness of
Polyformer on two medical segmentation tasks (i.e., optic disc/cup seg-
mentation, and polyp segmentation). The source code of Polyformer is
released at https://github.com/askerlee/segtran.
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1 Introduction

Deep neural networks (DNNs) are notoriously fragile when being used on a
domain not seen before. For example, it is common to witness 10 ∼ 20% drop of
accuracy on images captured with a device different from the training images.
The training images and unseen test images are referred to as the source domain
and the target domain, respectively. Domain adaptation (DA), i.e., modifying
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Fig. 1: (a) The original model pipeline consists of a feature extractor and a task head.
(b) A modified pipeline for domain adaptation with an inserted polyformer. “Proto-
types” are a set of prototype embeddings. For adaptation, the polyformer converts
features f to f̃ . The weights of the feature extractor and the task head are frozen.

an existing model trained on the source domain, so that it performs well on the
target domain, is important for deploying DNNs for medical image tasks.

Domain adaptation is trivial if a large set of annotated data exist in the target
domain. However, such annotations are usually expensive to acquire, especially
for segmentation tasks. Though, it is still cheap and feasible to obtain a handful
of annotations. This work focuses on doing DA on a handful of annotations, or
few-shot domain adaptation. It is a special case of semi-supervised learning. A
large body of literature focuses on reducing the domain discrepancy by minimiz-
ing a domain adversarial loss [9,18,20,3,10,5]. Such methods can be used both in
unsupervised and semi-supervised settings. As shown in our experiments, they
are helpful for DA, and are complementary to our method.

In practice, a common approach to DA is retraining the model on the mixed
source and target domain data [21]. However, it may be suboptimal in the few-
shot scenario, as the joint dataset is dominated by the source domain. Another
popular approach is fine-tuning the model weights on the target-domain anno-
tated data. In the few-shot scenario, however, updating the whole pretrained
model could easily overfit the limited target-domain annotations [13]. A remedy
is to minimize the modification to the pretrained weights. For instance, we could
freeze the feature extractor and just fine-tune the task head. Another scheme is
to introduce adaptive modules into existing models, such as the DAM module
[5], and freeze the pretrained weights.

Along the line of adaptive module-based methods, we propose a polymorphic
transformer (polyformer). It can be inserted into a pretrained model, to take
the responsibility of DA. It first extracts a set of prototype embeddings from
the source domain, which is a condensed representation of the source-domain
features. On the target domain, by attending with the prototype embeddings,
the polyformer dynamically transforms the target-domain features. Thanks to
the projection mechanism of transformers [19], after merely fine-tuning a pro-
jection layer, the transformed target-domain features can be made semantically
compatible with the source domain. Hence, it can achieve good DA performance
even in the few-shot scenario. As a proof-of-concept, we demonstrate the ef-
fectiveness of the polyformer on a vanilla U-Net model [17], evaluated on two
cross-domain segmentation tasks: optic disc/cup area segmentation in fundus
images, and polyp segmentation in colonoscopy images.
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2 Related work

Few-Shot Learning Few-shot learning (FSL) is closely related, but different
from few-shot DA. Typically, FSL is to adapt a pretrained model, so that it
performs well on novel tasks (e.g. new classes) for which training examples are
scarce [4]. In contrast, in few-shot DA, the model performs the same task on
the source and target domains. A recent line of FSL research [23,22] is to first
extract prototype embeddings (prototypes) from the support (training) images
of each class, and then match them with query (test) image features using a
distance metric. The prototypes are a set of “weak classifiers” [7] that vote to
make the final prediction. Note that prototypes in FSL and in the polyformer
serve different roles: in FSL the prototypes are used to make the final prediction,
and in the polyformer they are used to transform target-domain features.

3 The Polymorphic Transformer

The polymorphic transformer (polyformer) is designed to bridge the gap between
different domains. A pretrained network can offload DA onto a polyformer layer,
so that it keeps all weights (except BatchNorms) frozen, and still performs ro-
bustly on a new domain. Adapting a polyformer layer only requires fine-tuning
a projection layer, and thus a few annotated images are sufficient. In theory, the
polyformer can be incorporated with any backbone networks, such as U-Net [17],
DeepLabV3+ [2] or transformer-based models. In this work, we choose U-Net to
illustrate how a polyformer performs DA on segmentation tasks.

