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Abstract. Semantic segmentation of medical images is an essential first step in
computer-aided diagnosis systems for many applications. However, given many
disparate imaging modalities and inherent variations in the patient data, it is dif-
ficult to consistently achieve high accuracy using modern deep neural networks
(DNNs). This has led researchers to propose interactive image segmentation tech-
niques where a medical expert can interactively correct the output of a DNN to
the desired accuracy. However, these techniques often need separate training data
with the associated human interactions, and do not generalize to various diseases,
and types of medical images. In this paper, we suggest a novel conditional in-
ference technique for DNNs which takes the intervention by a medical expert as
test time constraints and performs inference conditioned upon these constraints.
Our technique is generic can be used for medical images from any modality. Un-
like other methods, our approach can correct multiple structures simultaneously
and add structures missed at initial segmentation. We report an improvement of
13.3, 12.5, 17.8, 10.2, and 12.4 times in user annotation time than full human
annotation for the nucleus, multiple cells, liver and tumor, organ, and brain seg-
mentation respectively. We report a time saving of 2.8, 3.0, 1.9, 4.4, and 8.6 fold
compared to other interactive segmentation techniques. Our method can be useful
to clinicians for diagnosis and post-surgical follow-up with minimal intervention
from the medical expert. The source-code and the detailed results are available
here [1].
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1 Introduction

Motivation: Image segmentation is a vital imaging processing technique to extract the
region of interest (ROI) for medical diagnosis, modeling, and intervention tasks. It is
especially important for tasks such as the volumetric estimation of structures such as
tumors which is important both for diagnosis and post-surgical follow-up. A major
challenge in medical image segmentation is the high variability in capturing protocols
and modalities like X-ray, CT, MRI, microscopy, PET, SPECT, Endoscopy and OCT.
Even within a single modality, the human anatomy itself has significant variation modes
leading to vast observed differences in the corresponding images. Hence, fully auto-
mated state-of-the-art methods have not been able to consistently demonstrated desired
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Table 1: Comparative strengths of various interactive segmentation techniques.

Capability Description [11] [28] [19] [10] Ours

Feedback
mode

Point 3 3 7 3 3

Box 7 7 3 7 3

Scribble 7 7 7 7 3

Training
Requirement

Pre-training with user interaction 3 3 3 3 7

Can work with any pre-trained DNN 3 3 7 7 3

Correction
Modes

Correct multiple labels 7 7 7 7 3

Insert missing labels 7 7 7 7 3

Generalization
Adapt: Distribution mismatch 7 7 7 7 3

Segment new organs than trained for 7 7 7 7 3

robustness and accuracy for segmentation in clinical use. This has led researchers to
develop techniques for interactive segmentation which can correct the mispredictions
during clinical evaluation and make-up for the shortfall.

Current Solutions: Though it is helpful to leverage user interactions to improve the
quality of segmentation at test time, this often increases the burden on the user. A good
interactive segmentation method should improve the segmentation of the image with
the minimum number of user interactions. Various popular interactive segmentation
techniques for medical imaging have been proposed in the literature [25, 32, 33]. The
primary limitation is that it can segment only one structure at a time. This leads to a
significant increase in user interactions when a large number of segments are involved.
Recent DNN based techniques [11, 19, 28] improve this aspect by reducing user inter-
actions. It exploits pre-learnt patterns and correlations for correcting the other unan-
notated errors as well. However, they require vast user interaction data for training the
DNN model, which increases cost and restricts generalization to other problems.

Our Contribution: We introduce an interactive segmentation technique using a pre-
trained semantic segmentation network, without any additional architectural modifi-
cations to accurately segment 2D and 3D medical images with help from a medical
expert. Our formulation models user interactions as the additional test time constraints
to be met by the predictions of a DNN. The Lagrangian formulation of the optimization
problem is solved by the proposed alternate maximization and minimization strategy,
implemented through the stochastic gradient descent. This is very similar to the stan-
dard back-propagation based training for the DNNs and can readily be implemented.
The proposed technique has several advantages: (1) exhibits the capability to correct
multiple structures at the same time leading to a significant reduction in the user time.
(2) exploits the learnt correlations in a pre-trained deep learning semantic segmenta-
tion network so that a little feedback from the expert can correct large mispredictions.
(3) requires no joint training with the user inputs to obtain a better segmentation, which
is a severe limitation in other methods [11, 28]. (4) add missing labels while segment-
ing a structure if it was missed in the first iteration or wrongly labeled as some other
structure. The multiple types of corrections allow us to correct major mispredictions
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in relatively fewer iterations. (5) handle distribution mismatches between the training
and test sets. This can arise even for the same disease and image modality due to the
different machine and image capturing protocols and demographies. (6) for the same
image modality, using this technique one can even segment new organs using a DNN
trained on some other organ type. Table 1 summarizes the comparative advantages of
our approach.

2 Related Work

Conventional Techniques: Interactive segmentation is a well-explored area in com-
puter vision and some notable techniques are based on Graph Cuts [25, 29, 32], Edge
or Active Contours [12, 30], Label propagation using Random Walk or other similar
style [7, 33], and region-based methods [9, 26]. In these techniques, it is not possible to
correct multiple labels together without the user providing the initial seeds and also not
possible to insert a missing label.

DNN based Techniques: DNN based techniques use inputs such as clicks [11, 28],
scribbles [18], and bounding boxes [19] provided by a user. Other notable techniques in-
clude [2,17,19,28,36]. These methods require special pre-training with user-interactions
and associated images. This increases the cost of deployment and ties a solution to pre-
decided specific problem and architecture.

Interactive Segmentation for Medical Images: Interactive Segmentation based meth-
ods, especially for medical image data, have been proposed in [3, 10, 15, 34, 35]. The
methods either need the user inputs to be provided as an additional channel with the
image [3] or need an additional network to process the user input [35]. BIFSeg [34]
uses the user inputs at test time with a DNN for interactive segmentation of medical im-
ages. However, our method is significantly different in the following manner: (a) DNN
- use their own custom neural networks [34]. However, our method can use pre-existing
segmentation networks. This allows our method to use newer architectures which may
be proposed in the future as well. (b) Optimization - use CRF-based regularization for
label correction [34]. We propose a novel restricted Lagrangian-based formulation. This
enables us to do a sample specific fine-tuning of the network, and allows our method to
do multiple label corrections in a single iteration which is novel. (c) User Inputs - use
scribbles and bounding boxes as user inputs [34]. We can correct labels irrespective of
the type of user input provided.

3 Proposed Framework

The goal is to design an approximate optimization algorithm that can encode the con-
straints arising from user-provided inputs in the form of scribbles. A simple gradient
descent strategy similar in spirit to the Lagrangian relaxation proposed by [16] is opti-
mized. The strategy allows us to use existing libraries and infrastructure built for any
image modality optimizing the loss for the DNNs using the standard back-propagation
procedure.
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User inputs 
scribbles for 
correction

Updated 
segmentation

Backpropagation of 
test loss only on the 

last few layers

Fig. 1: The figure shows the working of our algorithm. Note that depending upon the
application, our framework can use different pre-trained network architectures. Hence
we do not give the detailed architecture of any particular model. The first step in our
framework is to obtain an initial segmentation using the pre-trained deep learning net-
work. The user then examines the segmentation and adds scribbles where the desired
correction is required. This is then used to refine the weights of the network and the
improved segmentation is obtained.

Problem Definition: A neural network with N layers is parameterized by weights W
from input to output. We represent this as a function Ψ(x, y,W )→ R+ to measure the
likelihood of a predicted output y given an input x and parameters/weights W . We also
want to enforce that the output values belong to a set of scribbles Sx provided by the
user to correct the segmentation dependent on x. Here, Sx encodes both the location in
the image where correction is required and the desired segmentation class label.