Fig. 1 illustrates how a polyformer layer is incorporated into an existing
model. In Fig. 1(a), suppose a model M splits into a feature extractor M1 and
a task head M2 (A similar formulation is found in [14]). For example, a U-Net
can split into the encoder-decoder (M1) and the segmentation head (M2). On an
input image x, the feature extractor generates feature maps f , which are fed into
M2 to make predictions. On the target domain, due to domain discrepancy, the
feature maps f follow different distributional properties, and thus M2 is prone
to make wrong predictions.

To bridge the domain gap, a polyformer layer is inserted between M1 and M2,
as shown in Fig. 1(b). Now M2 processes transformed features f̃ . After train-
ing the polyformer layer on the source domain and fine-tuning it on the target
domain, f̃ should “look more familiar” to M2, leading to improved prediction
accuracy. Instead of seeking adaptation between the myriads of features in the
source and target domains, we propose to first find a condensed representation of
the source-domain features, namely a set of prototype embeddings (prototypes).
Adaptation becomes much easier on a much smaller set of prototypes, making
the model suited for few-shot scenarios.

3.1 Polyformer Architecture

Different designs can be chosen to implement the polyformer layer, and here we
adopt the Squeeze-and-Expansion Transformer proposed in [12]. Fig.2 presents
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Fig. 2: A polyformer layer consists of two sub-transformers 1 and 2. (a) Schematic
of the polyformer attention. In Transformer 1, the input feature vectors f1, · · · , fN
attend with the prototypes c1, · · · , cM , yielding c̃1, · · · , c̃M , which then attend back
with input f1, · · · , fN in Transformer 2 to generate the output features f̃1, · · · , f̃N . (b)
Zoom-in of Transformer 1. Ks and Kt are the key projections used on the source and
target domains, respectively.

(a) the schematic of the two-step attention by the two sub-transformers, and (b)
the zoomed-in architecture, especially the structure of Transformer 1.

A polyformer layer consists of two sub-transformer layers, denoted as Trans-
former 1 and 2. The prototypes are a set of M persistent embeddings c1, · · · , cM ,
independent of the input. The input features f consist of a set of feature vectors
{f1, · · · ,fN}, which are obtained by spatially flattening the input feature maps.
Transformer 1 performs cross-attention between the prototypes and the input
features, yielding intermediate features C̃ = c̃1, · · · , c̃M . They attend back with
f in Transformer 2, outputting the adapted features f̃ = {f̃1, · · · , f̃N}:

C̃ = Transformer1(f ,C), (1)

f̃ = Transformer2(C̃,f) + f , (2)

where in Eq.(2), a residual connection builds upon the original representations.
In a Squeeze-and-Expansion transformer, sub-transformers 1 and 2 are two Ex-
panded Attention Blocks [12]. In each sub-transformer, the attention matrix is of
N×M . Typically, the number of feature points N > 104, and we chose M = 256.
Thus, the huge feature space is compressed using a set of 256 prototypes.

For the purpose of domain adaptation, our focus is on Transformer 1:

Att weight(f ,C) = σ(K(f),Q(C)) ∈ RN×M , (3)

Attention(f ,C) = Att weight(f ,C) · V (f), (4)

C̃ = FFN(Attention(f ,C)), (5)
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where K,Q,V are key, query, and value projections, respectively. σ is softmax
after dot product. Att weight(f ,C) is a pairwise attention matrix, whose i, j-th
element defines how much f i contributes to the fused features of prototype j.
FFN is a feed-forward network that transforms the fused features into c̃j .

In Eq.(3), K controls which subspace input features fi are projected to, and
influences the attention between f and C. It leads to the following hypothesis:

Hypothesis 1 In the target domain, by properly updating K : Ks → Kt, the
polyformer layer will project input features f (which follow a different distri-
bution) to a subspace similar to that in the source domain. Consequently, the
output features from the polyformer are semantically compatible with the target-
domain output feature space. As a result, the model will perform better on the
target domain without updating the original model weights.