We can express the constraint, y ∈ Sx, as an equality constraint, using a function
g(y,Sx) → R+. This function measures the compatibility between the output y and
scribbles Sx such that g(y,Sx) = 0 if and only if there are no errors in y with respect
to Sx. In our case, g(y,Sx) is the cross-entropy loss between the predicted labels y and
the segmentation class label encoded in Sx. This allows us to solve the optimization
problem by minimizing the following Lagrangian:

min
λ

max
y

Ψ(x, y,W ) + λ g(y,Sx). (1)

Note that the compatibility constraints in g(y,Sx) factorize over the pixels and one
trivial solution of the optimization problem as described above is to simply change
the output variables to the class labels provided by the scribbles. However, this does
not allow us to exploit the neighborhood information inherent in the images, and the
correlations learnt by a DNN due to prior training over a large dataset.

We note that the network’s weights can also control the compatibility of the output
configurations with the scribble input. Since the weights are typically tied across space,
the weights are likely to generalize across related outputs in the neighborhood. This
fixes the incompatibilities not even pointed-to by the limited scribbles given by the user.
Hence, we propose to utilize the constraint violation as a part of the objective function to
adjust the model parameters to search for an output satisfying the constraints efficiently.

We propose to optimize a “dual” set of model parameters Wλ over the constraint
function while regularizing Wλ to stay close to the original weights W . The network
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Algorithm 1: Scribble aware inference for neural networks
Input : test instance x, input specific scribbles Sx, max epochs M , pre-trained

weights W , η learning rate, α regularization factor
Wλ ←W // reset to have instance-specific weights

Output : Refined segmentation
while g(y, Sx) > 0 and iteration < M do

y ← f(x;Wλ) // perform infererence using weights Wλ

∇ ← g(y, Sx) ∂
∂Wλl

Ψ(x, y,Wλl) + α
Wl−Wλl
||Wl−Wλl ||2

// constraint loss

Wλl ←Wλl − η∇ // update instance-specific weights with
SGD

end
return y, the refined segmentation

is divided into a final set of layers l and an initial set of layers N − l. We propose to
optimize only the weights corresponding to the final set of layersWλl . The optimization
function is given as:

min
Wλl

Ψ(x, ŷ,Wλl) g(ŷ,Sx) + α||Wl −Wλl ||, (2)

where ŷ = arg max
y

Ψ(x, y,Wλl). This function is reasonable by definition of the con-

straint loss g(·), though it deviates from the original optimization problem, and the
global minima should correspond to the outputs satisfying the constraints. If we initial-
ize Wλ =W , we also expect to find the high-probability optima. If there is a constraint
violation in ŷ, then g(·) > 0, and the following gradient descent procedure makes such
ŷ less likely, else g(·) = 0 and the gradient of the energy is zero leaving ŷ unchanged.

The proposed algorithm (see Algorithm 1) alternates between maximization to find
ŷ and minimization w.r.t. Wλl to optimize the objective. The maximization step can be
achieved by employing the neural network’s inference procedure to find the ŷ, whereas
minimizing the objective w.r.t. Wλl can be achieved by performing stochastic gradient
descent (SGD) given a fixed ŷ. We use the above-outlined procedure in an iterative
manner (multiple forward, and back-propagation iterations) to align the outcome of the
segmentation network with the scribble input provided by the user.

Fig. 1 gives a visual description of our framework. It explains the stochastic gradient-
based optimization strategy, executed in a manner similar to the standard back-propagation
style of gradient descent. However, the difference is that while the back-propagation
updates the weights to minimize the training loss, the proposed stochastic gradient ap-
proach biases the network output towards the constraints generated by the user provided
scribbles at the test time.