According to Hypothesis 1, to adapt a trained model on a new domain, we
can share Q,V and FFN across domains, and update K only. This scheme
inherites most of the representation powers from the source domain.

When the polyformer layer is an ordinary transformer without prototypes,
the attention matrix is a huge N ×N matrix (N > 104). Then cross-domain se-
mantic alignment becomes much more harder, and hypothesis 1 may not satisfy.

3.2 Training and Adaptation of the Polyformer Layer

Training on the Source Domain. After a polyformer layer is inserted in a
model M trained on the source domain, we need to train the polyformer layer to
make the new pipeline M ′ keep similar performance on the source domain as the
original pipeline. This is achieved by training again on the source-domain data.
Specifically, all the weights (including BatchNorms) ofM are frozen, and only the
polyformer weights are to be updated. The same training protocol is performed
on the source-domain training data {(xs1, ys1), · · · , (xsn, ysn)}. After training, the
prototypes are compressed representations of the source domain features.

Adapting to the Target Domain. On the target domain, all the weights
(excluding BatchNorms) of M are frozen, and only the K projection weights
and BatchNorm parameters are to be updated. The training is performed on the
few-shot target-domain training data (Xt, Y t) = {(xt1, yt1), · · · , (xtm, ytm)}.

Note that traditional domain adversarial losses [9,18] could be incorporated
to improve the adaptation, as shown in our ablation studies (Section 4.1):

Ladapt(X
s, Xt, Y t) = Lsup(Xt, Y t) + Ladv(Xs, Xt). (6)

There are two common choices for the domain adversarial loss: the discriminator
could try to discriminate either 1) the features of a source vs. a target domain
image, or 2) the predicted masks on a a source vs. a target domain image.

4 Experiments

Different methods were evaluated on two medical image segmentation tasks:
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RIM-One
CVC-300 Avg.

Disc Cup

Trained on Source Domain

U-Net 0.819 0.708 0.728 0.752

Polyformer 0.815 0.717 0.724 0.752

Adapted to Target Domain

Ladv + K 0.828 0.731 0.779 0.779

Lsup + K, w/o BN 0.823 0.741 0.760 0.775

Lsup + K 0.900 0.753 0.830 0.828

Lsup + Ladv + All weights 0.892 0.741 0.826 0.820

Lsup + Ladv(mask) + K 0.909 0.763 0.836 0.836

Lsup + Ladv +K (standard setting) 0.913 0.758 0.834 0.835

Table 1: The dice scores on Fundus and Polyp target domains RIM-One and CVC-300,
by five ablated Polyformer models and the standard “Lsup + Ladv +K”. The U-Net
and Polyformer trained on the source-domain were includes as references.

Optic Disc/Cup Segmentation. This task does segmentation of the optic disc and
cup in fundus images, which are 2D images of the rear of the eyes. The source
domain was the 1200 training images provided in the REFUGE challenge [15].
The target domain, the RIM-One dataset [8], contains 159 images.

Polyp Segmentation. This task does polyp (fleshy growths inside the colon lining)
segmentation in colonoscopy images. The source domain was a combination of
two datasets: CVC-612 (612 images) [1] and Kvasir (1000 images) [16]. The
target domain was the CVC-300 dataset (60 images) [6].

Number of shots. For each task, five annotated images were randomly se-
lected from the target domain to do few-shot supervised training. Each method
was evaluated on the remaining target-domain images. Results with 10, 15 and
20 shots can be found in the supplementary file.