Scribble Region Growing: The success of an interactive segmentation system is deter-
mined by the amount of burden on a user. This burden can be eased by allowing the user
to provide fewer, shorter scribbles. However, providing shorter scribbles can potentially
entail a greater number of iterations to obtain the final accurate segmentation. Hence,
we propose using region growing to increase the area covered by the scribbles. We grow
the region to a new neighborhood pixel, if the intensity of the new pixel differs from the
current pixel by less than a threshold T .



6 B. Sambaturu et al.

Table 2: User Interaction Time (UT) and Machine Time (MT) in minutes to sepa-
rate structures (F: Full Human Annotation, R: Our method - Region Growing, N: Our
Method - No Region Growing. Methods [19, 21, 25, 28, 32, 33] were applied till a dice
coefficient of 0.95 was reached.

Dataset User Interaction Time Machine Time
F R N [25] [28] [19] [21] [32] [33] R N [25] [28] [19] [21] [32] [33]

2018 DSB 66 5 7 13 12 12 - - - 6 10 11 12 13 - - -
CoNSeP 30 6 8 16 18 20 - - - 5 7 17 20 23 - - -
LiTS 120 7 8 - - - 11 12 13 10 12 - - - 11 13 11
CHAOS 136 13 15 - - - 58 66 83 25 30 - - - 50 66 83
BraTS’ 15 166 11 13 - - - 76 83 100 58 81 - - - 100 116 133

.
4 Results and Discussions
Dataset and Evaluation Methodology: To validate and demonstrate our method, we
have evaluated our approach on the following publicly available datasets containing
images captured in different modalities: (1) Microscopy: 2018 Data Science Bowl
(2018 DSB) [5] (nucleus), MonuSeg [14] (nucleus), and ConSeP [8] datasets (epithe-
lial, inflammatory, spindle shaped and miscellaneous cell nuclei) (2) CT: LiTS [6]
(liver and tumor cells) and SegThor [22] (heart, trachea, aorta, esophagus) challenges
(3) MRI: BraTS’ 15 [20] (necrosis, edema, non-enhancing tumor, enhancing tumor)
and CHAOS [13] (liver, left kidney, right kidney, spleen) datasets. All the experiments
were conducted in a Linux environment on a 20 GB GPU (NVIDIA 2018Tx) on a Core-
i10 processor, 64 GB RAM, and the scribbles were provided using the WACOM tablet.
For microscopy images, the segmented image was taken and scribbles were provided
in areas where correction was required using LabelMe [31]. For CT and MRI scans,
the scribbles were provided in the slices of the segmentation scan where correction was
desired using 3-D Slicer [23]. For validating on each of the input modalities, and the cor-
responding dataset, we have taken a recent state-of-the-art approach for which the DNN
model is publicly available and converted it into an interactive segmentation model. We
used the same set of hyper-parameters that were used for training the pre-trained model.
The details of each model, and source code to test them in our framework are available
at [1]. To demonstrate the time saved over manual mode, we have segmented the im-
ages/scans using LabelMe for microscopy, and 3-D Slicer for CT/MRI, and report it as
full human annotation time (F). We took the help of two trained annotators, two general
practitioners and a radiologist for the annotation.

Ablation Studies: We also performed ablation studies to determine : (a) Optimum num-
ber of iterations, (b) Layer number upto which we need to update the weights, (c) Type
of user input (point,box,scribble) and, (d) Effect of scribble length on the user interac-
tion time. Owing to space constraints, the result of the ablation studies are provided on
the project page [1]. We find scribble as the most efficient way of the user input through
our ablation study, and use them in the rest of the paper.