4.1 Ablation Studies

A standard Polyformer and five ablations were evaluated on the two tasks:

– Lsup+Ladv +K (standard setting), i.e., fine-tuning only the K projection,
with both the few-shot supervision and the domain adversarial learning on
features. It is the standard setting from which other ablations are derived;

– Ladv +K, i.e., fine-tuning the K projection using the unsupervised domain
adversarial loss on features, without using the few-shot supervision;

– Lsup +K, w/o BN, i.e., freezing the BatchNorm affine parameters, but still
updating the mean/std statistics on the target domain;

– Lsup + K, i.e., fine-tuning the K projection using the few-shot supervision
only, without the domain adversarial loss;

– Lsup+Ladv + All weights, i.e., fine-tuning the whole polyformer layer, instead
of only the K projection;
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– Lsup + Ladv(mask) +K, i.e., doing domain adversarial learning on the pre-
dicted masks, instead of on the extracted features.

Table 1 presents the results of the standard setting “Lsup + Ladv +K”, as
well as five ablated models. Without the few-shot supervision, the domain adver-
sarial loss only marginally improved the target-domain performance (0.752 →
0.779). Freezing the BatchNorm affine parameters greatly restricts adaptation
(0.752 → 0.775). Fine-tuning the whole polyformer layer led to worse perfor-
mance than fine-tuning the K projection only (0.820 vs. 0.835), probably due
to catastrophic forgetting [13] of the source-domain semantics encoded in the
prototypes. Incorporating the domain adversarial complemented and helped the
few-shot supervision obtain better performance (0.828 → 0.835). The domain
adversarial loss on features led to almost the same results as on masks.

4.2 Compared Methods

Two settings of Polyformer, as well as ten popular baselines, were evaluated:

– U-Net (source), trained on the source domain without adaptation;
– Lsup, fine-tuning U-Net (source) on the five target-domain images;
– Lsup(source + target), trained on a mixture of all source-domain images

and the five target-domain images;
– CycleGAN + Lsup(source) [24,11]6. The CycleGAN was trained for 200

epochs to convert between the source and the target domains. The converted
source-domain images were used to train a U-Net from scratch;

– RevGrad (Lsup +Ladv) [9], which fine-tunes U-Net (source), by optimizing
the domain adversarial loss on the features with a gradient reversal layer;

– ADDA (Lsup +Ladv) [18], which uses inverted domain labels to replace the
gradient reversal layer in RevGrad for more stable gradients;

– DA-ADV (tune whole model) [3] also named as pOSAL in [20], which
fine-tunes the whole U-Net (source) by discriminating whether the masks
are generated on the source or the target domain images using RevGrad;

– DA-ADV (tune last two layers), DA-ADV training that only fine-tunes
the last two layers and all BatchNorm parameters of U-Net (source);

– CellSegSSDA (Lsup+Ladv(mask)+Lrecon) [10], which combines RevGrad
on predicted masks, an image reconstruction loss and few-shot supervision;

– Polyformer (Lsup +K), by fine-tuning the K projection in the polyformer
layer, with the few-shot supervision only;

– Polyformer (Lsup + Ladv +K), i.e., the standard setting of Polyformer
training, which enhances Polyformer (Lsup +K) with RevGrad on features;

– Lsup (50% target), by fine-tuning U-Net (source) on 1/2 of the target-
domain images, and tested on the remaining 1/2 images. This serves as an
empirical upper-bound of all methods7.

6 CycleGAN is the core component for DA in [11], but [11] is more than CycleGAN.
7 However, the performance of Lsup (50% target) on CVC-300 was lower than Poly-

former and other baseline methods with more shots, partly because CVC-300 is small
(60 images) and sensitive to randomness. See the supplementary file for discussions
and more experiments.
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RIM-One
CVC-300 Avg.

Disc Cup

U-Net (source) [17] 0.819 0.708 0.728 0.752

Lsup [17] 0.871 0.665 0.791 0.776

Lsup(source + target) [17] 0.831 0.715 0.808 0.785

CycleGAN + Lsup(source) [24,11] 0.747 0.690 0.709 0.715

RevGrad (Lsup + Ladv) [9] 0.860 0.732 0.813 0.802

ADDA (Lsup + Ladv) [18] 0.874 0.726 0.836 0.812

DA-ADV (tune whole model) [3,20] 0.885 0.725 0.830 0.813

DA-ADV (tune last two layers) [3,20] 0.872 0.730 0.786 0.796

CellSegSSDA (Lsup+Ladv(mask)+Lrecon) [10] 0.869 0.756 0.805 0.810

Polyformer (Lsup +K) 0.900 0.753 0.830 0.828

Polyformer (Lsup + Ladv +K) 0.913 0.758 0.834 0.835

Lsup (50% target) [17] 0.959 0.834 0.834 0.876

Table 2: Dice scores on Fundus and Polyp target domains RIM-One and CVC-300.

The domain adversarial methods RevGrad, ADDA and DA-ADV were combined
with the few-shot supervision to do semi-supervised learning. All the methods
were trained with a batch size of 4, and optimized with the AdamW optimizer
at an initial learning rate of 0.001. The supervised training loss was the average
of the pixel-wise cross-entropy loss and the dice loss.

4.3 Results

Table 2 presents the segmentation performance of different methods on the two
target domains, measured in dice scores. The domain adversarial loss effectively
reduced the performance gap between the source and target domains. “Cycle-
GAN + Lsup(source)” performed even worse than U-Net (source), as CycleGAN
does not guarantee semantic alignment when doing conversion [24]. Without the
domain adversarial loss, Polyformer (Lsup +K) has already achieved higher av-
erage dice scores than all the baseline methods. By incorporating the domain
adversarial loss RevGrad on predicted masks, Polyformer (Lsup + Ladv +K)
achieved higher performance than Polyformer (Lsup +K), showing that Poly-
former is complementary with the traditional domain adversarial loss.

To gain an intuitive understanding of how different methods performed, Fig.
3 presents a fundus image from RIM-One, the ground-truth segmentation mask
and the predicted masks by selected methods. In addition, a REFUGE image is
presented in the left to visualize the source/target domain gap. Without adapta-
tion, U-Net (source) was unable to find most of the disc/cup areas, as the image
is much darker than typical source-domain REFUGE images. The mask pre-
dicted by “CycleGAN + Lsup(source)” largely deviates from the ground-truth.
The mask from Polyformer was significantly improved by the domain adversarial
loss, in that the artifacts were eliminated and the mask became much closer to
the ground-truth. For comparison purposes, another example is presented in the
supplementary file where all the major methods failed.
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test-G-31-R

RIM-One image                      U-Net (source)                  Polyformer (ℒ𝑠𝑢𝑝+K)      Polyformer (ℒ𝑠𝑢𝑝 + ℒ𝑎𝑑𝑣+K)

Ground-truth                   CycleGAN+ℒ𝑠𝑢𝑝(source)        ADDA (ℒ𝑠𝑢𝑝 + ℒ𝑎𝑑𝑣)                 CellSegSSDA

REFUGE image 

Fig. 3: The segmentation masks predicted by different methods on a RIM-One image.

5 Conclusions

In this work, we proposed a plug-and-play module called the polymorphic trans-
former (Polyformer) for domain adaptation. It can be plugged into a pretrained
model. On a new domain, only fine-tuning a projection layer within Polyformer
is sufficient to achieve good performance. We demonstrated the effectiveness of
Polyformer on two segmentation tasks, where it performed consistently better
than strong baselines in the challenging few-shot learning setting.
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A Architecture of U-Net and Discriminator

All baseline methods and the polyformer are based on a popular U-Net im-
plementation https://github.com/milesial/Pytorch-UNet, which has four down-
sampling and four upsampling layers.

The discriminator is 5-layer CNN, with a gradient-reversal layer inserted
before all the layers.

B Hyperparameters of Polyformer

There are two important hyperparameters of polyformer: the number of proto-
types M , and the number of modes Nm of the extended attention block [12].
Our experiments show that, when reducing M from the default 256 to 128 or 64,
the performance only dropped very slightly. Nm has bigger impact to the model
performance. Typically Nm = 4 or 2. On RIM-One, Nm = 4 performs slightly
better than Nm = 2. On CVC-300, Nm = 2 performs slightly better instead.

C Results of More Shots

Table 3 presents the results of 10, 15 and 20 shots on polyformer and a few repre-
sentative baselines. In these settings, polyformer still outperformed the baseline
methods.