Image Segmentation with Multiple Classes: Our first experiment is to evaluate inter-
active segmentation in a multi-class setting. We use two trained annotators for the ex-
periment. We have used the validation sets of the 2018 Data Science Bowl (2018 DSB),
CoNSeP, LiTS, CHAOS and the BraTS’ 15 challenge datasets for the evaluation. We
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Multiple
Labels

Missing
Labels

Unseen 
Organs

(a) Input Image (c) Correction 1(b) Ground Truth (d) Correction 2 (e) Correction 3 (f) Correction 4 (g) Final Result

Scribble Liver Left Kidney Right Kidney Spleen

Scribble Liver Left Kidney Right Kidney

Scribble Heart

Fig. 2: (a) Correcting multiple labels (top row) (b) Inserting missing labels (middle
row) (c) Interactive segmentation of organs the model was not trained for (bottom row).
Incremental improvement as scribbles are added shown. No other state-of-the-art ap-
proach has these capabilities. More qualitative results are provided here [1].
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Fig. 3: Improvement in segmentation accuracy per user interaction: Our models (region
and no-region growing) consistently achieve best accuracy, and in the least number of
user interactions.

have used the following backbone DNNs to demonstrate our approach: [4, 5, 8, 24, 27].
The details of the networks are provided on the project webpage due to a lack of
space. For the microscopy images we compare against Grabcut [25], Nuclick [10],
DEXTR [19] and f-BRS [28]. For the CT and MRI datasets, we have compared our
method against 3-D GrabCut [21], Geos [32] and SlicSeg [33]. Table 2 shows that our
technique gives an improvement in user annotation time of 13.3, 12.5, 17.8, 10.2 and
12.4 times compared to full human annotation time and 2.8, 3.0, 1.9, 4.4 and 8.6 times
compared to other approaches for nucleus, multiple cells, liver and tumour, multiple
organs, and brain segmentation respectively. We also compared the segmentation accu-
racy per user interaction for every method. Fig. 3 shows that our method with region
growing outperforms all the methods both in terms of accuracy achieved, and the num-
ber of iterations taken to achieve it.

Fig. 2 shows the visual results. The top row shows the segmentation obtained by
adding multiple labels in one interaction by our approach. We segment both the tumors
and the entire liver by using two scribbles at the same time. One of the important capa-
bilities of our network is to add a label missing from the initial segmentation which is
shown in the middle row. Note that our method does not require any pre-training with
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Table 3: Left: Dice Coefficient improvement for tissues with each interaction by medi-
cal expert. Right: User Interaction Time (UT) and Machine Time (MT) for distribution
mismatch scenario (in mins).

Tissue Type 1 2 3 4 5

Nucleus 0.54 0.62 0.76 0.81 0.86
Healthy 0.64 0.73 0.79 0.85 0.9
Necrosis 0.61 0.65 0.72 0.81 0.85
Edema 0.72 0.75 0.82 0.89 0.92
Enhancing tumor 0.62 0.65 0.74 0.85 0.89
Non-Enhancing tumor 0.71 0.75 0.83 0.87 0.92
Liver 0.73 0.75 0.81 0.89 0.92
Tumor 0.67 0.72 0.83 0.87 0.89

Method UT MT

Ours 8 7
Nuclick 13 10
DEXTR 20 11
f-BRS 23 12
GrabCut 25 13

a specific backbone for interactive segmentation. This allows us to use the backbone
networks that were trained for segmenting a particular organ. This ability is especially
useful in the data-scarce medical setting when the DNN model for a particular organ is
unavailable. This capability is demonstrated in the bottom row of Fig. 2 where a model
trained for segmenting liver on LiTS challenge [6] is used to segment the heart from
SegThor challenge [22].

Distribution Mismatch: The current methods cannot handle distribution mismatches
forcing pre-training on each specific dataset, requiring significant time, effort, and cost.
Our method does not need any pre-training. We demonstrate the advantage on the
MonuSeg dataset [14] using the model pre-trained on the 2018 Data Science Bowl [5].
Table 3 (Right) shows that our method requires much less user interaction and machine
time compared to other methods.

Evaluation of our method by medical experts: Our approach was tested by medical
experts: two general practitioners and a radiologist. We select five most challenging im-
ages/scans from the 2018 Data Science Bowl, LiTS, and BraTS’ 15 datasets with the
least dice score when segmented with the pre-trained segmentation model. The LiTS
and the BraTS’ 15 datasets were selected owing to their clinical relevance for the diag-
nosis and volumetric estimation of tumors. Table 3 (Left) gives the dice coefficient after
each interaction. The improvement in user interaction and machine time are provided
in the supplementary material on the project webpage.

5 Conclusion

Modern DNNs for image segmentation require a considerable amount of annotated data
for training. Our approach allows using an arbitrary DNN for segmentation and convert-
ing it to an interactive segmentation. Our experiments show that we did not require any
prior training with the scribbles and yet outperform the state-of-the-art approaches, sav-
ing upto 17x (from 120 to 7 mins) in correction time for a medical resource personnel.
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Supplementary Material
Efficient and Generic Interactive Segmentation Framework

A Ablation Study

We conducted studies to determine the effect of various hyper-parameters for our method.

1. Optimum iterations: We obtained the optimum number of iterations of back-
propagation for obtaining a dice coefficient of 0.95 for each segmentation network.
As seen in the Fig. 4, the optimum number of iterations was 80, 100, 130, 140 and
130 for the 2018 Data Science Bowl [5], CoNSeP [8], LiTS Challenge [6], CHAOS
dataset [13] and BraTS’ 15 [20] segmentation respectively.
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Table 4: Number of Mouse
Clicks(N), User Time (UT)
and Machine Time (MT)
for various user inputs (in
mins).

Method N UT MT

Point 100 13 16
Box 34 10 15
Scribble 10 5 10

2. Optimum layer: Once, the optimum number of iterations are determined, our next
step is to determine the optimum layer number upto which back-propagation needs
to be performed for each segmentation network. We observe that we obtain the best
possible dice coefficient for 4, 6, 4, 3 and 5 layers for the 2018 Data Science Bowl
[5], CoNSeP [8], LiTS Challenge [8], CHAOS dataset [13] and BraTS’ 15 [20]
segmentation respectively as seen in the right panel of Fig. 5.

3. Optimum user input type: Our method has the unique and remarkable capability
of being able to work with any type of user input such as points, boxes and scribbles.
We first performed experiments to determine the most suitable user input modality
for segmentation correction. We found that scribbles required the least number of
user interactions (30% lesser mouse clicks), as well as user and machine time (Table
4). Hence, the experiments in the paper were done with scribbles only.

4. Optimum scribble length: We also evaluated the effect of scribble length while
using our method. We observed that without region growing, we needed more user
interactions to correct the segmentation as the scribble length reduced. However,
with region growing, there was hardly any change in the number of user interactions
required as seen in Fig. 6 (obtained for LiTS challenge, similar behavior observed
for other datasets, but were not able to provide owing to space restrictions).
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B Evaluation of our method by medical expert

We evaluated our interactive segmentation method with the help of medical experts. We
have provided the user interaction time and machine time required for the 2018 Data
Science Bowl (2018 DSB), LiTS and BraTS’ 15 challenges here. It was possible to
obtain a reduction in user annotation time as well as machine time as seen in Table 5.

Table 5: User Interaction Time (UT) and Machine Time (MT) in minutes for separating
structures by a medical expert (F: Full Human Annotation, R: Our method - Region
Growing, N: Our Method - No Region Growing. All the semi-automated methods [19,
21, 25, 28, 32, 33] were applied till a dice coefficient of 0.95 was reached.

Dataset User Interaction Time Machine Time
F R N [25] [28] [19] [21] [32] [33] R N [25] [28] [19] [21] [32] [33]

2018 DSB 55 4 6 15 14 14 - - - 7 12 19 18 15 - - -
LiTS 100 6 7 - - - 14 15 16 9 10 - - - 12 14 15
BraTS’ 15 150 9 12 - - - 65 75 90 50 80 - - - 120 126 145

.