It is somewhat surprising that, with more training examples on CVC-300
(a polyp segmentation dataset), the three methods with the domain adversarial
loss still outperformed Lsup (50% target) by 3-5%. It shows that the domain
adversarial loss is important for transferring the learned representations from
the source domain to new domains.

One thing to note is that, as the dataset CVC-300 is small (60 images),
the evaluation results on it are sensitive to various randomness, including the
train/test data split, model initialization, the types of adopted model regular-
izations, and other hyperparameters. For the experiments we have controlled the
train/test data split and common hyperparameters to ensure different methods
were evaluated on the same ground. However, this may still be not totally fair for
some baselines. For example, it is possible that under a carefully-chosen learning
rate, Lsup may perform significantly better.

In the future, we would like to evaluate different methods on bigger datasets,
so that more reliable conclusions would be drawn from the experimental results.

D A Failed Example

Fig. 4 presents a difficult RIM-One image on which all the compared methods
failed. Different from Fig. 3 in the main paper where the domain adversar-
ial loss Ladv helps remove artifacts, here Ladv introduces two “phantom optic
discs/cups” to the mask produced by the polyformer. A possible explanation

https://github.com/milesial/Pytorch-UNet
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RIM-One
CVC-300 Avg.

Disc Cup

5-Shot

Lsup [17] 0.871 0.665 0.791 0.776

RevGrad (Lsup + Ladv) [9] 0.860 0.732 0.813 0.802

CellSegSSDA (Lsup+Ladv(mask)+Lrecon) [10] 0.869 0.756 0.805 0.810

Polyformer (Lsup + Ladv) 0.913 0.758 0.834 0.835

10-Shot

Lsup [17] 0.924 0.744 0.819 0.829

RevGrad (Lsup + Ladv) [9] 0.877 0.744 0.835 0.819

CellSegSSDA Lsup+Ladv(mask)+Lrecon) [10] 0.918 0.722 0.860 0.833

Polyformer (Lsup + Ladv +K) 0.915 0.767 0.844 0.842

15-Shot

Lsup [17] 0.933 0.800 0.799 0.844

RevGrad (Lsup + Ladv) [9] 0.906 0.765 0.854 0.842

CellSegSSDA (Lsup+Ladv(mask)+Lrecon) [10] 0.911 0.775 0.874 0.853

Polyformer (Lsup + Ladv +K) 0.925 0.801 0.853 0.860

20-Shot

Lsup [17] 0.937 0.824 0.820 0.860

RevGrad (Lsup + Ladv) [9] 0.911 0.806 0.858 0.858

CellSegSSDA (Lsup+Ladv(mask)+Lrecon) [10] 0.931 0.801 0.872 0.868

Polyformer (Lsup + Ladv +K) 0.927 0.813 0.860 0.867

Lsup (50% target) [17] 0.959 0.834 0.834 0.876

Table 3: Dice scores on Fundus and Polyp target domains RIM-One and CVC-300.
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is that the discriminator is implemented as a Convolutional Neural Network
(CNN), and due to the local nature of CNNs, the regularization from it is local,
i.e., effective within small neighborhoods. Thus, after seeing a highly-likely optic
disc/cup area (i.e., the groundtruth area), it could not suppress other “phan-
tom optic discs/cups”. Instead, it just refines each specious optic disc/cup area,
so that when examined locally, each area looks like a more reasonable optic
disc/cup; but in the end, it makes the whole mask incongruous and illogical.

For future work, we may improve the discriminator by incorporating a trans-
former, so that it will provide regularization at a more global level.

train-G-5-R

RIM-One image                      U-Net (source)                  Polyformer (ℒ𝑠𝑢𝑝+K)       Polyformer (ℒ𝑠𝑢𝑝 + ℒ𝑎𝑑𝑣+K)

Ground-truth                   CycleGAN+ℒ𝑠𝑢𝑝(source)        ADDA (ℒ𝑠𝑢𝑝 + ℒ𝑎𝑑𝑣)                 CellSegSSDA

REFUGE image 

Fig. 4: A difficult RIM-One image on which all methods failed.
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